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Abstract 50 

 51 

Biodiversity-ecosystem functioning (BEF) research grew rapidly following concerns that biodiversity 52 

loss would negatively affect ecosystem functions and the ecosystem services they underpin. However, 53 

despite evidence that biodiversity strongly affects ecosystem function, the influence of BEF research 54 

upon policy and the management of ‘real-world’ ecosystems, i.e. semi-natural habitats and 55 

agroecosystems, has been limited. Here, we address this issue by classifying BEF research into three 56 

clusters based on the degree of human control over species composition and the spatial scale, in terms 57 

of grain, of the investigation, and discussing how the research of each cluster is best suited to inform 58 

particular fields of ecosystem management. Research in the first cluster, small-grain highly controlled 59 

studies, is best able to provide general insights into mechanisms and to inform the management of 60 

species-poor and highly managed systems such as croplands, plantations, and the restoration of 61 

heavily degraded ecosystems. Research from the second cluster, small-grain observational studies, and 62 

species removal and addition studies, may allow for direct predictions of the impacts of species loss in 63 

specific semi-natural ecosystems. Research in the third cluster, large-grain uncontrolled studies, may 64 

best inform landscape scale management and national-scale policy. We discuss barriers to transfer 65 

within each cluster and suggest how new research and knowledge exchange mechanisms may 66 

overcome these challenges. To meet the potential for BEF research to address global challenges, we 67 

recommend transdisciplinary research that goes beyond these current clusters and considers the social-68 

ecological context of the ecosystems in which BEF knowledge is generated. This requires recognizing 69 

the social and economic value of biodiversity for ecosystem services at scales, and in units, that matter 70 

to land managers and policy makers.  71 
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 75 

Introduction 76 

 77 

Widespread concerns over the consequences of global biodiversity loss led to an explosion of 78 

ecological research in the early 1990s into the relationship between biodiversity and the functioning of 79 

ecosystems (hereafter BEF research) (Schulze and Mooney, 1994; Loreau et al., 2001; Hooper et al., 80 

2005, Eisenhauer et al., 2019 this issue; Hines et al. 2019 this issue). Historically, most work in this 81 

field has been conducted in experimental settings, especially in grasslands, where extinction is 82 

simulated by randomly assembling plant communities differing in species and functional richness and 83 

where other environmental drivers of ecosystem function are controlled for (Hector et al., 1999; 84 

Tilman et al. 2001; Weisser et al. 2017). While this work has led to several robust conclusions 85 

regarding the form of biodiversity-function relationships and the mechanisms that drive them 86 

(Cardinale et al. 2012), there remain doubts regarding the capacity for experimental BEF research to 87 

inform the management of biodiversity and ecosystem functions and services in the ‘real world’ (i.e. 88 

ecosystems with communities that have not been experimentally manipulated) (Huston 1997, Lepš 89 

2004,  Srivistava & Vellend 2005, Wardle, 2016, Eisenhauer et al., 2016). Much of this debate 90 

concerns the design of biodiversity experiments, which were established to investigate if biodiversity 91 

could affect function, and via what mechanisms (Tilman et al., 1996; Loreau and Hector, 2001, 92 

Schmid et al. 2002).  93 

 94 

A more recent generation of BEF research has been conducted in non-experimental and naturally 95 

assembled real-world ecosystems such as natural and semi-natural (hereafter semi-natural) drylands, 96 

grasslands and forests (e.g., Maestre et al., 2012; Grace et al., 2016; Van Der Plas et al.; 2016, Duffy 97 

et al., 2017; Fanin et al., 2018; Hautier et al.; 2018, van der Plas 2019). As they are performed in 98 
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naturally assembled communities, shaped by both environmental drivers and global change factors, 99 

these studies are correlational and tend to rely upon statistical controls, thus limiting confident 100 

inference about the functional consequences of biodiversity loss in these systems. Removal 101 

experiments can help overcome this issue but, to date, relatively few have been conducted (Díaz et al 102 

2003, Fry et al. 2013, Fanin et al. 2018). While a lack of confident inference may limit transfer many 103 

other knowledge gaps also limit the transferability of BEF research. For example, there is little 104 

consensus regarding how important biodiversity loss is relative to other drivers of ecosystem 105 

functioning (Strivistava & Vellend 2005; Hooper et al 2012; Duffy et al 2017, van der Plas 2019). 106 

Moreover, the functional consequences of the non-random extinction which occurs in semi-natural 107 

ecosystems have largely been estimated from correlational studies (Larsen et al. 2005, Duffy et al 108 

2017; van der Plas et al 2019a, but see Lyons & Schwarz 2001 and Zavaleta and Hulvey 2004). 109 

Further challenges in the knowledge transfer and application of BEF research emerge from a lack of 110 

information regarding the social and economic barriers to conserving biodiversity and promoting 111 

diversification (Fazey et al 2013, Rosa et al. 2019). Filling these knowledge gaps would help in 112 

providing reliable evidence to inform the management of the world´s ecosystems, e.g. via the 113 

Intergovernmental Science-Policy Panel on Biodiversity and Ecosystem Services (IPBES) (Díaz et al., 114 

2015; Díaz et al., 2018).  115 

 116 

In this article, we review the current understanding of the BEF relationship and discuss how BEF 117 

research could inform the management of real-world ecosystems. We do this by assessing the 118 

suitability of current knowledge for transfer and how this is reflected in current applied research. We 119 

then identify barriers to transfer and expand on how these barriers can be overcome via future research 120 

and changes to knowledge exchange mechanisms. Throughout, we emphasize the transition of BEF 121 

research from a fundamental science to applied research that can inform management. By doing so we 122 

assume that the promotion of certain ecosystem services is desired (e.g. carbon storage or crop 123 

production).  124 

 125 
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To aid understanding of the potential transfer of BEF research, we classify it into three clusters based 126 

upon a) the degree of human control over the plant community, which in experiments manifests 127 

through removal of non-target species, and in real world ecosystems through management inputs, and 128 

b) the size of the study plots or area, i.e. grain (Fig. 1a). While these two axes represent continuous 129 

gradients, and some studies are difficult to classify, research within each cluster shares several features 130 

