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Abstract  41 

Agri-environment management (AEM) started in the 1980s in Europe to mitigate biodiversity 42 

decline, but the effectiveness of AEM has been questioned. We hypothesize that this is caused 43 

by a lack of a large enough ecological contrast between AEM and non-treated control sites.  44 

The effectiveness of AEM may be moderated by landscape structure and land-use intensity. 45 

Here, we examined the influence of local ecological contrast, landscape structure and regional 46 

land-use intensity on AEM effectiveness in a meta-analysis of 62 European pollinator studies. 47 

We found that ecological contrast was most important in determining the effectiveness of 48 

AEM, but landscape structure and regional land-use intensity played also a role. In 49 

conclusion, the most successful way to enhance AEM effectiveness for pollinators is to 50 

implement measures that result in a large ecological improvement at a local scale, which 51 

exhibit a strong contrast to conventional practices in simple landscapes of intensive land-use 52 

regions. 53 
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INTRODUCTION 54 

Modern agriculture with widespread agrochemical use, simplification of landscape structure, 55 

short crop rotations and high mechanization has impacted biodiversity significantly, leading 56 

to severe pollinator declines around the world during the late 20th and 21th century (Kovács-57 

Hostyánszki et al. 2017). As a solution for negative agricultural impacts on pollinators and on 58 

overall biodiversity, the first agri-environmental schemes or management options (hereafter 59 

AEM) were created in the EU member states during the 1980s (Batáry et al. 2015). Since 60 

1992 AEM  has become mandatory for all EU member states (European Commission 2005).  61 

The different historical trajectories of European countries and regions led to large 62 

differences in heterogeneity between agricultural landscapes through different levels of 63 

agricultural intensification (Fuchs et al. 2015; van Vliet et al. 2015). Effectiveness of AEM 64 

for various taxa has been studied for almost three decades and generally has been related to 65 

landscape context and land-use intensity. Published results vary greatly. Birkhofer et al. 66 

(2014) did not find that regional land-use intensity moderates benefits of organic farming for 67 

biodiversity across Central and Northern Europe. Also AEMs effects on bumblebees species 68 

richness, abundance and species composition did not differ between two different land-use 69 

intensity regions in Estonia (Marja et al. 2014). However, Aviron et al. (2007) found 70 

significant AEM effect for grassland butterflies in intensive, but not in extensive management 71 

region. Thus effectiveness of different types of AEM is not straightforwardly related to land-72 

use intensity.  73 

AEM effectiveness can be moderated by landscape structure (Tscharntke et al. 2005, 74 

2012). In the meta-analysis of Batáry et al. (2011), the authors found that AEM in cropland 75 

was more effective in simple (less than 20% semi-natural habitats) than in complex 76 

landscapes. Similar results were found in two follow-up meta-analyses (Scheper et al. 2013; 77 

Tuck et al. 2014) in that positive effects of organic management or AEM on biodiversity 78 
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improved with an increasing amount of cropland in the landscape which is usually related to 79 

an increasing simplification of the landscape.  80 

Kleijn et al. (2011) hypothesised that landscape structure and land-use intensity, 81 

together with the implemented management, are ultimately expressed in the ecological 82 

contrast that is created between fields with AEM and conventional control fields. For 83 

instance, the increase in floral resources produced by the establishment of wildflower strips 84 

on conventionally managed cereal field margins is relatively high (Scheper et al. 2015; Marja 85 

et al. 2018), resulting in large ecological contrasts between margins with and without such 86 

strips. On the other hand, delayed mowing of intensively managed grasslands only produces 87 

small ecological contrasts, because it results in negligible increases in floral resources 88 

compared to conventional management (Kleijn et al. 2011). Only a few studies have 89 

examined whether ecological contrast is indeed related to the effectiveness of AEM (Scheper 90 

et al. 2013; Hammers et al. 2015). Scheper et al. (2013) found that ecological contrast in 91 

floral resources created by AEM does indeed drive the response of pollinators to 92 

management. However, their data on testing contrast was limited to only one dataset (Kleijn 93 

et al. 2006). Hammers et al. (2015) tested the effect of contrast alone without considering 94 

