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10.1 INTRODUCTION

In the past few years, research activities related to robotic surgery have gained attention
due to the rapid development of interventional systems, representing a fine example of
Human-Robot Interaction (HRI) [1]. Along with the development of novel technologies,
engineers and robotic experts are facing new challenges, as a completely new type of
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interaction has appeared between humans and robots: human tissues manipulated by
a robotic arm. Contrary to traditional HRI approaches, in the case of tool-tissue inter-
action, different types of models need to be used during the design and development
processes, which can be reliably and safely used in manipulation-specific ranges of force
values and tool movement. The new challenges carry unprecedented risks as well, espe-
cially during invasive interventions, remote surgeries, or automated task execution. While
many surgical maneuvers have already been implemented with a degree of autonomy,
most of today’s robotic surgery devices are still used as teleoperation systems. This means
that a human surgeon as an operator is always required to be present in the control loop.
Parallel to the evolution of telesurgery, different model-based control methods have been
developed and experimentally tested for enhancing transparency and increasing latency-
tolerance, both in terms of long distance (space robotics, intercontinental operations) and
short distance (local on-Earth scenarios) teleoperation. The effectiveness of traditional
real-time control methods decreases significantly with the increase of time-delay, while
time-varying latency introduces new challenges. A suitable control design can ensure
high quality control signals and improved sensory feedback. This can only be achieved
by suitable models for all components of the telesurgical systems, including models of
the human operator, the slave robot, and the mechanism of tool-tissue interaction. Using
bilateral haptic devices, and accounting for tissue dynamics, can handle issues arising
from communication latency. Stability and accuracy deterioration caused by latency and
other external disturbances, such as contacting hard tissues or elastic tool deformation,
can also be addressed using realistic soft tissue models, their integration into model-based
force control algorithms largely increases the robustness and reliability of robot-assisted
interventions.

Automation in the field of medicine is already present in many forms, providing a solid
background to the medical robotics domain to nurture on. Most medico-surgical pro-
cesses follow specific guidelines, such as generic diagnostic and treatment plans, support-
ing medical decision making and practice. On this highest level of abstraction, automation
is part of the surgical field as well, with pre-defined treatment plans for common diseases,
and with the rapid development of computer-integrated surgery (CIS), automation is pen-
etrating into the fundamental layers of surgical practice, addressing the current issues of
HRI from the robot-patient perspective.

Probably the most important characteristic of many surgical robots is spatial accuracy—
inherently determining their applicability, functionality, and safety. Precision of robotic
systems can be represented by the accuracy and repeatability of the device to characterize
the overall effect of the encoder’s fineness, the compliance of the hardware elements (e.g.,
the servos), and the rigidity of the structure. Generally, the absolute positioning accuracy
shows the error of the robot when reaching for a prescribed position. This expresses the
mean difference between the actual pose and the pose calculated from the mathemati-
cal model of the robot. Repeatability is the standard deviation of the positioning error
acquired through multiple trials to reach the same joint values. Repeatability is typically
smaller for manipulators than accuracy, and both numbers can largely depend on speed,
payload, and range of motion.
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Followed by the discussion of the importance of tool-tissue interaction modeling, con-
trol aspects, and haptic feedback in telesurgery, this chapter presents a methodology for
soft tissue modeling. The motivation is to present tool-tissue interaction scenarios, from
the HRI point of view. We present a specific but generalizable use case, where the tissue
deformation is uniform along the surface, verifying the proposed soft tissue model and
highlighting the limitation of linear heuristic models. Then, we discuss a more complex
approach, utilizing nonuniform surface deformation, estimating the force response from
the previously verified model. The mechanical parameters of the soft tissue model, includ-
ing stiffness and damping values of the elements, are estimated from measurement data,
taken from the experiments described in the sections in detail.

10.2 TYPES OF TOOL-TISSUE INTERACTION

Tool-tissue interaction is the phenomenon when the surgical tool in some physical way
interacts with the tissue to be manipulated during the intervention. Depending on the
circumstances of the interaction, there are many types of manipulations that can be distin-
guished based on the instrument geometry, biological properties of the tissue, invasiveness
of the interaction, and the mathematical modeling approach of the intervention.

When the surgical intervention is assisted by a robotic system, from the HRI point
of view, some of the basic types of tool-tissue interactions are the following. In terms of
invasiveness, the manipulation can be carried out using blunt instruments (tissue palpa-

tion for tumor detection, moving of organs for accessing the surgical area), sharp instru-
ments (cutting, suturing, needle insertion), or special instruments (coagulation, ablation).
In terms of the available feedback, the operator may receive visual information (endo-
scopic cameras, tool position mapping to pre-operative images), haptic feedback (direct on
indirect force feedback, tactile feedback, haptic guidance), or audio/audiovisual feedback
(forbidden region restriction, virtual fixtures, proximity information of the tool to the
area of interest). Types of tool-tissue interaction can be approached from the mechani-
cal properties and modeling of the participating mediums. We can differentiate between
soft tissue interaction (organs, skin, muscles) and hard tissue interaction (primarily bones
in drilling tasks or collision warning), while from the tool modeling aspect, rigid tools
(scalpel blade), elastic tools (needles, MIS instruments), and hybrid flexible tools (snake-
like tools, cable-driven manipulators). The modeling of tool/tissue deformation, reaction
forces and biomechanical transitions (rupturing, chemical reactions) is a complex coupled
problem, therefore, the model complexity also plays an important role in addressing a type
of tool-tissue interaction. The most popular approaches—not restricted to the tissue mod-
els—include continuum-mechanics based models (complex deformations, highly nonlinear

:}:;Eif;S;;Pand systems, FEA modeling), heuristic models (low degree of freedom tasks, simple manipula-
tions, high-level behavior estimation), and hybrid models.

A comprehensive study about the existing soft tissue models used in most MIS applica-
tions and virtual surgical simulators was presented by Famaey and Sloten [2], introducing
three major categories of deformation models: heuristic models, continuum-mechanics
models, and hybrid models. The complexity of each model mentioned above varies on a wide
scale, although it is commonly accepted that approaches based on continuum-mechanics
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provide a more realistic response but requires significantly higher computational capac-
ity. An analytical solution to the used mathematical laws generally does not exist. On the
contrary, heuristic models that consist of lumped, linear mass—spring-damper elements,
sometimes also called mechanical models, can be used for describing simple surgical tasks
like needle insertion. The derived equations can usually be solved analytically.