(described below), making a general critique possible. Furthermore, each of these clusters shares 131 

features with a subset of real-world ecosystems (e.g. similar levels of human control over plant 132 

community and the grain of management (Fig. 1b). Based on these similarities, we suggest 133 

possibilities and challenges for knowledge transfer and applications. We then identify future research 134 

needs (summarized in Table 1). Throughout our discussion, we focus on terrestrial ecosystems, 135 

particularly the role of plant diversity in grasslands and that of insects in agricultural landscapes. This 136 

is because of our own expertise and the historical focus of much BEF research on these systems 137 

(Hines et al. 2019 this issue).  138 

>Figure 1 here 139 

Small-grain and highly-controlled experiments (Cluster A)  140 

 141 

Since the mid 90’s, more than 600 experiments have been established to explore the causal 142 

relationship between biodiversity and ecosystem functioning (Cardinale et al. 2012), typically under 143 

field conditions (e.g. Tilman 1996; Hector et al., 1999; Roscher et al., 2004). The primary goal of 144 

these experiments was to establish whether biodiversity could affect ecosystem functioning, and so 145 

they controlled for potentially confounding effects of environmental conditions, functional 146 

composition, individual density, and non-random assembly and disassembly processes (Schmid et al. 147 

2002, Schmid and Hector 2004, Eisenhauer et al. 2019, this issue). To achieve this, BEF experiments 148 

apply a diversity treatment where varying levels of plants species richness are sown or planted, and 149 

ecosystem functioning is measured (Schmid et al. 2002, Bruehlheide et al.  2014). As such studies are 150 

highly controlled (e.g. via randomized blocking, weeding and the homogenization of growing 151 
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conditions), diversity effects may be ascribed with confidence and detailed inferences can be made 152 

regarding the identity of the mechanisms driving biodiversity effects (Loreau and Hector 2001).  153 

 154 

While these experiments act as model systems for BEF research, with generally applicable results to a 155 

wide range of systems (Schmid & Hector 2004, Eisenhauer et al., 2016), the direct application of these 156 

insights in the management of real-world ecosystems could be limited for several reasons. First, the 157 

sown or planted community (and its species richness) is maintained through the repeated removal of 158 

non-target species, which typically does not occur in real-world systems. As a result communities 159 

which would not persist without human intervention may be present. Second, the species richness 160 

gradient tends to span levels of diversity (typically 1- <20 plant species) that are much lower than 161 

many semi-natural communities (Wilson et al. 2012). Third, the studies tend to be conducted in 162 

replicated plots smaller than 500 m2 (Tilman 1996; Hector et al., 1999; Roscher et al., 2004), with a 163 

median size of 3 m2 (Cardinale et al 2012). As such studies are labor-intensive, they also tend to be 164 

unreplicated at the landscape scale (but see Hector et al 1999, Kirwan et al. 2007). However, the large 165 

number of experiments with comparable designs allows meta-level analyses to be conducted 166 

(Balvanera et al 2006, Isbell et al., 2015; Lefcheck et al., 2015, Verheyen et al 2016, Craven et al. 167 

2018).  168 

 169 

What can be transferred 170 

 171 

BEF experiments were designed to provide general mechanistic insights into the BEF relationship. 172 

Nevertheless, the close control of plant community composition and their low species diversity means 173 

that findings from BEF experiments are potentially transferable to highly managed ecosystems, e.g. 174 

intensive agricultural grasslands, plantation forestry, gardens, sown communities found in urban green 175 

spaces or ecosystems restored from a heavily degraded state (Fig. 1b). Such systems tend to be 176 

managed intensively and at small scales, e.g. via the application of selective herbicides, weeding and 177 

fertilization. As these systems typically contain fewer species than most semi-natural ecosystems, we 178 

predict that BEF research is best able to inform work related to diversification, rather than the impacts 179 
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of species loss. BEF experiment results suggest that diversification of such systems would lead to 180 

considerable gains in the supply of some ecosystem services, as numerous functions related to 181 

agricultural production and sustainability often increase with species diversity, including plant 182 

productivity, pollination, soil carbon storage and weed suppression (Isbell et al., 2017). Moreover, 183 

species-rich communities produce a more stable and constant yield (Isbell et al. 2015, Craven et al. 184 

2018), which may reduce risks to farmers (Finger & Buchmann 2015).  185 

 186 

Experimental results indicate that the benefits of diversification are greater when increasing diversity 187 

from low to intermediate levels (e.g. from 1 to 8 grassland species per m2) than from medium to high 188 

(e.g. from 8 to 16), as the diversity-function relationship tends to saturate (Isbell et al. 2017). As 189 

species are typically grown in monocultures and in a wide range of low-diversity mixtures, data from 190 

these experiments can help to identify high performing species, but also high performing mixtures, for 191 

a range of ecosystem functions. Agronomists have conducted significant research on crop 192 

diversification for many years (Vandermeer 1992, Brooker et al. 2015), and demonstrated that crop 193 

diversification can lead to various positive outcomes, such as increased primary crop yield and 194 

biocontrol (Iverson et al 2014). Moreover, intercropping can improve yield stability (Raseduzzaman & 195 

Jensen 2017), and more diverse mixtures of cover crops, especially those containing legumes, lead to 196 

multiple additional benefits (Storkey et al., 2015; Blesh, 2018), thus increasing their multifunctionality 197 

(defined here as ecosystem service multifunctionality, the co-supply of multiple ecosystem services 198 

relative to their human demand, Manning et al 2018). Similarly, crop mixtures of multiple cultivars 199 

provide higher yields (Reiss and Drinkwater, 2018), and the mixing of rice varieties within a field 200 

reduces disease prevalence (Zhu et al., 2000). The frameworks and fundamental insights of BEF 201 

research may inform such research by identifying general rules governing complementary 202 

combinations of species and varieties (Brooker et al. 2015, Wright et al. 2017).  203 

 204 

An additional benefit of BEF experiments is that they often provide information a wider range of 205 

ecosystem services than many agricultural experiments and agronomic analyses, which tend to focus 206 

on yield and its sustainability, e.g. weed control and nutrient cycling (Meyer et al. 2018). Mixtures that 207 
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promote the supply of multiple ecosystem services simultaneously may therefore be identified from 208 