other potential moderators.  95 

According to the hypothesis of Kleijn et al. (2011), biodiversity responses are primarily 96 

determined by the ecological contrast between AEM and non-AEM sites and landscape 97 

structure, land-use intensity and type of management are merely determining the strength of 98 

the ecological contrast. If we find general evidence for this hypothesis, ecological contrast 99 

should be more strongly related to AEM effectiveness than either landscape structure or land-100 

use intensity. So far, this has never been tested. Therefore, this is the first meta-analysis that 101 

investigates the relative importance of these inter-related moderators of AEM effectiveness 102 

concurrently. Our expectations are graphically depicted in Fig. 1. Based on previous literature 103 
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we assume that all three examined factors (ecological contrast, landscape structure, land-use 104 

intensity) are not of equal importance for pollinator species richness and are not acting 105 

independently from each other. The effects of landscape structure include effects of land-use 106 

intensity and ecological contrast, and the effect of ecological contrast includes the effects of 107 

land-use intensity and landscape structure. However, in combination of these factors, we 108 

hypothesized the highest AEM effectiveness for pollinator species richness in case of large 109 

ecological contrast (vs. small contrast), simple landscape structure (vs. complex landscape) 110 

and intensive land-use (vs. extensive land-use) regions.  111 

 112 

MATERIAL AND METHODS 113 

Data collection and exclusion/inclusion criteria  114 

We conducted literature searches using ISI Web of Science Core Collection (WoS) and 115 

Elsevier Scopus databases ranging 1945–2016 (last search date: 24 November 2016). We 116 

used the following keyword combinations according to the PICO (Population, Intervention, 117 

Comparator and Outcome) combination of search terms (Higgins & Green 2008), which were 118 

linked with logical operators to include the maximum number of relevant studies covering the 119 

effect of AEM on pollinator’ richness. We used the following keywords combinations for 120 

literature search: TITLE-ABS-KEY (pollinat* OR bee OR bumble* OR hover* OR syrph* 121 

OR butterfly) AND TITLE-ABS-KEY(agri-environment* OR organic* OR integrated OR 122 

hedge* OR "field margin" OR fallow OR set-aside OR "set aside") AND TITLE-ABS-KEY 123 

(diversity OR richness) AND SUBJAREA(MULT OR AGRI OR ENVI) AND 124 

(EXCLUDE(DOCTYPE,"re")). Our literature searches confirm with the common review 125 

guidelines for a comprehensive literature review (Koricheva et al. 2013; Collaboration for 126 

Environmental Evidence 2018). 127 
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We combined two searches based on Web of Science and Scopus databases in 128 

Mendeley (Mendeley 2015) and removed duplicates. We found in a total of 653 potential 129 

studies. After screening those studies by title, 340 studies remained, and after reading the 130 

abstracts, 120 studies remained for full text screening. Additionally we used meta-analysis 131 

databases with similar topics (Batáry et al. 2011; Scheper et al. 2013; Tuck et al. 2014) and 132 

our unpublished datasets to locate further potential data. PRISMA flow diagram representing 133 

the detailed selection process (i.e. the number of studies identified, rejected and accepted) is 134 

presented in Fig. S1. 135 

We used Europe for our study, since the majority of EU member countries have been 136 

under the same agri-environmental policies and most studies examining the effectiveness of 137 

AEM have been carried out here. In North America and Australia, agri-environmental policies 138 

are different, which complicates comparisons. We set up following criteria for inclusion and 139 

exclusion to filter out only European (EU28 + Switzerland + Norway) AEM pollinator 140 

species richness studies. Inclusion criteria were: study focusing on pollinator’ absolute 141 

richness (hereafter species richness); including set-aside, but not abandoned grassland studies, 142 

which cannot be considered as a conservation action. Exclusion criteria were: not about agri-143 

environment management; not a European AEM study; if the number of replicates (at field or 144 

farm level) was less than three in AEM or in control group; single field experiments (blocks 145 

within fields or within field margins), i.e. only taking studies at field level, since management 146 

actions are more relevant at those levels. Finally, we decided to exclude too broad scale 147 

studies covering too large area of given countries with different regions, because we were 148 

then unable to determine the regional land-use intensity effect. In total we found 62 studies 149 

with 156 data points (n=134 published, n=22 unpublished) for analysis, resulting in, on 150 

average, 2.5 data points per study, which is sufficient for meta-analyses. We provide studies 151 

with exclusion arguments in Appendix S1. 152 
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  153 