While the modeling of soft tissue behavior has been the focus of research for a long
time, the challenging field of gaining information about the interactions of the robot arm
and the tissue has only reached popularity recently. Among the arising issues, it is impor-
tant to mention the problem of force feedback, the modeling of tools, and the interaction
with organs itself. A comprehensive review on current tool-tissue interaction models was
carried out in [3], providing a survey on research focusing on interactions described by
models, following the principles of continuum mechanics and finite element methods. The
focus of interest can also be extended to models of telesurgical applications, without strict
boundaries of categories, giving an overview of model properties. In [4], a simple 1 degree-
of-freedom (DoF) model of a rigid master and flexible slave connection was introduced.
Here, the problem of tool flexibility is addressed as one of the greatest issues in the case of
tool tissue interactions, since the force sensing can only be applied at the fixed end of the
tool and its deflection can only be estimated. Besides tool flexibility, the compliant param-
eters of the robotic arm and the tissue model are also important and are significant parts of
the tool tissue interaction system. Other extensions of the model exist for rigid slave, flex-
ible joint, and flexible master descriptions, and the complexity of the model of the whole
system can be high. The great advantage of this approach is that not only the tool flexibility
but the whole transparency of the system is addressed. It is important to mention, though,
that no detailed tissue modeling is provided, the use of rigid specimen model indicates
that this approach is rather focusing on teleoperation. Basdogan et al. [5] addressed the
importance of tool-tissue interaction modeling in medical training through simulation in
virtual reality, focusing on issues in haptics in minimally invasive surgery. When working
with soft tissues, the elastic behavior of the tool can usually be omitted, using rigid mod-
els of surgical accessories. In their work, they introduced two new approaches to tissue
modeling: the mesh-based FEA model, using modal analysis and the real-time meshless
method of finite spheres. In the virtual environment, collision detection and perception
of multiple tissue layers were created, accompanied with force and torque feedback to the
user’s hand. This feature is supported by force and position sensors mounted on the tool,
which is held by the user instead of a robotic arm. The complexity of the above-mentioned
methods is in connection with the required computational effort. In simple problems, the
use of the method of finite spheres is suggested. Another approach to meshless methods
was introduced by Bao et al., where several layers were used as the model of the soft tissue,
their interaction modeled with a heuristic Kelvin model [6]. Modeling of two important
viscoelastic properties, the creep and relaxation is possible with this new three-parame-
ter viscoelastic model, improving the performance of conventional mass—spring—damper
approaches. Yamamoto suggested a method for the detection of lumps in organ tissues
such as the kidney, liver, and heart [7]. The importance of this work was a comprehensive
comparison of seven different tissue models used in point-to-point palpation. The aim of
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the tests and model validations was to create a graphical overlay system that stores data on
palpation results, creating a color scale overlay on the actual tissue, processing the acquired
data using several tissue models, with a single 1 DoF force sensor at the fixed end of the
tool. Yamamoto et al. also created an interpolable interface with haptic feedback and aug-
mented visual feedback and performed palpation and surface detection tasks using vision-
based forbidden-region virtual fixtures [8]. The tests were carried out on manufactured
artificial tissues based on existing commercially available artificial prostate, using a com-
plex, but—based on previous measurements—accurate Hunt-Crossley model. Position,
velocity, and force sensors were mounted on a slave manipulator and the visual feedback to
the human user was generated with a stereo-vision system.

When dealing with viscoelastic materials interacting with tools, coupled problems arise
where additional mechanical models are required to describe the system response. It is
important to mention that even when the best-suited mathematical models are employed,
material properties (Young-modulus, Poisson-ratio, etc.) can only be estimated. Validation
of their values requires circumstantial physical experiments. When using heuristic,
mechanical tissue models, the acquisition of explicit, but general material properties are
omitted. Instead of using tables and possible ranges of these properties, spring and damp-
ing coefficients must be obtained from measurements even when nothing else but the
tool shape is changed. In their work, Leong et al. introduced and validated a mechanical
model of liver tissue and its interaction with a scalpel blade, creating a distributed model
of mechanical viscoelastic elements [9]. With the serial connection of a Maxwell and a
Kelvin element, they introduced the Maxwell-Kelvin viscoelastic body. The primary aim
of their work was to account for the tissue surface deformation due to the extensive shape
of the tool, validating with the cutting experiment where a 1 DoF force sensor was placed
at the scalpel blade holder integrated with position measurement. Besides many constitu-
tive ideas, a great number of deficiencies can be found in the model that still needs to be
improved, including mathematical errors in modeling, contradictions in the measurement
result evaluation, inappropriate use of Laplace transformation, and the overall pertinence
of experimental results. Liu et al. introduced a method for force control for robotic-assisted
surgery on a beating heart, thus applying motion compensation for the periodic motion of
the organ [10]. By installing a force sensor at the end of the instrument and tracking the
3D motion of the beating heart, they compared four different models from the viewpoint
of tracking performance of the desired force. Besides the conventional viscoelastic models,
a fourth, fractional derivative model of viscosity was examined. One of the relevant results
of this experiment was to underline the importance of the right choice of tissue model.

In the past few years, much focus has been drawn on needle insertion modeling. Due
to the simplicity of the tool geometry, needle insertion problems were much discussed
using Finite Element modeling. The Finite Element Method is a widely used approach
for tool tissue interaction modeling, where commercially available FEA software pack-
ages are used to aid and simulate the operation area. The great many built-in mechani-
cal models can provide incredibly accurate and realistic solutions for simulation. One
of the largest drawbacks of this method is the sensitivity of computational time length
with respect to the parameters used in FE simulations. These parameters are determined
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solely by the user, including spatial and time resolutions, thus, many simulations need
to be carried out on the same model to achieve the desired level of reliability. Goksel et
al. introduced a novel technique to use real-time remeshing in the case of FEA modeling
[11]. A mesh-based linear elastic model of both the needle and tissue was used, applying
remeshing in order to compensate organ shift due to the invasiveness. The importance
of the model is that both tool and tissue deformation were accounted for, although the
motion models were the simplest possible in 3D. Continuum mechanics also provides
numerous models that can be used for modeling organ and tissue deformations and
kinetics.

Approaches using linear and nonlinear models of elasticity are widely used in practice.
Linear models have limited usability despite the many advantages they carry (simplicity,
easy-calculation, and small requirements on computational capacity) due to inhomoge-
neous, anisotropic, nonlinear characteristics of tissues and large relative deformations and
strains. However, nonlinear models in continuum mechanics lead to moderately complex
models even in simple surgical tasks. Misra et al. introduced a detailed complex mechani-
cal model of continuum mechanics for the analytical modeling and experimental vali-
dation of needle bending at insertion into soft tissues [12]. A hyperelastic neo-Hookean
rupture model was used to describe the material properties and behavior of the soft tissue
simulant (gel), assuming linear elasticity in case of the needle. Experiments were carried
out using different bevel-tipped needles and the needle bending curvature was validated
using unfiltered camera data. The importance of the work lays in the area of needle inser-
tion path planning.

In the area of tool-tissue interaction research, one might be interested in rapture mod-
eling. While most of the existing mechanical models assume reversible tissue deforma-
tion, even in the case of minimal invasive surgery (MIS), tissue rupture cannot be avoided.
Mahvash and Dupon developed an analytical model of tissue rapture during needle inser-
tion, focusing on the calculation of required insertion force [13]. The great advantage of this
model is that despite the complex mechanical structure, the insertion events are divided
into four different models, decomposing the process into moderately complex parts. Tissue
modeling was aided with a modified Kelvin model, making the parameters of the linear
components dependent of the deformation rate. The analytical model validated the experi-
ments showing that the required insertion force is inversely proportional to the insertion
speed.

It is important to mention models that are not directly describing insertion and cutting
problems, but are rather used for investigating interaction of cable-driven manipulators
controlled by human operators, acting on soft tissues. Kosari et al. introduced an adaptive
parameter estimation and model predictive control (MPC) method on cable-driven surgi-
cal manipulators, developing a 1 DoF mechanical model, concentrating on the problem of
trajectory tracking [14]. Therefore, instead of the estimation of tissue reaction forces, focus
was drawn to the response of the cable-driven manipulator in order to create a realistic
force feedback to the human user. The moderately complex model accounts for numer-
ous mechanical properties and solves an optimal control problem for automating tissue
compression.
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The proper modeling of tool-tissue interactions is a relevant topic in standardization
methods. With the help of initial calculations and simulations, efficient control methods
can be chosen to avoid undesired pain and injury levels. Pain and injury onset levels for
static contact force and peak pressure values are deeply researched and standardized in the
literature [15].