BEF studies (Storkey et al 2015, Baeten et al 2019). Further evidence of existing BEF transfer comes 209 

from grassland studies, which indicate that there are multiple benefits of diversifying agroecosystems 210 

in terms of grass yield and reduced weed abundance (Finn et al., 2013). Studies that assess the 211 

bioenergy potential of more diverse grassland mixtures have found positive diversity effects (Khalsa et 212 

al. 2004, Tilman et al 2006). However, a study of bioenergy production in grass mixtures showed that 213 

diverse mixtures were not more productive than currently used monocultures, thus showing that 214 

diversification might not always promote bioenergy production (Dickson and Gross, 2015). Even in 215 

the absence of positive impacts of diversity on productivity, other benefits may be realized; diverse 216 

bioenergy landscapes can promote the supply of other ecosystem services including greenhouse gas 217 

mitigation, pest suppression, pollination, and bird watching potential (Werling et al 2014).  218 

 219 

A number of other avenues of experimental BEF research have the capacity to inform the management 220 

of intensive systems. BEF experiments show that damage to plant growth and productivity from plant 221 

pathogens and pests is often weaker in more diverse communities, both aboveground (Otway et al., 222 

2005; Civitello et al., 2015) and belowground (Maron et al., 2011; Schnitzer et al., 2011).  223 

Accordingly, information from BEF experiments on plant-soil feedbacks (e.g. Vogel et al. 2019a this 224 

issue) could potentially help to devise effective crop rotation sequences , e.g. by identifying consistent 225 

antagonistic or synergistic feedbacks between functional groups when grown together or in sequence 226 

(Barel et al. 2018; Ingerslew 2018). The insights of BEF experiments are also applicable to the 227 

gardens and green roof planting (Lundholm et al 2010) and the restoration of highly degraded 228 

ecosystems. Here it may be possible to determine species mixtures or particular functional trait 229 

combinations, which, when sown or planted, deliver desired functions, such as soil aggregate stability 230 

and soil organic matter accumulation (Lange et al 2015; Gould et al 2016; Kollmann et al. 2016 Yang 231 

et al 2019). In restoration, another promising approach would be to identify and sow mixtures of 232 

species that facilitate each other as this is a key mechanism underlying biodiversity effects in harsh 233 

environments (Wright et al., 2017). Finally, evidence from forests suggests that similar or higher 234 

amounts of timber production can be achieved in mixed plantations of native species compared to 235 
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monocultures of plantation species, and that co-benefits, e.g. to biodiversity conservation, would also 236 

be realized (Pretzsch & Schütze 2009, Hulvey et al 2013, Gamfeldt et al 2013, Huang et al 2018). As 237 

with crops, the results of BEF studies can also be used to indicate the tree species mixtures that best 238 

achieve this multifunctionality (Teuscher et al 2016, Baeten et al 2019).   239 

 240 

Barriers to transfer and directions for future research 241 

 242 

While the plant communities of BEF experiments and human-dominated ecosystems share 243 

similarities, there are also marked differences. For instance, the species composition in BEF 244 

experiments is randomly assembled and they are usually performed in unfertilized, pesticide-free, 245 

unirrigated systems.  In contrast, in intensively managed real-world systems, prior knowledge has led 246 

managers to select high performing, but often low diversity, mixtures by sowing and planting species 247 

which deliver high levels of desired services, and/or encouraging these via pesticide application, 248 

irrigation and fertilization. The benefits of diversification therefore need to be demonstrated relative to 249 

these intensive low diversity communities, rather than the random low diversity assemblages found in 250 

BEF experiments. For example, in European grasslands farmers typically sow or maintain mixtures of 251 

a single grass, Lolium perenne, and a single legume, Trifolium repens, to which fertilizers are also 252 

applied (Peeters et al 2014). Such a mixture clearly differs from the random species-poor mixtures of 253 

grassland biodiversity experiments. It is unclear if the relatively diverse and high-functioning 254 

communities of biodiversity experiments are generally able to deliver yield of a similar or higher 255 

quality, quantity and reliability. However, it has been demonstrated that diversification from 1-2 to 3-4 256 

species provides significant increases in grassland yield and higher resistance to weed invasion 257 

(Kirwan et al 2007; Nyfeler et al 2009, Finn et al 2013). We hypothesize that the species-poor 258 

communities found in intensively managed systems are more likely to resemble the high performing 259 

species-poor communities of BEF experiments (e.g. those dominated tall grasses of fertile conditions) 260 

than the low performing communities, which may struggle to persist without regular weeding and 261 

close control (e.g. those containing only a few small herbs). In contrast, the low diversity situations 262 

found in experiments, where potentially dominant species are missing, could be relevant to isolated 263 
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habitat patches, where species cannot disperse to potentially suitable conditions and the species pool is 264 

restricted.  265 

 266 

As described above, current research suggests that links between BEF and agronomic research are 267 

beginning to emerge. However, current studies do not cover the wide range of situations in which 268 

diversification could be beneficial to agroecosystems. To the best of our knowledge, little work has yet 269 

made the transition to widespread adoption, an exception being the standard mixtures for forage 270 

production in Switzerland  (see Fig. 2 for details), This lack of adoption highlights knowledge 271 

exchange as an important bottleneck and another future need. To enable this, future BEF experiments 272 

could increase their relevance for management by drawing experimental communities from species 273 

pools that contain potentially useful and manageable species, and performing experiments in settings 274 

that are similar to those found in land use systems (e.g. fertilized or grazed grasslands). In this way, 275 

communities that are manageable and multifunctional may also be identified, and specific mixtures 276 

can be recommended (e.g. current policy in Switzerland). These should be cost-efficient and self-277 

supporting and thus easily adapted and maintained by land managers.  278 

 279 

Results on the relationship between biodiversity and the stability of ecosystem functions and services 280 

also require re-interpretation if they are to inform ecosystem management. While definitions of 281 

stability very greatly (Wissel & Grimm 1997), BEF studies typically measure stability as the 282 

coefficient of variation (e.g. Craven et al. 2018, Knapp and van der Heijden 2018), the resistance to 283 

perturbations, or the rate of recovery following these (Isbell et al. 2015). In contrast, ecosystem 284 

managers often perceive stability differently (Dongahue et al., 2016); while reliability is appreciated 285 