Classifications of ecological contrast, landscape structure and land-use intensity 154 

We used three variables to test our hypotheses: ecological contrast, landscape structure and 155 

land-use intensity. We classified all studies in large vs. small ecological contrast, simple vs. 156 

complex landscape and intensive vs. extensive land-use intensity using the following 157 

procedures. 158 

Ecological contrast was determined based on plant/flower richness or flower cover 159 

between AEM and control group given in the specific studies. We selected plant data, because 160 

it is a key driver predicting pollinator richness (Goulson 2003; Ebeling et al. 2008). We 161 

compared plant data results between AEM and control group (usually conventional farming) 162 

and determined ecological contrast (large or small). If plant data was not available 163 

(approximately 20% of the studies), we used the input amount of nitrogen between AEM and 164 

control group. High nitrogen applications are often the main negative driver of the richness of 165 

plant communities  in agricultural landscapes (Kleijn et al. 2009; Soons et al. 2017; Midolo et 166 

al. 2019). We used the ecological contrast level of significance (statistical differences of 167 

plant/flower richness or cover data or nitrogen input between AEM and control group), or in 168 

cases this information was not available, also group means, provided in the studies. Finally, if 169 

neither plant data nor amount of nitrogen was available in a given study, we used our expert 170 

knowledge. RM and PB determined together case by case ecological contrast, based on 171 

information available on scheme descriptions in these studies (Table S1). We did not use any 172 

threshold or formula for ecological contrast determination. 173 

We used the original GIS dataset from authors to determine study areas. If GIS data was 174 

not available, we identified the areas based on their description in the text (published 175 

coordinates) or map of study areas in original studies. If study area was poorly described and 176 

coordinates or maps of study areas were not provided, we visually examined the Google Earth 177 
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aerial photos and determined study areas similarly as in a previous meta-analysis (Tuck et al. 178 

2014). After a study area had been identified, we followed the approach of Tuck et al. (2014), 179 

and placed five random 1000 m transects per study area. The positions of the five transects 180 

were defined by sets of three randomly generated numbers. First, we generated the random 181 

number between zero (central study area measuring point) and the radius of the study area, 182 

denoted how many metres from the central point the starting point of each transect would be 183 

situated. Second, we randomly generated the angle degree defining the direction of the study 184 

area’s central point for which the start point of the transect should be placed. With these two 185 

random numbers we were able to define the transect location. Third, we randomly selected 186 

numbers between 0, 45, 90 and 180 degrees to specify the angle at which the transect should 187 

be drawn, 500 m to each side of the start point. Transects were not allowed to cross or being 188 

closer to each other than 2000 m to avoid pseudoreplication in the landscape structure 189 

information. In each of the five random transects we collected landscape data in a buffer area 190 

of 1 km. 191 

For landscape structure, we used the Coordination of Information on the Environment 192 

Land Cover databases from years 1990–2018 (hereafter CORINE database, Büttner et al. 193 

2004). Since our used case studies are from the last three decades, we used landscape 194 

structure information based on the version of CORINE that was closest to the year of study. 195 

The 17 categories starting with CORINE database codes three or four indicate semi-natural 196 

habitats and were used to calculate the proportion of these within a radius of 1000 m (Batáry 197 

et al. 2011). We classified landscape structure as simple and complex landscapes (Tscharntke 198 

et al. 2005). In simple landscape, the proportional area of semi-natural habitats was less than 199 