10.3 REVIEW OF CONTROL ASPECTS OF TOOL-TISSUE INTERACTIONS

The general concept of teleoperation has long been used in various fields of robotics, includ-
ing manufacturing, logistics, and service robotics scenarios [16]. Today, long-distance tele-
operation is an actively discussed topic in space exploration [17] and for intervention in
hazardous environments [18]. Where traditional control algorithms might fail, latency-
induced challenges can be addressed by novel ideas, including soft computing methods,
neural control [19], supervisory control through Internet communication [20], passivity-
based control [21], and various types of MPC for transparent teleoperation [22] and hybrid
MPC solutions to neural network (NN)-based control methods [23].

Commercially available telesurgical systems utilize the concept of unilateral teleopera-
tion, where the position and/or force data from the master console are transmitted to the
slave system, whereas the operator only receives visual feedback from the environment
through the mounted camera system. However, in bilateral teleoperation, there is a com-
munication of force and position data in both directions of the teleoperation system. This
structure allows haptic feedback to the operator, therefore, an extended virtual presence
can be established in the physical surgical environment, increasing the transparency, which
gives an answer to what level the master operator feels that the slave-side environment is
being manipulated [24]. In telesurgery, the term transparency mostly refers to the level of
match between the mechanical impedance of the manipulated environment encountered
by the slave and the mechanical impedance transmitted to or felt by the operator at the mas-
ter [25]. The general concept of bilateral teleoperation is shown in Figure 10.1 [26]. There is
a vast literature of control architectures addressing challenges and proposing solutions to
bilateral teleoperation systems, emphasizing the effect of time-delay caused by the commu-
nication latency between the master and slave sides. A large percentage of these approaches
are variations of position—position teleoperation [27], position—force [28], or force—force
teleoperation [29]. Other approaches include a special group of linear controllers, robust
H, ¢ control, system dynamics assessment, and adaptive nonlinear controllers [30, 31, 32].
Obstacle avoidance, motion guidance, and inertia scaling also play an important role in
describing the dynamics of the specific teleoperation task, where passive decomposition
[33] and time-domain passivity controllers [34] can enhance the performance of actions.

Depending on the nature of the applications, the latency in communication can range
between milliseconds (Internet-based teleoperation in terrestrial conditions) to several
minutes (space exploration). Therefore, the magnitude of time-delay is determined by the
distance between the master and slave devices and the medium of communication. It is a
common view that in robotic systems, time-delay causes a trade-off between teleoperation
stability and the control performance of the system. Local force feedback at the master side
largely affects the performance and transparency of time-delayed teleoperation systems,
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Master/Joystick

Remote Environment

FIGURE 10.1  The concept of bilateral teleoperation by Hokayem and Spong [26].

which varies for different bilateral teleoperation architectures and the magnitude of the
latency [35]. A common approach to increase the robustness of delayed teleoperation is to
apply additional damping on both the master and slave side of the system, however, this
often leads to a slow response of the system [36], degrading its control performance. As the
transparency of the system decreases, some methods can compensate for the performance
decay in bilateral teleoperation by using scattering theory [37], wave-variable control [38],
or passivity control [39]. Other approaches include the telemonitoring of force feedback
under low latencies [40].

In the past few decades, it has become a common view that large delays require accurate
models of the operation environment based on prediction, creating a quasi-real-time sim-
ulated response to the operator [41]. One of the most successful approaches to predictive
control methods utilizes the Smith predictor [42], while several approaches combine the
Smith predictor with Kalman filtering for achieving better performance results [43, 44].
The linear approximation of the effect of time-delay is also a common modeling approach
in teleoperation control, utilizing the state-space representation of the system based on the
first-order Taylor-expansion of the system [45, 46].

In order to summarize the challenges and current possibilities in teleoperation with
time-delay in the range of a few seconds, a detailed report has been published by NASA
[47] in 2002. The report lists some of the most important tools and guidelines in tele-
operation, highlighting the importance of predictive displays, where a realistic model of
the environment is shown to the operator, which responds to the master console input in
real-time. This approach has proven to be very efficient if the latency is under one second,
however, it requires a reliable model of the task environment, including the slave and slave-
environment interaction models [48]. Another frequently discussed issue is related to the
compliance of the slave side, as it can reduce the execution time and the overall forces
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acting on the environment during manipulation [49]. From the haptics point of view, force
reflection in bilateral teleoperation is critical in terms of stability. In real-life applications,
direct force feedback can only be applied reliably with latencies under two seconds, how-
ever, in this range, high performance in completing teleoperation tasks, in terms of stabil-
ity and transparency, can only be achieved with force feedback [50]. This feedback can be
achieved in numerous ways, directly or indirectly, such as using a visual feed on the force
magnitude or reflection of the force of the hand of the operator that does not take part in
the teleoperation. The best solution is considered to be when the interaction force is simu-
lated and fed back to the operator based on the system model. This work gives a proposal
for modeling methodology of the interaction environment during teleoperation, more pre-
cisely, the modeling of tool-tissue interaction in case of telesurgical manipulations on soft
tissues, since it is a key element of HRI in surgery.

10.4 HAPTIC FEEDBACK IN TELESURGERY

In recent years, the number of MIS procedures has increased significantly. MIS allows
shorter patient recovery time and the decrease of surgical trauma. However, due to the
long, rigid design of MIS tools, limited vision and confined operation space, several ergo-
nomic difficulties and technological limitations have arisen that are yet to be solved. These
include the deprivation of dexterity, loss of depth perception due to the two-dimensional
video image feedback, distributed hand-eye coordination and special tool manipulation,
and most importantly, the loss of tactile feedback [51]. Most of these limitations were
addressed and partially solved with the introduction of robot-assisted surgery and tele-
surgery. By using stereo visual feedback, tremor filtering and ergonomic human-machine
interfaces (HMIs), the lack of force feedback limits the ability of the surgeon during organ
palpation, tumor localization, and the location of other abnormalities [52].

The role of haptic feedback in telesurgery is twofold: 1) restoring tactile information is
essential for assessing the surface properties of the investigated organs. This feature is gen-
erally useful for artery and lump detection, therefore, the lack of tactile feedback leads to a
more difficult localization of palpable anomalies, such as kidney stones; 2) haptics may pro-
vide a realistic force feedback to the robot operator, giving information about the mechani-
cal characteristics of the tissue. This may improve the quality of basic surgical maneuvers
(grabbing, palpation, cutting), and allows collision detection, which opens new opportuni-
ties toward virtual fixtures and the design of surgical simulators [53]. Tissue characteriza-
tion also requires complex perception of the operating environment, where, besides tissue
stiffness (hardness), relaxation properties and other viscoelastic phenomena can be investi-
gated and accounted for when using haptic feedback. It was also shown that for tissue char-
acterization tasks, utilizing force feedback leads to better results than only visual feedback,
while with the combination of the two, superior results can be achieved [54].

While the lack of haptic feedback is still common to modern robot-assisted MIS pro-
cedures, the solutions provided by today’s commercially available telesurgical systems are
still limited. Increased cost, sterilization difficulties, and the sizing limitations of force
sensors at the end effector are the key limiting factors to introducing haptic feedback to
these systems through direct force sensing at the tool tip. To address these issues, several
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approaches were investigated for indirect force estimation, for example, accounting for
joint flexibility [4], the dynamics of cable-driven manipulators [14], or force estimation
through soft tissue modeling [55].

There is no general consensus among laparoscopic surgeons, if, and at what level would
haptic feedback improve the quality of procedures. According to many surgeons, having
visual feedback alone provides adequate information about the tissue palpation force for
safe and reliable operation, however, the lack of haptic feedback is often considered as a
major limitation in robot-assisted MIS procedures [56]. Clearly, an experienced surgeon
finds the lack of haptic feedback less disturbing than a novice. However, in haptic guidance,
learning spatiotemporal trajectories, contrary motion compensation (Fulcrum-effect), and
strategy planning, the presence of haptic feedback and/or surgical simulators can enhance
force skill learning for trainees [57].