there are minimum levels of ecosystem service supply that are acceptable and over-performance (e.g. 286 

high productivity in favorable weather years, Wright et al. 2015) is often appreciated. Therefore, 287 

alternative measures of stability, e.g. that measure the number of years in which the supply of services 288 

exceed an acceptable threshold (Oliver et al., 2015), need to be employed if diversity-stability 289 

relationships are to be determined meaningfully for agroecosystems. 290 

 291 
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Finally, the transfer of BEF research findings to the real world may be limited by the uncertainties 292 

related to the profitability and management associated with diversifying species-poor communities and 293 

maintaining high species richness. For example, in many agricultural grasslands, plant species loss and 294 

dominance by a few nitrophilous species has occurred due to fertilization (Gaujour et al 2012, Gossner 295 

et al., 2016). Reducing nutrient availability after and reversing these biodiversity declines can be 296 

difficult (Smith et al., 2008; Clark and Tilman, 2010; Storkey et al., 2015). Moreover, species-rich 297 

seed mixtures may prove expensive to create, and it remains to be seen if diverse and high functioning 298 

grasslands can be created and maintained cost-effectively over large areas. In croplands, multispecies 299 

mixtures might pose challenges to harvesting and sorting, as most modern agricultural machinery 300 

specializes in managing and cropping monocultures and the harvesting of mixtures is relatively costly 301 

and labor-intensive (Magrini et al., 2011). We therefore need to know if, and under which conditions, 302 

encouraging diversity in agricultural systems is efficient and feasible, especially compared to  303 

management practices that deliver similar benefits (e.g. the promotion of productivity via 304 

diversification versus fertilization) (Kleijn et al. 2019). A key part of this may be to acknowledge 305 

additional benefits of diversity (e.g. pest control, pollination or higher yield stability) and to factor this 306 

multifunctionality into comparisons. To better inform the management of agroecosystems and 307 

potentially lead to their diversification, a new generation of more applied and social-ecological BEF 308 

research is required (Geertsema et al., 2016). In this new work, comparisons should be made between 309 

the ‘high performing low-diversity systems’ that are the current norm and multifunctional ‘sustainable 310 

high-diversity systems’ that can be established and maintained at an equivalent cost to current 311 

systems, or which provide additional benefits that justify greater cost (e.g. carbon storage or avoided 312 

emissions) (Binder et al., 2018). Alternatively, evidence that high diversity systems can be sustainably 313 

intensified is required, e.g. as demonstrated for biofuel grasslands (Yang et al 2018). Clearly, such 314 

approaches require transdisciplinary research involving economic and/or multiple stakeholder-based 315 

assessments of the value of the diverse systems relative to current and future systems and practices 316 

(Jackson et al 2012, Geertsema  et al., 2016; Bretagnolle et al 2018, Kleijn et al 2019) (Table 1).   317 
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Cluster B) Small-grain studies with low experimental control  318 

 319 

The second cluster contains small-grain observational studies that investigate natural- or human-320 

induced gradients of plant diversity in less intensively managed systems (e.g. Kahmen et al. 2005a; 321 

Maestre et al., 2012; Soliveres et al., 2016a; van der Plas et al., 2016, Zhu et al., 2016) (Fig. 1). In this 322 

cluster, we also consider experiments in which particular species or functional groups are removed 323 

from intact ecosystems, often according to simulated global change scenarios (Smith & Knapp 2003; 324 

Cross & Harte, 2007; Suding et al., 2008, Fry et al. 2013, Pan et al. 2016, Fanin et al. 2018), and those 325 

which boost diversity in established communities or disturbed sites, e.g. via seeding (van der Putten 326 

et al. 2000, Bullock et al 2007, Stein et al. 2008, Weidlich et al. 2017). Finally, we also consider 327 

global change driver experiments, where biodiversity change is treated as a co-variate and used to 328 

explain observed changes in function (e.g. Grace et al., 2016; Hautier et al., 2018). Plot sizes are 329 

similar to those in cluster A (i.e. <500m2) and diversity levels vary greatly, from inherently species-330 

poor ecosystems (e.g. Suding et al., 2008) to species-rich communities (Allan et al., 2015). Therefore, 331 

in contrast to most of the experiments of cluster A, studies from cluster B tend to contain more mature 332 

communities with higher species richness, fewer monocultures, less or no weeding, and species 333 

compositions and management regimes that are more similar to real-world low management intensity 334 

systems. In most of these studies, and in contrast to most BEF experiments that manipulate random 335 

community assembly, diversity loss occurs as non-random disassembly in response to environmental 336 

drivers. Observational studies of cluster B often statistically control for co-varying factors that may 337 

also drive ecosystem functions. These may include biotic covariates, such as functional composition 338 

and the abundance of different functional groups (Maestre et al., 2012; Allan et al., 2015; Soliveres et 339 

al., 2016a; Soliveres et al., 2016b; Van Der Plas et al., 2016), which strongly co-vary with diversity in 340 

many communities (Allan et al., 2015; Barnes et al. 2016, Soliveres et al., 2016).   341 

 342 

The design of studies in this cluster limits interpretation about the cause of biodiversity effects as data 343 

for monoculture performances are usually unavailable, meaning that the mechanisms underlying  344 

biodiversity effects cannot be estimated (Loreau & Hector 2001). This is unfortunate as these 345 
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processes may differ in their strength compared to biodiversity experiments. For example, in mature 346 

communities, species may show higher levels of niche differentiation at both between and within 347 

species levels (Zuppinger-Dingley et al., 2014, Guimarães-Steinicke et al. 2019, this issue). A final 348 

property differentiating cluster B studies from those of cluster A is that variation in the diversity of 349 

other trophic levels is a complex product of responses to environmental drivers and concurrent 350 

changes in all trophic levels (Tscharntke et al., 2005, Soliveres et al. 2016a,b), rather than primarily 351 

driven by variation in the diversity of primary producers (Scherber et al. 2010).  352 

 353 

What can be transferred 354 

 355 

Because they are conducted in unmanipulated real-world ecosystems, cluster B results are transferable 356 

to semi-natural ecosystems, which experience species loss and compositional change due to global 357 

environmental change. Cluster B studies provide direct estimates of the real-world impacts of global 358 

change drivers on diversity, and the corresponding impact of these changes on ecosystem function.  359 