20%, in complex landscapes more than 20%. We did not consider the classification of a 200 

cleared landscape (<1%) since we had only 10 data points. We therefore added these points to 201 

the simple landscape classification.  202 
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We used the agricultural land-use intensity database (pixel 1×1 km) available for the EU 203 

to determine land-use intensity for each study area (Verburg 2016). For identifying regional 204 

scale land-use intensity data, we first used the previously digitized landscape scale transects, 205 

with which we created a new polygon with the minimum polygon method to get a more exact 206 

study area. We then classified land-use intensity in two groups: extensive or intensive 207 

agricultural region. The classification was based on the majority of pixels of the above GIS 208 

database in each study area. If majority of pixels represented extensive arable or extensive 209 

grassland or both, then it was classified as extensive region. Otherwise, we classified regional 210 

land-use intensity as intensive because the rest of the classification in the database represents 211 

intensive agriculture: moderately intensive arable, intensive grassland or very intensive 212 

arable. However, the Verburg (2016) database does not cover Switzerland, including fourteen 213 

different studies in our meta-analysis. Therefore for Switzerland, we used land-use 214 

information provided in the studies or if not, then we used online land-use database 215 

(Switzerland Federal Office of Topography 2016). We used a similar approach as with the 216 

previous database and determined land-use based on majority of cover either intensive or 217 

extensive land-use. 218 

 219 

Effect size calculation 220 

We used Hedges’ g as a measure of effect size, which is the unbiased standardized mean 221 

difference (Hedges 1981; Borenstein et al. 2009). We calculated effect sizes and their non-222 

parametric estimates of variance (formulas are presented in Appendix S2) for all data points 223 

based on the mean, standard deviation and sample size of pollinator species richness of AEM 224 

and control groups (Hedges & Olkin 1985). Effect size was positive if pollinator species 225 

richness was higher in the AEM than in the control group. To calculate Hedges’ g, we 226 
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obtained (from tables, graphs or text) the mean values, sample sizes and some variability 227 

measure of AEM and control groups (variance, SD, SEM or 95% CI). 228 

 229 

Statistical analysis 230 

For performing the meta-analysis models, we used the "metafor" (Viechtbauer 2010) package 231 

of the statistical program R (R Core Team 2018). We used hierarchical models with country, 232 

study ID and region or habitat as nesting factors with restricted maximum likelihood 233 

(Appendix S3). If one study presented two different groups of pollinators (for instance 234 

bumblebees and butterflies), we treated them separately in statistical analysis. First, we fitted 235 

a model without moderators to test the general effect of AEM compared to control group. 236 

Second, we fitted a model with moderators (ecological contrast, landscape structure and land-237 

use intensity) to test which of them moderate the relative effectiveness of AEM for pollinator 238 

species richness the most (hereafter additive model). Additive models compare the relative 239 

effects between used moderators. Third, we fitted a model with ecological contrast, landscape 240 

structure and land-use intensity, including their three-way interaction, to test whether and how 241 

they interact with each other (hereafter interaction model). In the final model, we were 242 

interested, which of the possible eight combination is the most or least effective (Fig. 1). The 243 

interaction model estimates the average effect for each factor level combination. We 244 

described effect sizes (small, medium, large) based on Cohan’s benchmarks (Cohen 1988). 245 

We also calculated the variance inflation factor between moderators, and identified no values 246 

exceeding 1.4, which suggests that no collinearity between moderators occurred. 247 

We also controlled outliers of effect sizes in our dataset. Based on the method of 248 

Habeck & Schultz (2015) we evaluated the sensitivity of our analyses by comparing fitted 249 

models with and without effect sizes that we defined as influential outliers. We defined 250 

influential outliers as effect sizes with hat values (i.e. diagonal elements of the hat matrix) 251 
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greater than two times the average hat value (i.e. influential) and standardized residual values 252 

exceeding 3.0 (i.e. outliers; from Habeck & Schultz 2015). Our analysis showed, that there 253 

were no outliers in additive or in interaction models. 254 

A potential publication bias were detected by funnel plot (Fig. S2), the regression test 255 

for funnel plot and fail-safe numbers. The regression test for funnel plot asymmetry indicated 256 

no significant publication bias (z = 1.39, p = 0.163). Additionally, we examined publication 257 

bias using Rosenthal’s method of fail-safe number (Rosenthal 1979), which estimates the 258 

number of unpublished or non-significant studies that need to be added to analysis in order to 259 

change the results from significant into non-significant (Rosenberg 2005). Thus, the higher 260 

the fail-safe number, the more credibility a significant result has (Langellotto & Denno 2004). 261 