Providing a complex and reliable perception for the operators of haptic devices could
not only enhance intra-operative performance, but it may also become an essential tool in
surgical training and pre-operative planning. In recent years, the use of surgical software
simulators has largely increased, offering different training scenarios, anatomical varia-
tions, and conditions in the operating environment [58,59]. Using haptic devices, a new
dimension opened in performance evaluation during procedures. Moreover, due to the
complex mechanical behavior of soft tissues, augmented simulations require reference
data from real surgical scenarios and should be tested by human operators to validate the
usability of the virtual models [60].

The problem of distinguishing between soft tissues by testing their mechanical prop-
erties is often referred to as the cognitive role of haptic devices in simulation environ-
ments [61]. Today’s surgical simulators that are using haptic interfaces are both relying
on simple mechanical models of soft tissues and complex, parameterized finite element
models. However, for enhancing real-time operation and focusing on the most represen-
tative mechanical effects, simple models are preferred in order to keep the transparency
of the operation at maximum. Besides high computational requirements, using bilateral
haptic devices and accounting for tissue dynamics can also handle issues arising from
communication latency [62]. Stability and accuracy deterioration caused by latency and
other external disturbances, such as contacting hard tissues or elastic tool deformation,
can also be addressed using realistic soft tissue models. Their integration into model-
based force control algorithms largely increases the robustness and reliability of robot-
assisted interventions [63]. The integration of soft tissue properties to robot-assisted
and virtual reality-based MIS procedures is an actively researched topic within the field
of surgical robotics. Methods for acquiring useful measurement data use a combined
experimental procedure of measuring tissue relaxation force under step-like tissue com-
pression and force measurement during constant compression rate indentation input.
Samur et al. proposed a method for tissue parameter estimation using a custom indenter
during laparoscopic surgery by means of inverse finite element solution to estimate opti-
mum values of nonlinear hyperelastic and elastic properties [64]. Beccani et al. devel-
oped a tool for intra-operative wireless tissue palpation, using a cylindrical palpation
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probe and estimating local volumetric stiffness values, assuming linear elastic behavior
of the tissue [65].

A deformable model based on nonlinear elasticity and the finite element method for
haptic surgical simulators was proposed in [66], validated on real-time simulations of lapa-
roscopic surgical gestures on virtual liver models. Trejos et al. suggested an augmented
hybrid impedance control scheme to perform force control, providing model-based con-
trol background for a tactile sensing instrument in intra-operative tissue palpation [67].
Endoscopically guided, minimally invasive cannulation tasks were investigated by Wagner
et al. to test the hypothesis that force feedback can improve surgical performance, finding
that applied forces by surgeons can be decreased for those with adequate training back-
ground [68]. In [51], Tholey et al. developed an automated laparoscopic grasper with force
feedback capability in order to aid the surgeons in differentiating tissue stiffness through
the PHANToM (Sensable Technologies, Woburn, MA) haptic device. Participants were
asked to differentiate between tissues, having provided visual and/or haptic feedback to
complete the task.

Alternative approaches are also popular in general force feedback for laparoscopic train-
ing and procedures. Horeman et al. developed a training system that provided visual hap-
tic feedback of the interaction forces during a procedure [69]. They found that providing
haptic feedback through visual representation considerably improved the quality of the
solved tasks. A detailed feasibility study of lung tumor detection using kinesthetic feed-
back was published by McCreery et al., creating an ex vivo experimental environment,
modeling various tissue stiffness values, injecting agar into healthy tissues, and substitut-
ing haptic feedback with recorded force data [70].

10.5 SOFT TISSUE MODELS

A detailed investigation about the most widely used tool-tissue interaction models was
published by Famaey and Sloten, sorting the soft tissue models into three distinguished
categories:

+ Continuum mechanics-based tissue models, utilizing concepts of finite element anal-
ysis (FEA) and continuum-mechanics approaches

+ Heuristic models, which represent a combination of linear and/or nonlinear spring
and damping elements

+ Hpybrid models, usually representing the combination of FEA/continuum mechanics-
based and heuristic approaches [71]

It is a common view that continuum mechanics-based tissue models allow one
to provide a realistic behavior description function during the tissue manipulation,
although the vast computational requirements, the high complexity of the geometry,
and the highly generic approach limit their usability in real-time surgical applications
and simulation environments. On the other hand, heuristic models, which are also
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often mentioned as rheological models or mass-spring-damper models, are proven to
be useful in modeling basic surgical manipulation tasks, including indentation and tis-
sue grabbing [72]. In many cases, mass—spring—damper models also provide an analyti-
cal solution to the problems, allowing a more straightforward mathematical description
of the tool-tissue interaction phenomenon [3]. There is extensive literature about the
description of soft tissue behavior both in fixed compression rate indentation [6] and
tissue relaxation phases [73], providing raw measurement data on the force response.
The use of heuristic models for soft tissue representation was deeply discussed by
Yamamoto, listing and assessing numerous basic models during point-to-point palpa-
tion for hidden lump detection [7]. The mechanical properties of human adipose tissues
were investigated by Alkhouli et al. using a viscoelastic linear soft tissue model, focus-
ing on the stress relaxation phase of the indentation [74]. The nonlinear viscoelastic
mass-spring-damper model created by Troyer et al. was also verified based on relax-
ation tests, bearing in mind that the model can be later integrated in FEA approaches in
order to speed up the computational process [75].

In a wider perspective, the heuristic soft tissue models can be integrated into image-
based surgical guidance systems, aiding accuracy and stability of the interventions [76],
while applying them as visual cues, the performance of haptic feedback devices can also
be improved significantly. A fine example of such virtual soft tissue models was presented
by Li et al,, introducing a pseudo-haptic feedback-based method for the investigation of
embedded hard incisions in a silicone phantom tissue [77]. Another complex tissue model
was proposed by Leong et al. [9], where a curve fitting method was proposed for the acqui-
sition of the soft tissue mechanical parameters, based on measurement data from [78].
While the initial idea of Leong was feasible, the correct mathematical derivation of the
results was missing. The corrected mathematical description, improved measurement
data, and detailed model verification was presented by Takacs et al., concluding that the
proposed nonlinear Wiechert heuristic model can effectively model the soft tissue behav-
ior and quantitatively represent its mechanical properties during basic surgical manipula-
tion tasks [55]. A comprehensive overview of the structure and usability of heuristic tissue
models was presented by Wang and Hirai [79]. They investigated the force response of dif-
ferent commercially available clay samples and Japanese sweets materials.

Soft tissue manipulation requires sophisticated techniques and precise surgical tools,
particularly during tissue indentation, cutting, or suturing. There is a need for accurate
soft tissue models, as the best performance of surgical robotic applications can only be
achieved by utilizing control methods taking the tissue mechanical behavior and proper-
ties into account [16]. Furthermore, in terms of stability and transparent teleoperation, the
accurate modeling of tool-tissue interaction is essential for utilizing reliable model-based
control methods. The most important aspects of these model-based approaches becomes
imminent in the case of force control. The reaction force during a given manipulation can
be estimated, and the control signal, which directly sets the input force or the tool trajec-
tory, can be calculated. The control signal is then transferred to the robotic arm hold-
ing or manipulating the soft tissue, increasing the efficiency, stability, and accuracy of the
intervention.
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10.6 METHODS FOR MODELING SOFT TISSUES
10.6.1 Mass—Spring—Damper Models

Let us consider the tool-tissue interaction model proposed by Leong et al. in [9]. As shown
in Figure 10.2, mass—spring—-damper models are uniformly distributed under the soft tis-
sue surface. When the tissue surface is deformed, the total force response is calculated by
adding up the force response values of each individual element, which are all infinitely
small and are connected to the surface of the deformed tissue. The model assumes that the
displacement of each point on the tissue surface is known at any time and the deformation
is always happening in the axis of the mechanical element.