However, most cluster B studies are observational, so patterns remain correlational, despite statistical 360 

controls. Nevertheless, due to their greater realism, syntheses of cluster B results (van der Plas 2019a), 361 

can provide statistical estimates of where different components of biodiversity play their greatest role, 362 

and estimates may be used as an evidence base for both local managers and in global assessments.  363 

 364 

The experimental studies of cluster B can provide information on how diversification can boost 365 

ecosystem functioning in restored or enriched communities. For example, several studies show that 366 

sowing into intact communities can increase both species richness and ecosystem functioning, 367 

including community productivity and carbon storage (Bullock et al 2007, Stein et al. 2008, Weidlich 368 

et al. 2018).  369 

 370 

Barriers to transfer and directions for future research 371 

 372 
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For research in cluster B to become more directly transferable to the management of semi-natural 373 

ecosystems, greater confidence in the mechanisms underlying real-world BEF relationships is needed. 374 

While management recommendations may be drawn from selected case studies such as those 375 

presented above, a general understanding of the relative and interacting roles of environmental 376 

covariates, direct effects of global change drivers and various facets of diversity and compositional 377 

change is lacking (van der Plas 2019a). Biodiversity could play an important role in maintaining 378 

ecosystem function in real world ecosystems. Yet, whether loss of a few species at this scale makes a 379 

strong contribution to function, relative to these other drivers, has been only been tested in a limited 380 

number of cases (e.g. Manning et al. 2006; Allan et al. 2015; Winfree et al. 2015; Grace et al., 2016), 381 

and inconsistently, making generalization difficult (van der Plas 2019a). To address this issue, 382 

observational studies need to ensure that factors such as abundance and functional composition are 383 

properly controlled for statistically. By combining estimates of expected biodiversity change 384 

according to different global change drivers across a range of conditions (e.g. Grace et al., 2016; 385 

Hautier et al., 2018, Bjorkman et al 2018), knowledge of how great a difference to functions and 386 

services such changes will make (e.g. Craven et al 2018), and ecosystem service production functions, 387 

predictions of the impacts of drivers on ecosystem services can be made (Isbell et al 2015). This in 388 

turn allows for estimates of where ecosystem service-based arguments for conservation are strongest. 389 

Such predictions, if verified, could then form a sound basis for management decisions.  390 

 391 

Transfer would also be enabled by a new generation of experiments. These could include a wider 392 

range of non-random extinction scenarios, assessments of the relative importance of abiotic drivers of 393 

function and biodiversity (e.g. Manning et al., 2006; Isbell et al., 2013), and the reduction of diversity 394 

from high to intermediate levels (Zobel et al. 1994), in order to verify, or refute the results of 395 

observational studies. To do this, manipulations such as the manipulation of dominance and functional 396 

composition, trait dissimilarity, or other aspects of biodiversity could be employed (Smith and Knapp, 397 

2003; Manning et al., 2006; Cross and Harte, 2007). Manipulations that simulate the homogenization 398 

of biota (i.e. the loss of beta diversity, while alpha diversity remains unchanged), may also prove 399 

informative, as this may be as, or more, common than alpha diversity loss in real-world ecosystems 400 
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(Flohre et al., 2011; Vellend et al., 2014; Dornelas et al., 2014; Gossner et al., 2016; Wardle 2016). 401 

Finally, it may be possible to link community assembly mechanisms (e.g. founder effects and habitat 402 

filtering) and functional BEF research to identify how to increase species richness and promote certain 403 

ecosystem functions, information that would be particularly useful in ecosystem restoration (Bullock 404 

et al 2007, Stein et al. 2008, Kirmer et al 2012, Weidlich et al. 2018) (Table 1).  405 

 406 

Work is also needed in converting the measures of ecosystem function commonly taken in ecological 407 

studies into measures of ecosystem services that are of relevance to stakeholders (Mace et al 2012, 408 

Kleijn et al. 2019). This requires the development of new metrics, e.g. trait measures that link to 409 

nutritional quality or cultural services such as aesthetic appeal. Applied studies could explicitly 410 

measure relevant ecosystem services, e.g. by involving stakeholders, assessing which services are 411 

most important to them, and adapting function measures to quantify these (Martín-López et al 2012, 412 

King et al 2015, Manning et al 2018). This approach, and many of the others outlined above requires 413 

inter- and transdisciplinary research involving stakeholders and researchers from other disciplines e.g. 414 

with farmers, local governments, agronomists and economists.  415 

Large-grain studies without experimental control (cluster C) 416 

 417 

The third cluster (C) contains BEF studies that cover large areas (from 100 m2 to landscapes) (e.g. 418 

Larsen et al 2005, Garibaldi et al. 2013; Winfree et al., 2018). Due to the huge efforts required to 419 

manipulate diversity at a large spatial and temporal grain (Teuscher et al., 2016), such studies tend to 420 

be observational, comparative, and of low replication, although the large number of such studies has 421 

allowed for meta-level analyses to be conducted (Lichtenberg et al. 2017). The focal study organisms 422 

also tend to be invertebrates, particularly pollinators, instead of plants. The measurement of 423 

biodiversity (e.g. species richness and functional diversity) is also often limited in these studies due to 424 

the effort required to measure it directly over large areas. As a result, it is often landscape variables, 425 

such as landscape configuration and the proportion of different land uses that are related to function, 426 

rather than diversity (e.g. Bosem Baillod et al 2017, Hass et al., 2018). These landscape properties 427 
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may influence the dispersal, abundance and diversity of organisms within the landscape, and may also 428 

correlate with management factors and abiotic drivers of ecosystem function (Gámez-Virués et al., 429 

2015; Dominik et al., 2018; Lindborg et al., 2017). As a result of these covariances, the role of 430 

biodiversity in driving ecosystem functioning cannot always be confidently ascribed (Tscharntke et al 431 

2016).  432 

 433 

Within this cluster, we also place remote sensing studies (e.g. Oehri et al., 2017) and national and 434 

regional correlational studies (e.g. Anderson et al., 2009). In these, biodiversity can only be measured 435 

using proxies or with presence/absence data within large grid cells (e.g. 10 x 10 km), e.g. from 436 

national monitoring schemes. These coarse biodiversity measures are then correlated with ecosystem 437 

service proxy measures such as carbon storage and recreational use. These studies often lack a strong 438 

mechanistic basis, and focus instead on how biodiversity co-varies with ecosystem services (e.g. 439 