The model without moderators was significant (see results) and Rosenthal’s fail-safe numbers 262 

calculation indicated that 33319 studies might be needed that AEM positive effect became 263 

non-significant. Hence, there was no sign of publication bias in our dataset. However, there 264 

was a geographical bias in our dataset, as most studies originated from Western or Northern 265 

Europe (Fig. S3).  266 

 267 

RESULTS 268 

Sixty-two studies (total 156 individual data points) or unpublished datasets fulfilled our 269 

selection criteria. Most studies were conducted in Western or Northern Europe (see a map in 270 

Fig. S3). We found only few studies from Southern or Eastern Europe. 271 

Pollinator species richness benefitted from AEM. The summary random-effects model 272 

without moderators showed a large positive effect of AEM (effect size 0.83, CIs 0.69– 0.96, 273 

p<0.001). The additive model indicated that the moderation effect of ecological contrast was 274 

larger than that of landscape structure and that land-use intensity was not significant on 275 

pollinator species richness (Fig. 2).  276 
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Results of the interaction model showed of pollinator species richness related to the 277 

AEM with the highest effect size in case of the combination of large contrast, simple 278 

landscape and intensive land-use (Fig. 3).  We also found large positive effects in studies with 279 

large contrast, complex landscape and intensive land-use. Medium effects appeared in studies 280 

with small contrast, simple landscape and intensive land-use studies. AEM was not effective 281 

for species richness in case of small contrast, complex landscape and intensive land-use. 282 

AEM was effective for species richness in case of large contrast, complex landscape and 283 

extensive land-use (Fig. 3). All other effect size values for extensive land-use indicated no 284 

significant AEM effect for pollinator species richness, but in some combinations had low 285 

sample sizes. General moderator trends were, that large contrast always had higher effect size 286 

than small contrast; simple landscape always had higher effect size than complex landscape 287 

(Fig. 2 and Fig. 3).  288 

Comparison of additive and interaction models indicated no significant difference 289 

(p=0.35; likelihood-ratio test=4.4, AICc presented in Table 1). 290 

 291 

DISCUSSION 292 

Our meta-analysis documents for the first time that the effectiveness of AEM for pollinator 293 

species richness is more strongly related to local ecological contrast than to landscape 294 

structure or regional land-use intensity. The results showed the highest AEM effectiveness in 295 

intensive land-use regions and simple landscapes with large ecological contrast. Lowest 296 

effectiveness of AEM was found in extensive land-use regions, in complex landscapes and at 297 

sites with small ecological contrast.  298 

 299 

Co-moderation of local, landscape and regional scale effects for pollinators 300 
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The additive model indicated that the ecological contrast created by the AEM at the site of 301 

implementation had the largest effect on pollinator species richness and that the structure of 302 

the surrounding landscape had a medium effect in moderating the AEM effectiveness. 303 

Regional land-use intensity had the weakest and non-significant effect on pollinator species 304 

richness. Thus, based on our additive model results, the following scale-dependency pattern 305 

of AEM effectiveness for pollinators can be determined: local > landscape > regional scale 306 

effect. Our model variance inflation values showed additionally that the moderators are 307 

independent from each other. 308 

Our interaction model results indicated that large ecological contrast had in all cases 309 

(except when sample size was too small) significant positive effects on pollinator species 310 

richness. We determined in most cases ecological contrast by the difference between AEM 311 

and control sites in the amount of suitable flower resources providing energy and food for 312 

pollinators (Wood et al. 2015; Marja et al. 2018). Therefore, effective AEM, which is 313 

targeted to enhance pollinator diversity, should be determined first of all by the availability of 314 

food resources. Thus, large contrast AEM are probably most sustainable solutions for 315 

enhancing pollinator diversity in countries like Germany, France, United Kingdom, which are 316 

dominated by intensive land-use regions and simple landscape structure (but such regions are 317 

also common in Central and Eastern European countries). Since ecological contrast is co-318 

moderated by landscape structure and land-use intensity, effective AEM in Western-European 319 

countries should also include measures to protect or create ecologically valuable landscape 320 

elements and habitats (species rich grasslands, set-asides, hedgerows, un-cropped areas), 321 

because food resources for pollinators as well as wintering and nesting habitats are highly 322 

important to enhance pollinator diversity.  323 

We used semi-natural habitats to determine landscape complexity and our results 324 

indicated that landscape complexity enhances pollinator species richness probably via key 325 
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resources such as availability of nesting and wintering habitats as well food resources 326 