The heuristic soft tissue modeling approach is one of the simplest ways to model the
behavior of soft tissues. The complex biological structure of these tissues induces unique
and diverse mechanical properties for these materials, including high levels of inhomoge-
neity, viscoelasticity, and anisotropy, which cannot be overlooked and drastically simplified
when designing robot control applications. These restrictions are usually not applied for
everyday industrial and service robotics applications for material handling and machining.

The concept of this modeling approach is very simple: linear and/or nonlinear damper
and spring elements are assembled together in a mixed parallel and serial connection. The
assembled network of mechanical elements is typically used for describing the soft tissue
behavior during uniaxial deformation, while projecting force values representing the reac-
tion force response of the tissue. Nevertheless, the model can be extended for measurement
of rheological and viscoelastic properties of multiaxial elongation as well [80].

Efficient application of this approach requires the knowledge of the u(tf) deformation
input of each of the end points of the network of the combined mechanical elements. With
this information in hand, the force response can be given by a closed-form mathemati-
cal function, called the force response function. The reaction force depends on the basic
mechanical properties of the element.

+ Linear spring elements represent a force response f,, which is calculated from the
specific spring stiffness coefficient k and the deformation magnitude in the spring
axial direction:

fi= k(x,—x,). (10.1)
DEFORMATION INPUT *
TISSUE SURFACE
) )| ]
reffei e e NIRIE - e > JEe
T 15 g s 0|
() TT 77 wiecHErTBoDES | 7T |77 177
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FIGURE 10.2 The proposed linear tool-tissue interaction model, where the Wiechert bodies are
distributed along the tissue surface.
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+ Linear damper elements represent a force response f,, which is calculated from the
damping coefficient b and the relative deformation rate of the end points in the axial
direction:

fu= bl —%,). (10.2)

where x, and x, represent the end coordinates of the spring and damper elements, x; and
X, are the deformation rates in the axial direction.

The literature of mass—spring-damper models lists three basic combinations of these
elements in common application, referred to as the basic models of viscoelasticity. These
are the Kelvin-Voigt, the Maxwell, and the Kelvin models, as shown in Figure 10.3 [72].
In this section, only the behavior of linear models is discussed, but the general description
applies to the nonlinear models as well.

In analytical mechanics, the Kelvin-Voigt model is the most commonly used mass-spring—
damper model, as it is capable of representing reversible deformation and stress relaxation
simultaneously. The behavior of the system can be described using an ordinary differential
equation and an analytical solution to the force response function can be given by solving
this equation. The easy interpretation and simplicity of this approach makes it very popular
in many fields of mechanical engineering. A strong limitation of the model arises from its
difficulty of handling step-like deformations, as the reaction force on the damper element
would be infinitely large in the case of a sudden deformation variation. As the Kelvin-Voigt
model consists of the parallel connection of a spring and a damper element, the representa-
tion of the response function for the reaction force in the time domain can be written as:

S ()= bii(t)+ ku(t), (10.3)

where u(f) is the deformation function. The reaction force response function in the Laplace
domain is:

Fiv(s)= (bs+ k)U(s). (10.4)

J, u(t) J, ut) { u(t)

FIGURE 10.3 The most widely used viscoelastic models in soft tissue modeling: Kelvin-Voigt
model (left), Maxwell model (center), and the Kelvin model (right).
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In viscoelasticity, creep is a phenomenon that describes permanent deformation due to the
applied mechanical stress, which can be straightforwardly modeled by the Maxwell model.
In this approach, a spring and a damper element are connected in a serial way, representing
creep and stress relaxation in the material. In practical applications, the use of this model is
limited by the fact that the force response value converges to 0, when a constant deforma-
tion input is applied due to the serial connection of the damper element. The model is not
capable of modeling residual stress and the deformation function of the model cannot be
directly expressed as a function of the acting forces. This is due to the unknown position of
the virtual mass point connecting the two elements, which can only be estimated but not
directly measured. As time domain representation of this model generally does not exist, a
Laplace domain description is given below:

kbs
bs+k

Fy(s)= U(s). (10.5)
The simplest possible solution to model residual stress, reversible deformation, and stress
relaxation is provided by the Kelvin model, also often referred to as the Standard Linear
Solid (SLS) viscoelastic model. The Kelvin model is constructed by the parallel connection
of a single spring element and a Maxwell model. A popular time-domain representation is
usually given in a closed-form formula:

b ; b ko .
S+~ fr ()= ko(u(t)+ —(H —"u(t)J} (10.6)
ky o\ K
while in the Laplace domain, the transfer function of this model is given by:
bk, + K )s+ kok;
E(s)= U(s). 10.7
i (5) bt k (s) (10.7)

In modern medical technologies, the high diversity of the soft tissues and their complex
behavior during manipulation tasks yielded to the need for more sophisticated visco-
elastic models, relying on the modularity of the heuristic soft tissue modeling approach.
Ultimately, new combinations of linear or nonlinear spring and damper elements would
allow one to increase the performance of surgical robotics applications by better under-
standing the tissue behavior. Two of these more complex yet commonly used combina-
tions are shown in Figure 10.4. If a Maxwell and a Kelvin model are connected serially, the
so-called Maxwell-Kelvin model can be created, consisting of a total of five mechanical
elements. The elastic behavior and relaxation properties can be more accurately modeled
using this model, refining tissue parameters based on the experimental data using curve
fitting. There exists a Laplace domain representation for this approach:

2
Ay S HA
s+B

Larw S
MK U(s), (10.8)

s+ BUMK

Fyk(s)= B

2MK IMK

where AZMK, AIMK , BEMK,

ky, k,, b, and b,.

B MK B, i AT€ linear functions of the mechanical parameters k,,
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FIGURE 10.4 Advanced combinations of heuristic viscoelastic models in soft tissue modeling: the
Maxwell-Kelvin model (left) and the Wiechert model (right).

More complex mass—spring—-damper models do not necessary give better accuracy and
performance in tissue behavior modeling. The Maxwell-Kelvin model, for example, will
still have the limitation of the reaction force converging to 0, similar to the previously
discussed Maxwell model. Alternatively, a Kelvin model and several Maxwell models can
be connected in a parallel way in order to form a generalized Maxwell model, or, if there is
only one Maxwell body connected to the system, the Wiechert model. It was shown in [9]
and [55] that this assembly provides a smooth and accurate way for fine-tuning mechanical
parameters for specific tissues during simple surgical manipulations.