Anderson et al., 2009, Maskell et al., 2013). Even where covariates are included and mechanistic 440 

relationships postulated (e.g. Oehri et al., 2017; Duffy et al., 2017), causal links are hard to infer due 441 

to the strong covariance between biodiversity and other drivers, and the high probability of missing, or 442 

improperly measuring, important covariates. Another common type of BEF study at this scale are 443 

those showing that functional biodiversity co-varies or differs across environmental gradients and 444 

management regimes (Rader et al., 2014, Gámez-Virués et al., 2015). While there is significant 445 

evidence that functional traits do relate to ecosystem processes and properties at landscape and 446 

national scales (e.g. Lavorel et al. 2011, Garibaldi et al. 2015, Manning et al 2015), evidence for a 447 

mechanistic link between the functional diversity of traits to the supply of ecosystem services at these 448 

scales is generally limited. 449 

 450 

What can be transferred  451 

 452 

As the studies of cluster C are performed in real landscapes, and as management is often conducted at 453 

large scales (e.g. by farmers or foresters), research findings from this cluster are potentially of high 454 

relevance to policy and large-scale management, e.g. via payments for ecosystem service schemes. In 455 
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recent years, a number of studies have demonstrated large-scale benefits of landscapes with high 456 

diversity of crops and non-crop habitats, which support higher biodiversity (Gardiner et al., 2009; 457 

Redlich et al., 2018). These benefits include more effective pollination and biological pest control 458 

(Garibaldi et al. 2013; Winfree et al., 2018). By showing how diversity and diversification practices 459 

influence ecosystem service delivery, these practices can then be incorporated into agronomic 460 

considerations (Rosa et al., 2019) and into agri-environment policy (Garibaldi e t al. 2014). Studies at 461 

this scale also complement those of the other clusters by showing that biodiversity not only promotes 462 

ecosystem function and services at the plot scale but also via spillover effects into the surrounding 463 

landscape, with ecosystem service benefits including  pest suppression, pollination, and bird watching 464 

potential (Blitzer et al 2012, Werling et al 2014). However, biodiversity does not always promote 465 

function at these scales. For example, natural enemy diversity does not always relate to pest 466 

abundance, nor higher crop yields (Tscharntke et al. 2016), and in some cases biodiversity does not 467 

control pests as effectively as pesticides (Samngegard et al. 2018).  468 

 469 

Barriers to transfer and directions for future research 470 

 471 

The observational nature of most research in this cluster means that the exact role of diversity in 472 

driving ecosystem function and providing ecosystem services at these scales is hard to ascertain. This 473 

general limitation is compounded by several other barriers which can prevent transfer to landscape 474 

management and policy. First, several processes could drive BEF relationships at landscape scales that 475 

do not operate at the smaller grain size of clusters A and B, and as a result are little acknowledged in 476 

BEF research, outside of theory (Loreau et al., 2003; Tscharntke et al., 2012; Lindborg et al., 2017). 477 

These include the spatial processes that maintain diversity, the matching between species and 478 

environmental conditions in which they perform well (Leibold et al. 2017, Mori et al 2018), and the 479 

potential for different species to provide different functions and services in different patches of the 480 

landscape, thus boosting landscape multifunctionality (van der Plas et al 2016, 2019b). The strength 481 

and role of such mechanisms clearly needs to be demonstrated. Another key problem in transferring 482 

BEF research to large scales is that landscape managers typically seek to simultaneously promote 483 
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multiple ecosystem services, i.e. the multifunctionality of landscapes, not the individual functions at 484 

the plot scale (Manning et al., 2018; Kremen & Merenlender 2018). A focus on single functions is 485 

problematic if they trade-off and the components of diversity that boost some ecosystem services 486 

diminish others. For example, the maintenance of biodiversity rich habitat may add resilience to 487 

multiple ecosystem functions at the landscape scale, but also occupies land that could be used for crop 488 

production.  489 

 490 

New research approaches are required to overcome the difficulties in identifying how biodiversity 491 

controls ecosystem functioning at large scales, and how biodiversity may be conserved and promoted 492 

to increase the supply of ecosystem services. First, to ensure that service measures are of relevance to 493 

stakeholders, we require a better understanding of which services are demanded by different 494 

stakeholders, and at which different temporal and spatial scales, so that relevant indicator variables or 495 

ecosystem service production functions can be used (Tallis 2011). A more holistic approach, which 496 

accounts for the relative demand for different ecosystem services and how this changes with socio-497 

economic context, is therefore required, e.g. to assess how much land can be returned to a high 498 

biodiversity condition while maintaining desired levels of food production and other ecosystem 499 

services (Clough et al 2011, Kremen & Merenlender 2018, Manning et al. 2018). Such studies should 500 

also identify what drives patterns of land use and management and hence biodiversity loss, so that 501 

appropriate interventions can be identified.  502 

 503 

To consider landscape multifunctionality and its dependence on biodiversity, multiple ecosystem 504 

services need to be scaled up in space and time, which is challenging. Some of the functions that can 505 

be measured at the plot scale can be ‘linearly’ scaled up, e.g. by using remote sensing proxies of 506 

diversity and functional traits, and interpolated maps, e.g. of climate and soil properties (Manning et 507 

al., 2015; van der Plas et al., 2018). Others, however, require an understanding of spatial interactions 508 

that makes their upscaling more complex, e.g. pollination and nutrient leaching (Koh et al, 2016, 509 

Lindborg et al 2017.). Furthermore, some services that operate at large scales (e.g. flood control, 510 

landscape aesthetics) cannot be predicted and scaled up from small-scale measures. Therefore, new 511 
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procedures and methods are needed to quantify large-scale multifunctionality and the role of 512 

biodiversity in driving it. There have been calls for landscape-scale experiments to address these 513 

issues (Koh et al., 2009; Landis 2017). One example is the recent EFForTS project in which "tree 514 

islands" of varying size and tree diversity (0-6 species) have been planted in oil-palm clearings 515 