(Kennedy et al. 2013). Comparing landscape structure effects on pollinator species richness 327 

(simple vs complex landscape) under the same ecological contrast and in the same land-use 328 

intensity regions, based on the interaction model, the AEM effectiveness was always stronger 329 

in simple than in complex landscape. Particularly, this was confirmed in intensive land-use 330 

regions. We found similar tendency also in extensive land-use regions, where AEM was more 331 

effective in simple than in complex landscapes, but in some cases, sample size was too small 332 

to confirm this pattern. Hence, especially ecological contrast, but also landscape structure, are 333 

important factors that need to be considered in agri-environment planning for enhancing 334 

pollinators diversity. However, current evidence suggests effect size is linearly related to 335 

ecological contrast (Scheper et al. 2013; Hammers et al. 2015). Dividing studies into groups 336 

with either high or low ecological contrast may, if anything, result in conservative estimates 337 

of the moderating effects of this factor. 338 

 339 

Effectiveness of small ecological contrast 340 

Based on our results, it is evident to conclude that AEM for pollinators should primarily 341 

consider local scale activities such as providing high quality and sufficient food resources 342 

(large ecological contrast conditions). In species-rich landscapes, small contrast AEM can 343 

also play an important role in conserving biodiversity, albeit indirectly. For instance, 344 

extensively used Hungarian puszta grasslands with complex landscape structure, alvar 345 

grasslands around Baltic Sea or alpine grasslands are currently often preserved largely 346 

because of support from agri-environmental subsidies despite the fact that species richness is 347 

rarely enhanced (e.g. Aavik et al. 2008; Batáry et al. 2015). Cessation of such small contrast 348 

AEM may lead to agricultural abandonment and enhance extinction probability of rare species 349 

with small populations (Batáry et al. 2010; Báldi et al. 2013). Thus, the value of small 350 
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contrast AEM effectiveness comes only indirectly from its contribution to maintain high 351 

biodiversity systems. 352 

AEM with small contrast in simple landscape and under intensive land-use conditions 353 

can also promote pollinator diversity, although only to a smaller extent. In those conditions, 354 

threatened or vulnerable species are often already lost or close to extinction and might 355 

disappear soon when intensive agricultural practice continues (Batáry et al. 2010). For that 356 

reason it is likely that small contrast AEM is not a viable option supporting pollinators under 357 

intensive land-use and simple landscape structure conditions, for instance in countries like 358 

Germany, the Netherlands and United Kingdom, where the species pool is already much 359 

impoverished.  360 

 361 

Pollinator-related trade-offs with agricultural production 362 

Since pollinators are important for ecosystems and humans, it is essential to protect pollinator 363 

diversity for sustainable crop production (Winfree et al., 2018). One solution for this 364 

objective is to develop new AEM that focus on large ecological contrast. However, this will 365 

be challenging because large ecological contrast AEM may be costly and unattractive for 366 

producers (Austin et al. 2015). For instance, creating and maintaining species-rich wildflower 367 

field margins needs costly investments in productive, but also in non-productive land. 368 

Therefore, economic-ecological trade-offs of AEM need to be identified in future research 369 

(Batáry et al. 2017; Kleijn et al., 2019). All AEM used in this study have been voluntary 370 

options for producers. Growers generally prefer AEM that can easily be incorporated into 371 

their daily farming practices. Small contrast AEM might be more popular and acceptable for 372 

producers, since they need fewer investments and are less expensive (Austin et al. 2015).  373 