A comparison of the Wiechert and Kelvin models was provided by Wang et al. [81],
concluding that there is a significant advantage of using the Wiechert model in modeling
spleen and liver organ force response estimation. A methodology for parameter estima-
tion for the Wiechert model was also presented by Machiraju et al. [82], carrying out the
investigation of tissue behavior during the stress relaxation phase. In the Laplace domain,
the transfer function of the Wiechert model is as follows:

A, sSS+A, s+A
W W W [(5)= W, ()U(s), (10.9)
Bzws + Blws+ Bow

Ey(s)=

where
Ay, = biby (ko + K+ k),

Ay, = (b (ko + ky) + baky (ko + k),
Ay, = kokikoby,

B,, = bb,

B,, = bk, + bk,

By, = kik,.
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10.6.2 Data Collection Methods

The structured collection of experimental data was motivated by the lack of general,
publicly available force measurement data from tissue palpation. A frequent approach
for this type of data collection aims for the palpation or indentation of ex-vivo tissue
samples with known compression speed, creating a set of tissue deformation-reaction
force characteristics. The goal of these measurements is to provide a reference data for
curve fitting, where its deviation in the force response of the simulated tissue behavior is
minimized for the optimal set of tissue parameters of the investigated model. With these
considerations in hand, the following methodology for tissue characterization using
the Wiechert model was carefully planned in order to provide sufficient data for model
verification. According to the tool-tissue interaction model, infinitely small Wiechert
bodies are distributed under the deformed tissue surface as shown in Figure 10.2. The
model parameters are obtained by applying a uniform deformation input on the surface.
During the initial experiment, six pieces of cubic-shaped fresh beef liver samples were
investigated, with edge lengths of 20 +2 mm. The dimensions of each of the specimens
were measured before and after the indentation tests. The specimens were compressed at
three fixed compression rates: a slow rate of 20 mm/min, a medium rate of 100 mm/min,
and a near-step input at 750 mm/min, the latter being the maximum deformation rate
provided by the physical system. The indentation tests were carried out at the Austrian
Center for Medical Innovation and Technology (ACMIT, Wiener Neustadt), ona Thiimler
GmbH TH 2730 tensile testing machine connected to an Intel Core i5-4570 CPU with
4 GB RAM, using ZPM 251 (v4.5) software. The force response data was collected with
an ATI Industrial Automation Nano 17 titanium six-axis Force/Torque transducer, using
the 9105-1FPS-1 DAQ Interface and the power supply at 62.5 Hz sampling time. An Intel
Core i7-2700 CPU with 8 GB RAM hardware and the ATICombined DAQFT .NET soft-
ware interface was used for data visualization and storage. In the case of each specimen
(marked by letters A-F), at first, the low and medium speed indentation tests were car-
ried out, reaching 4 mm of indentation depth. The deformation input function was also
recorded for validation purposes.

The uniform surface deformation was achieved by using a custom designed 3D-printed
indenter head mounted on the force sensor. The starting position of the indenter was 1 mm
above the surface of the specimen. During the evaluation of the measurement data, only 3.6
mm of indentation depth was investigated. This way, any nonlinearity in the ramp-input
function during the compression could be filtered out. For the constant compression rate
indentation test, force data was recorded during the head movement and each of the speci-
mens was subjected to compression 12 times. The reaction force response curves did not
have any systematic deviation from the first test on the same specimen. This strengthens
the assumption that no substantial tissue damage was caused during the measurements
that could have a depriving effect on the final results. The near-step input deformation was
applied several times on each of the specimens. Evaluating the measurement data, it was
found that the force response magnitude in the relaxation phase (60 seconds) decreased
significantly during the second and third experiments on the same tissue, most likely from
the severe damage to the internal tissue structure. Based on this observation, only the very
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first set of measured data points was used for the parameter estimation in the relaxation
phase for each specimen. The image of the experimental setup is shown in Figure 10.5.

10.6.3 Indentations Tests

In the first phase, the force response data from the relaxation tests was evaluated. This way,
an initial estimation can be given on the individual mechanical parameters of the linear
Wiechert model. For the simplification of the calculations, the indentation speed of 750
mm/min was approximated with a step-input function. The analytical expression for the
force response function can be easily obtained by taking the inverse Laplace transform of
Eq. (10.9). In the Laplace domain, the output function is calculated by taking the product
of the transfer function W,(s) and the Laplace transform of the step-input function:

,

_h,
fw,(f)=L'l{Ww(s)x—d}=xd ko+ki|1—e " |+k|1-e 2 ||, (10.10)
s

where fy; () is the reaction force in the relaxation phase and x,=4 mm is the compres-
sion depth at the maximum deformation. For all six specimens, the relaxation data is dis-
played in Figure 10.6. The average response curves are also shown in Figure 10.6 for better
visualization, which were obtained by taking the average values of the response data for
each of the specimens, weighted with respect to the tissue surface size, and normalized to
20% 20 mm. An unexpected break can be observed in the curves for tissue samples, which
is supposedly due to the effect of the deceleration of the indenter reaching the target inden-
tation depth. For simplification reasons, this break is not taken into account during the
curve fitting phase, as it does not affect the force response results significantly. The most
relevant sections of the response curves are the initial relaxation slopes (force relaxation)

FIGURE 10.5 Experimental setup for beefliver indentation tests at the Austrian Center for Medical
Innovation and Technology (ACMIT).

K31890_Book.indb 154 @ 15-02-2019 16:16:40



®

The Other End of Human-Robot Interaction m 155

25r
— Specimen A
—— Specimen B
. . ; : ———— Specimen C
2l - —SpecimenD-
: : : : — Specimen E
Specimen F
: . . : Average
z
@
S
o
e
0.5
ok
0 10 20 30 40 50 60

Time [s]

FIGURE 10.6 Force response curves for step-input relaxation tests for eight identically cut liver
pieces.

and the steady-state values (residual stress). As previously derived, a closed-form solution
to the step-input can given and curve fitting on the original measurement can be applied.
MATLAB® cftool toolbox was used for carrying out the curve fitting, while the parameters
were independently obtained for each of the six specimens and were compensated by the
tissue surface magnitude. Summarizing, the procedure resulted in six sets of parameters of
stiffness and damping parameter values:

K=k 123 (10.11)
A
¢ Ay .
bj=b=2,j=12 (10.12)

where A is the surface area of each specimen and A,=400 mm? is the reference tissue
surface value. The average parameter values are listed in Table 10.1 under the linear

model type.

TABLE 10.1 Parameter Estimation Results from Force Relaxation and Constant Compression Rate Tests

K, K, K, b, b, K, k, k, RMSE
Model Type [N/m] [N/m] N/m)] [Ns/m]  [Ns/m] [m] [m!] [m™] Combined [N]
Linear 4.86 57.81 53.32 9987 10464 - - - 0.1865
Nonlinear 2.03 0.438 0.102 5073 39.24 909.9 1522 81.18 0.0206
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It was shown in [83] that the Wiechert model gives a reasonably good description of the
soft tissue behavior in the relaxation phase. However, the verification of the model requires
more indentation scenarios, which were based on two more sets of compression tests with
constant compression rate. The average force response curves for each specimen for the
case of 20 mm/min and 100 mm/min are displayed in Figures 10.7 and 10.8, respectively,
along with the global weighted average response curve. Note that for better visualization,
the curves are displayed in an indentation depth—force graph instead of the previously used
time—force graph. The indentation depth was 4 mm. The figures only show the first 3.6 mm
of deformation for previously discussed reasons. Utilizing the same method for obtaining
the analytical force response as it was used in the step-input case, the following analytical
expression was obtained for the force response:

Kk ky

-1 e

fwc(t)zL_l {WW(S)%}=1’ k@f‘f‘bl 1—e b +b2 l1—e by N (1013)
S

where v denotes the compression rate (20 mm/min or 100 mm/min) and f,, stands for
the force response magnitude. Theoretically, the substitution of the model parameters into
Eq. (10.13) should give a good estimation on the measurement data for the force curves. It
is important to note that the 750 mm/min indentation speed was approximated as a step-
input, therefore, a minor compensation of the previously obtained mechanical parameters
would still be needed. However, the constant compression rate indentation test results
showed that the qualitative behavior of the analytical response curve largely differs from
the measured response curve. Therefore, the validity of the linear Wiechert model in this
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FIGURE 10.7 Force response curves for constant compression rate indentation tests at 20 mm/min.