(Teuscher et al., 2016). Initial results indicate no economic trade-off:  the islands generate yield gains 516 

which compensate for the reduced number of oil palms (Gerard et al., 2017). However, the high 517 

financial cost and/or logistical effort of such experiments means it may be more realistic to use 518 

biophysical models in most cases. Unfortunately, such models do not currently fully represent the 519 

complexity of biodiversity or its relationship with ecosystem functions and services (Lavorel et al 520 

2017).   521 

 522 

To understand biodiversity-landscape multifunctionality relationships, a greater knowledge of which 523 

aspects of diversity underpin different ecosystem services is also required. While knowledge exists 524 

regarding the drivers of many ecosystem service provider groups at the landscape scale (e.g. plants, 525 

birds, butterflies and pollinators, Roschewitz et al. 2005,  Rösch et al. 2015, Kormann et al 2015, Grab 526 

et al. 2019), this understanding needs to be extended to other groups, including soil microbes and 527 

fauna. Similarly, understanding of how spatial biodiversity dynamics affect functions and the services 528 

they underpin needs to be extended to taxa involved in services other than pest control and pollination 529 

(Table 1). In some cases, there may be trade-offs between services, e.g. if the conditions that 530 

maximize the diversity of one taxa do not favor another (van der Plas 2019b). This research may also 531 

demonstrate that when it comes to real-world ecosystem services and landscape-level 532 

multifunctionality, biodiversity effects are not easily generalizable, but depend on the context. Thus, 533 

the rules of this context-dependency need to be identified (Allan et al 2015, Birkhofer et al., 2018, 534 

Samnegard et al 2018). Doing this will limit uncertainty; managers could be less reluctant to manage 535 

for biodiversity when the degree to which it provides ecosystem service benefits at larger scales has 536 

been clearly demonstrated. In semi-natural ecosystems the promotion of the biodiversity components 537 

underpinning ecosystem services are most likely to be achieved via management options that are 538 
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simple and effective over large areas, and so the practices that would promote the desired facets of 539 

biodiversity, e.g. mowing or the introduction of selective grazers, may need to be identified.  540 

Conclusion 541 

 542 

A vast array of BEF studies has taught us much about the complex relationship between biodiversity 543 

and ecosystem functioning. In this article we argue that with some re-analysis and re-interpretation 544 

some of this research could be transferred to policy and management, where practitioners could use its 545 

insights to guide the diversification of agricultural and other human-dominated ecosystems, and 546 

inform the conservation of biodiversity in semi-natural ecosystems. However, there are numerous 547 

challenges to the transfer of BEF research to more applied research and practice, and we argue that 548 

these challenges differ depending on the spatial grain of the study and the degree of community 549 

manipulation. While acknowledging the differences in transferability between these clusters of BEF 550 

research may help resolve ongoing debate about relevance of BEF findings. A new generation of BEF 551 

research is also required. This would involve the merging and connecting research between the current 552 

clusters, e.g. the setup of a new generation of biodiversity experiments that bridge the gap between 553 

current BEF experiments and observational studies. These should be complemented by new 554 

observational studies which more comprehensively account for covarying factors and which better 555 

acknowledge the link between ecosystem function and ecosystem services (Table 1). It should be 556 

noted that the main knowledge to transfer from BEF research may simply be a stronger and more 557 

confident argument by conservation groups that it is important to conserve the diversity that is already 558 

present in semi-natural systems. In some cases BEF research may also show that not every species 559 

plays a positive or strong role in driving ecosystem functions, and that a small number of species 560 

dominate the supply of certain services (Kleijn et al. 2015). In such cases acknowledging the non-561 

market benefits of species and returning to more traditional ethical arguments will help promote 562 

biodiversity conservation (e.g. Hill et al 2019). Finally, to make BEF research more applied, large-563 

scale studies that utilise novel approaches to investigate the role of diversity in providing the desired 564 

ecosystem services at the landscape scale are required (Table 1). Accordingly, key considerations in 565 
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applied BEF research are to acknowledge when research is fundamental or applied, and to clarify 566 

when services, rather than functions, are being considered, thus making it transparent which services 567 

and functions are focal and why, and acknowledging which stakeholder groups may benefit. In many 568 

respects, the technical solutions to the challenges addressed in this article are already being 569 

investigated. However, if the potential for BEF research to address global challenges is to be fully 570 

realized future BEF must also be transdisciplinary, and include the main stakeholders of the ecosystem 571 

collaboratively from their inception. By considering social-ecological context BEF research should be 572 

better able to demonstrate the social and economic value of biodiversity at the scales that matter to 573 

land managers and policy makers.  574 
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Table 1. Research required to enable the real-world application of BEF research   1242 

 1243 

Research need and approach Potential benefit to 

transfer 

Examples or foundational 

studies 

Cluster A 

Identify mechanistic general rules 

governing complementary species 

combinations in existing 

biodiversity experiments 

Suggested combinations of 

species for restoration, 

intercropping and crop 

rotation, mixed plantations 

etc. 

Zuppinger-Dingley et al. 

(2014)  

Brooker et al. (2015) 

Demonstrate the biodiversity- 

multifunctionality relationship in 

sown or planted ecosystems, e.g. by 

Could be used to design 

multifunctional species 

mixtures that provide 

Baeten et al. (2019) 

Finn et al. (2013) 

xy
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sown wild flower mixturesHaaland et al. 2011 Insect Conserv. Divers.
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identifying mixtures which provide 

multiple desired services 

benefits to a range of 

stakeholder groups 

Compare multispecies mixtures to 

the high performing species poor 

systems of current management 

Without realistic comparison 

to current management 

alternative option will not be 

adopted 

Binder et al (2018) 

Perform BEF experiments with 

species pools that contain potentially 

useful and manageable species (e.g. 

self-sustaining mixtures) 

High performing mixtures 

identified can be managed in 

a cost-effective manner 

Kirwan et al (2007) 

Finn et al (2013) 

Generate measures of stability that 

are relevant to managers 

To show relationship 

between biodiversity and the 

stability sought by 

stakeholders  

Donohue et al (2016) 

Oliver et al. (2015) 

Demonstrate the cost effectiveness 

of multispecies mixtures compared 

to existing management and develop 

technology that increases this (e.g. 

multicrop harvesters) 