 374 

AEM beyond Europe 375 
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Previous research from Australia showed that, for instance, birds may benefit from AEM also 376 

used in Europe (Attwood et al. 2009). Furthermore, our results indicated that large contrast 377 

AEM in simple landscape supported much higher pollinator species richness than the control 378 

sites. Such open and wide areas are common in the intensive agricultural areas of North 379 

America and Australia. Therefore also in outside European regions, large ecological contrast 380 

AEM should be most effective to enhancing pollinator diversity. 381 

 382 

CONCLUSIONS 383 

We quantify for the first time how the effectiveness of AEM for enhancing pollinator richness 384 

depends on local ecological contrast, which is moderated by landscape structure and regional 385 

land-use intensity. Based on our results, maintaining or restoring pollinator diversity in a 386 

sustainable way with effective AEM needs to focus on landscape planning prioritizing mostly 387 

at local, but also at landscape and regional scales to effectively restore biodiversity and to 388 

safeguard ecosystem service functioning for the future (see Senapathi et al. 2015, Winfree et 389 

al. 2018). This means in practice that AEMs must increase first of all local plant and/or 390 

flowers diversity and density. In addition, maintaining natural vegetation species-rich areas as 391 

well as complex landscapes is also important to maintain large populations and high diversity 392 

of pollinators and other species. Only the combination of such different approaches can make 393 

up a comprehensive strategy to keep and promote pollinators across Europe. Future research 394 

should investigate how much ecological contrast is needed to predict that a target AEM is 395 

effective for biodiversity conservation. 396 

 397 

  398 
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Table captions 547 

 548 

Table 1 Summary table of meta-analyses showing tests of moderator, residual heterogeneities 549 

and models AICc. 550 

Model  Moderators d.f.         Q p AICc 

Model without moderators  155 638.8 <0.001 414.5 

Additive model Residuals 152 537.6 <0.001 377.84 

 Moderators 3   25.4 <0.001  

Interaction model Residuals 148 528.5 <0.001 382.56 

 Moderators 8 130.1 <0.001  

551 
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Figure captions 552 

 553 

Figure 1 Graphical hypotheses of agri-environment management (AEM) effectiveness 554 

relation with ecological contrast, landscape structure and land-use intensity. In combination of 555 

those factors, darkest green indicates the strongest additive effect, and effectiveness decreases 556 

lightening of the green colour. White box indicate expected lowest effect based on hypotheses 557 

generated from Kleijn et al. (2011). Land-use intensity information is based on GIS data by 558 

Verburg (2016). On the left map, green colour represents extensive, whereas on the right map, 559 

brown colour represents intensive land use. The four photos on the left are an illustrative and 560 

actual examples of ecological contrast implementation. Photo credits for ecological contrast 561 

photos: Sinja Zieger and RM; for landscape structure photos: Estonian Land Board WMS 562 

service; for pollinator photos: RM. 563 

 564 

Figure 2 The mean effect size (Hedges’ g) of pollinator species richness in response to land-565 

use intensity, landscape structure and ecological contrast as results of an additive model with 566 

95% CIs range and significance values are presented. Explanatory variables indicate between 567 

group comparisons for land-use intensity (intensive vs. extensive; “Land-use”), landscape 568 

structure (simple vs. complex; “Landscape”) and ecological contrast (large vs. small; 569 

“Contrast”). Asterisk symbols represent statistically significant p-values below 0.05, and 570 

0.001 (* and *** respectively). 571 

 572 

Figure 3 Mean effect size (Hedges’ g) of pollinator species richness in response to the land-573 

use intensity (“Extensive land-use, Intensive land-use”), landscape structure (“simple, 574 

complex”) and ecological contrast (“Small, Large”) on the effectiveness of agri-environment 575 

management (interaction model) with 95% CIs range and significance values are presented. 576 

Asterisk symbols represent statistically significant p-values below 0.05, 0.01, and 0.001 (*, ** 577 
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and, *** respectively). Numbers indicate sample size. Darkest green indicates the strongest 578 

effect, and effectiveness decreases with lightening of the green colour.  579 

580 
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Fig. 1. 581 

 582 

583 



 

 25 

Fig. 2. 584 
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