K31890_Bookindb 156 @ 15-02-2019 16:16:45



®

The Other End of Human-Robot Interaction m 157

1.2 T 1 T T 1 T T |
Specimen A :
Specimen B i : i i
1H —— Specimen C ' : : ' ;
——— Specimen D
—— Specimen E
08 Specimen F
Average
Z o6k i S
1] . .
e
£
04
ook ... foree s . T e o
0
0 0.5 1 15 2 25 3 3.5

Indentation depth [mm]

FIGURE 10.8 Force response curves for constant compression rate indentation tests at 100 mm/min.

indentation phase is limited, while from the haptics application point of view, it is more
relevant to have a good soft tissue model during constant compression rate indentation.
The estimated response curves and the average measurement data for the constant com-
pression rate of 100 mm/min are shown in Figure 10.9. The best fitting curve derived by
the MATLAB® cftool toolbox, assuming positive mechanical parameter values, is also dis-
played in Figure 10.9.

The measurement data and the considerable deviation from the estimated force response
implies that the reaction force during constant compression rate indentation represents pro-
gressive stiffness characteristics, contrary to the previously assumed linear one. The phe-
nomenon is a direct consequence of the complex biomechanical structure of the liver tissue,
which cannot be observed during step-response relaxation tests. There is a need for the exten-
sion of the model, keeping it as simple as possible. A possible way for addressing progressing
stiffness characteristics is to introduce nonlinearities through the spring elements. A model
as such, with some basic restrictions is introduced, based on several practical considerations:

ki(x) 2 0, (10.14)
dki(x) o, (10.15)
dx

for all x>0 and i=1,2,3. This implies that both the stiffness values and their derivatives
with respect to the indentation depth must be nonnegative. The proposed nonlinear stiff-
ness function is the following:

ki(x)=Ke"’ (10.16)
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FIGURE 10.9 Verification results of the linear Wiechert model at the compression rate of 100 mm/
min. The blue curve shows the predicted force response from the parameter data acquired from
relaxation tests, while the measured force response is represented by the black curve. The green
curve corresponds to the best fit using reasonable mechanical parameters, clearly indicating that
the model is not capable of predicting the reaction force in the case of constant compression rates.

for j=1,2,3, where K; and :’c}f are nonnegative constants. In the proposed model, all of the
three spring elements have the same exponential, nonlinear behavior. Damping elements
remain linear. This representation introduces a total of eight mechanical parameters, cre-
ating an off-the-shelf model that could be used both in compression and relaxation phases.

Summarizing the findings, the experimental data indicates that the force response is a
convex curve in the case of constant compression rate indentation. Figure 10.9 shows that
because of the nature of Eq. (10.13), the linear Wiechert model would always estimate a
concave force response curve. The proposed nonlinear Wiechert model addresses this issue
by introducing progressive, exponential spring element stiffness, which, logically, would
lead to a better fit with the experimental data.

10.6.4 The Proposed Nonlinear Mass—Spring—Damper Model

The nonlinear formulation of the proposed soft tissue model does not allow a closed-form
analytical expression for the force response. Therefore, instead of applying the MATLAB®
cftool toolbox, the fminsearch optimization function was used to find the optimal set of
tissue parameters [84]. The parameter values and the combined root mean square error
results for fitting the experimental data are shown in Table 10.1. The curve fitting proce-
dure was carried out simultaneously on both datasets of 20 mm/min and 750 mm/min
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responses, while the combined error values were calculated by summing up the individual
root mean square error (RMSE) for each curve, defining the cost function for fminsearch.
The estimated force responses, utilizing the parameters from Table 10.1, are shown in
Figures 10.10 and 10.11.

Independent parameter verification was carried out by simulating the force response
during the constant compression indentation rate of 100 mm/s. During the simulation, the
following set of differential equations was solved:

Xy = v(t),

Ky (xg=p)
3

i = blKI(xo —x,)e (10.17)

1

. 1
x, = —K,(xy—x;)e

b,

Ky (xg=3)
3

where v(f) is the surface deformation rate, x, denotes the position of an arbitrary point at
the surface, while x; and x, represent two virtual points, connecting k,—b, and k,-b, ele-
ments, respectively, as shown in Figure 10.12. The system output is the reaction force, F(t),

calculated by:
E(t)= Koxoe™™ + K;(x, —xl)exl(xﬂ-xl) + Ky (% —x; )eKZ[XU-KZ]- (10.18)
Linear model
0.6 - Nonlinear model [. .. ... ... ... ... . ... .. ... . .. ... . ]
*  Experimental data : : Z *

Force [N]

Time [s]

FIGURE 10.10  Force response estimation curves, utilizing the parameter sets from Table 10.1 at a
constant compression rate of 20 mm/s.
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FIGURE 10.11  Force response estimation curves, utilizing the parameter sets from Table 10.1, in
the case of a step-like input, focusing on stress relaxation data.

FIGURE 10.12  The proposed nonlinear soft tissue model, with the indication of the virtual mass points.

10.7 RESULTS

Figure 10.13 shows how the simulation results are mapped on the measurement data. The
average RMSE was calculated separately with respect to each of the specimens, resulting
with &g, =0.1748 [N]. This proves that the model represents the tissue behavior under the
given manipulation tasks very well. The simulated curve yielded a somewhat lower reac-
tion force value than those of the experimentally obtained, which is an expected behavior.
During the parameter estimation, an ideal step-response curve was used as an input func-
tion in the simulation, while, during the indentation tests, the maximum indentation speed
was 750 mm/min. As a consequence, the lower-than-desired indentation speed resulted in
lower stiffness values for the spring elements, partly due to the rapid relaxation during the
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FIGURE 10.13 Force response curves for constant compression rate indentation tests at 100 mm/
min, showing the simulated response of the nonlinear model using the parameters listed in Table 10.1.

compression phase. The effect can be observed in both Figure 10.10 and Figure 10.13. This
does not affect the validity of the model significantly, as the qualitative behavior is still
satisfying in all the simulated cases.

10.7.1 Model Verification Methods

The verification of the approach was extended to the scenario of nonuniform surface
deformation, utilizing the basic concept shown in Figure 10.2. Additional experimen-
tal data was collected from indentation tests, where 3 specimens with the dimensions of
25%25x%200 mm from the same beef liver were palpated with a sharp instrument, taking
special care not to physically damage the tissue surface. Constant rate indentations were
carried out at four different indentation rates (5 mm/s, 10 mm/s, 20 mm/s, and 40 mm/s)
at different points of the surface of each specimen, reaching 6 mm of indentation depth.
The indenter used for the experiments was a 3D-printed piece that was mounted on the
flat instrument used in the experiments for the uniform deformation. At the tip, the
indenter had a bevel angle of 30° and its length was 30 mm. It was assumed that the
indenter created a line-like deformation input on the surface of the specimens, perpen-
dicular to their longest dimensions. The schematic figure of the nonuniform indentation
is shown in Figure 10.14.

A few assumptions have been made prior to the verification of the estimation of the
reaction force:

« the surface deformation shape is approximated as a quadratic function and is uni-
form along the width of the specimen
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« it is assumed that the indentation only affects the liver structure in a certain p dis-
tance from the indentation point

+ onlyuniaxial deformation is considered, therefore, all nonvertical forces are neglected
in the calculations

The reaction force was assumed to be the sum of the reaction of infinitely small elements
over the tissue surface:

F(t)= J.J.f(y,z,r)dydz, (10.19)
»e

where f(y,z,t) is the force response of a single infinitely small element at the surface point
()»2) at a given time £. f(y,z,t) can be calculated by solving Eq. (10.18) for each surface ele-
ment using the unique deformation rate v, (f) of the element and utilizing specific stiffness
and damping values shown in Table 10.2. These specific values were obtained by normal-
izing the appropriate parameters to the surface size of 1 m?.