Unless clear benefits are 

demonstrated diversification 

may not be adopted 

Finger & Buchmann (2015) 

Blaauw & Isaacs (2014) 

Cluster B 

Form general predictions of how 

biodiversity and other drivers of 

ecosystem function changes in 

response to global change drivers  

Accurate and general 

estimates and predictions of 

biodiversity loss are the 

foundation of accurate and 

general assessments of their 

impacts 

Bjorkman et al (2018) 

Grace et al (2016) 

Develop mechanistic understanding Would increase confidence Grace et al (2016) 
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of biodiversity in real world 

systems, e.g. by using new 

quantitative tools to disentangle 

biodiversity effects 

in correlational BEF 

relationships and allow their 

causes to be understood 

Systematically assess the relative 

role of alpha and beta diversity, 

functional composition, abundance 

and other covariates including 

abiotic factors and understand the 

feedbacks and relationships between 

these drivers 

Would lead to more precise 

estimates of the relative role 

of biodiversity in semi-

natural systems and its 

relationship with other 

factors 

Allan et al (2015) 

Winfree et al (2015) 

van der Plas et al (2016) 

Establish a new generation of 

experiments that varies the above 

factors, across realistic gradients 

Would allow causation to be 

inferred for the above 

relationships 

Smith & Knapp (2003) 

Manning et al (2006) 

 

Assess the role of biodiversity in 

species rich communities, including 

that of rare species  

Most diversity loss occurs 

between high and 

intermediate levels and rare 

species are more likely to be 

lost 

Soliveres et al. (2016b) 

Klein et al (2003) 

 

Provide statistical estimates of 

where different components of 

biodiversity play their greatest role 

and test these estimates 

Can be used in regional and 

global assessments and 

projections of the expected 

impacts of biodiversity loss 

van der Plas (2019a) 

Explore the role BEF relationship 

within the context of ecosystem 

restoration, and link this to 

community assembly mechanisms 

The restoration of semi-

natural habitats may be more 

effective if a high diversity 

of species is used 

Bullock et al. (2007) 
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Cluster C 

Understand the strength and role of 

mechanisms linking biodiversity to 

ecosystem function at spatial and 

temporal scales (e.g. species 

matching to site conditions, 

dispersal processes)  

Biodiversity may play a 

different role at large scales 

to that established in 

experiments 

Loreau et al (2003) 

Mori et al (2018) 

Upscale ecosystem functions to 

large scales and link these to 

ecosystem services  

Would allow the relationship 

between biodiversity, 

ecosystem functions and 

ecosystem services to be 

evaluated at management 

relevant scales 

Clough et al (2016) 

Lindborg et al (2017) 

LeClec'h et al. (subm.) 

Use upscaled measures to 

understand which taxa drive 

ecosystem services and disservices 

at landscape scales, and what factors 

drive the diversity of these taxa 

Would allow important 

ecosystem service providers 

to be identified and managed 

appropriately 

Van der Plas et al (2018) 

Winfree et al (2018) 

Evaluate the role of biodiversity in 

driving landscape multifunctionality 

of ecosystem services (via upscaled 

measures) 

Would allow the impact of 

biodiversity on a range of 

stakeholders and wider 

society to be communicated 

Van der Plas et al (2018) 

Manning et al (2018) 

Knowledge exchange (all clusters) 

Disseminate research findings 

effectively (e.g. via web tools and 

demonstration sites).  

Non-academic approaches 

are required for BEF 

research findings to reach 

potential end-users users  

Activities of:  

Forum for the Future of 

Agriculture (FFA) 

European Landowners 
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Organisation (ELO) 

F.R.A.N.Z.  

Conservation evidence website 

RSPB Hope Farm  

Work in collaboration with 

stakeholders to collect information 

on which ecosystem services are 

desired, at which different temporal 

and spatial scales, and their relative 

importance 

This could inform applied 

BEF research, ensuring that 

it meets the needs of 

potential end-users 

Geertstema et al (2016) 

Walter et al. (2017) 
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 1245 

Figure 1. Clusters of BEF research and their relation to real world ecosystems. a) selected research 1246 

projects, b) selected ‘real-world’ ecosystems. Note that, as spatial scale increases the user of 1247 

research findings changes from individual local scale managers to governments and 1248 

institutions and the form of transfer changes from management practice recommendations to 1249 

policy change, though these are clearly interrelated Example references for studies are Jena 1250 

experiment (Weisser et al 2017), BigBio (Tilman et al. 2001), BioCON (Reich et al 2001), 1251 

COST Action 852 (Kirwan et al 2007), BIODEPTH (Hector 1999), BEF-China (Huang et al 1252 

2018), CLUE (van der Putten et al. 2000), NutNet (Grace et al., 2016), Biodiversity 1253 



49 
 

Exploratories (Allan et al. 2015), Global Drylands (Maestre et al 2012), FunDiv (Van der Plas 1254 

et al 2016), EFForTS (Teuscher et al. 2016), AgriPopes (Emmerson et al. 2016), ZA PVS 1255 

(Bretagnolle et al 2018), UKNEA National Ecosystem Assessment (2011).  1256 

 1257 

  

 1258 

Figure 2. Swiss grassland diversification. In Switzerland many species rich semi-natural 1259 

grasslands (left) have seen diversity decline to a more species poor state (right) due to 1260 

fertilization and the sowing of low diversity mixtures. To counteract this many existing 1261 

species rich sites are maintained via policy schemes and Swiss researchers have developed 1262 

diversified seed mixtures suitable for a wide range of conditions that have been adopted by 1263 

many Swiss farmers (Agrarforschung Schweiz 2019). This adoption is likely to be attributable 1264 

to a range of factors including: a strong cultural valuation of grassland, a clear mandate of 1265 

agriculture to manage sustainably (in Swiss Constitution, article 104), generous agri-1266 

environment compensation schemes for highly diverse grasslands, and a strong focus on 1267 

applied grassland research that has investigated which mixes work over different time 1268 

horizons (e.g. annual to permanent) and environmental conditions (moisture and elevational 1269 

gradients). Finally, there is effective communication from both researchers (e.g. Agroscope) 1270 

and the Swiss grassland society (AGFF, 2019), which contains many farmers as members. 1271 

Photo credits. Peter Manning.  1272 