The surface of the tissue was discretized using square-shaped cells A;= A, . with the
edge length of 0.1 mm. The deformation rate profiles for each element, v,(f), were obtained
from visual recordings. The indentation tests were recorded by a conventional video cam-
era, fixed along the z-axis. The dislocation of seven surface points was tracked by analyz-
ing 12 video files frame-by-frame at time intervals of 1 s. The resolution of the picture was
1980 x 1980 pixels, the recordings were taken at 25 frames per second. An average deforma-
tion profile was calculated by processing the data manually. It was found that a quadratic
function was a good approximation for the final deformation surface (after reaching the
x,=6 mm indentation depth), assuming that the deformation surface is symmetrical to the
axis of indentation. Doming effects were neglected during the indentation, as these effects
are more relevant at the regions far from the indentation point. Due to the progressive
spring characteristics of the model, these regions contribute very little to the overall force

NON-UNIFORM DEFORMATION INPUT |} y

— SHARP TOOL x ‘

WIECHERT BODIES

FIGURE 10.14 'The schematic figure of the nonuniform indentation tests.

TABLE 10.2  Specific Parameter Values for the Use of Nonuniform Surface Deformation Model Verification

KiINim*]  Ki[N/m’]  KiINi®) by [Nsim?) b3 [Ns/m3) K, [m1] K 1]k, [m]
5075 1095 255 127-10° 1.1-10° 909.9 1522 81.189
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response. With the assumptions above, the deformation rate profile v (f) can be obtained at
each surface point A, provided by the following equation:

v(y,t)= ;%(I y|-p), (10.20)

indicating that in the case of constant indentation rate, each surface point is moving at a
constant speed. Eq. (10.18) was solved for each element and the force response was obtained
and summed using the velocity profiles according to Eq. (10.20).

10.7.2 Model Verification Results

The estimated force response and the results of the simulation for the third specimen at
10 mm/min indentation speed are shown in Figure 10.15. Calculations were carried out
on an Intel Core i5-3337U CPU with 8 GB RAM, the simulation time varied between 0.5
and 1.5 s, depending on the indentation speed, and thus, the length of the experiment.
Based on the results and the low RMSE values, it can be concluded that the method can be
used in applications for real-time force estimation. As shown in Figure 10.15, the experi-
mentally obtained force response curves initially follow the simulated curve reasonably
well, both qualitatively and quantitatively (region A). At the indentation depth of 4 mm,
the slope of the experimental curves increases rapidly, which is assumed to be due to
the tension forces arising in the normal direction with respect to the indentation axis
(region B). This is an expected behavior, indicating that at higher deformation levels, the 1
DoF approach of the problem should be handled with caution. The RMSE values for each
verification case were computed, with the results varying between &g,,¢; ... =1.384 N and
ErmsE.max = 2-821 N. The proposed soft tissue model can also be extended to more complex

2r : ‘ = Estimated response ]"
151
z
g Ir
S
=
0.5
O 1 1 1 1 1
0 1 2 3 4 5 6

Indentation depth [mm)]
FIGURE 10.15 Measurement results and estimated force response for the case of 10 mm/min

indentation for nonuniform surface deformation. The model fits the experimental data very well in
region A, while in region B, this approach should be used with care.
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surface deformation functions. Given that the boundary conditions are well-defined, one
would find finite element modeling methods a useful tool for determining the surface
deformation shape function [12].

10.8 USABILITY OF THE PROPOSED MODEL

The model proposed in this chapter can be integrated in a control scheme and the corre-
sponding control design methodology, presented by Takacs et al. in [85], regulates interac-
tion force during autonomous manipulation of soft biological tissues. This approach gives
an extensive application example for utilizing recent results of polytopic model-based con-
trol through the framework of Tensor Product Model Transformation [86]. Control of the
reaction force during robotic interaction with soft tissues, for example, grasp-hold-release
cycles, still remains an actively researched topic. Since biological tissues typically have
highly nonlinear dynamic behavior (progressive stiffness characteristics, stress relaxation,
etc.), time invariant linear controllers cannot provide ideal performance across the whole
operation domain.

Based on the presented tissue model, parameter-dependent error dynamics can be uti-
lized and system reformulation can be carried out in order to avoid the error rendered by
the slow dynamics of one state variable [87]. Reformulating the system allows concentrat-
ing the 8-parameter dependency into a single parameter for a given application domain,
constructing a feed forward term for the equilibrial input. The formulation opens up new
possibilities in state feedback controller design, handling the unmodeled dynamics and
further disturbances. Since the nonlinear model includes state variables that cannot be
measured in the real process, the proposed tissue model can be also used as reference
tissue model. This allows a linear matrix inequality (LMI)-based synthesis providing
the variable gains as parameter dependent polytopic tensor product (TP) functions. The
implementation of the proposed method into supervised telemanipulation/telesurgical
equipment enhances the performance of these systems, allowing haptic sensing to the
operator.

Along with force control, the problem of haptic feedback in telesurgical systems remains
an open challenge in the related fields of research. Current surgical teleoperation sys-
tems lack any haptic feedback capabilities, limiting their usability in everyday practice.
Furthermore, by allowing haptic feedback from manipulated real tissue, functionality can
be extended to surgical simulation using virtual tissue models created by the proposed soft
tissue modeling method.

Results of our usability study showed that the proposed nonlinear tissue model mim-
ics the mechanical behavior of the ex-vivo tissue very well both from the qualitative and
quantitative point of view. This allows the integration of the model into virtual tissue mod-
els used in surgical simulators—virtual environments providing physical interaction with
the human operator through the haptic interface—where it is critical to have a realistic
haptic sensation reflected to the human operator when manipulating the tissues. This way,
the quality of HRI during surgical procedures can be improved, while accuracy, stability,
and thus, safety, can be increased during procedures, as shown in other parallel studies as
well [88]. The study also showed that using a haptic interface made it hard to distinguish
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between artificial silicone tissues and real tissues during teleoperation, indicating that
by creating a silicone sample according to the guidelines presented in this work, surgi-
cal training can be accelerated and enhanced by artificial tissue phantoms, yet providing
realistic haptic sensation to the trainees, emphasizing the importance of introducing the
concept of HRI in early medical and surgical education.

10.9 DISCUSSION

The importance of HRI in modern surgical systems is growing. In order to achieve a stable
and reliable teleoperation in today’s intervention systems, it is crucial to understand the
mechanical behavior of manipulated tissues. Creating models for tool-tissue interaction
and soft tissues can also aid model-based control methods. There is an extensive literature
on various soft tissue models, however, the verification of heuristic models is mostly lim-
ited to stress relaxation tests. While the linear forms of these models are very popular in
tissue behavior investigation, their practical usability is limited in general manipulation
scenarios. The proposed model addressed this issue by accounting for the progressive stift-
ness characteristics of soft tissues, while a verification methodology was proposed using
uniaxial compression tests, allowing its integration into robot-assisted surgical systems.
It is important to note that lateral tension forces and their effect are not modeled in this
approach, however, a quantitative representation of tissue behavior is still possible in cases
of relatively small deformations. A reliable estimation of the reaction forces during telesur-
gical manipulation and the possibility of haptic feedback based on this model can increase
the performance, accuracy, and safety of these procedures, therefore, current results open
up new possibilities to a generic, uniform representation of soft tissues and artificial tissue
samples, leading to more sophisticated tool-tissue interaction models representing a fine
example of HRI in the medical field.
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