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Abstract. In recent years the application of Life Cycle Assessment (LCA) for assessing and 

improving the environmental performance of buildings has increased. At the same time, the 

automated optimization of building designs is gaining attraction for both design and research 

purposes. In this regard, a number of issues persist when aiming to optimize building's 

environmental impacts along the design process. Firstly, as LCA applies a life cycle perspective, 

many aspects have to be considered (e.g. energy demand in operation as well as consumption of 

resources and energy for production and end of life treatment) and a variety of specific 

calculations is needed (e.g. building energy performance simulation, material quantity take-off). 

Secondly, sophisticated software packages are available and being used for each of these 

calculations (e.g. software for building modelling, dynamic energy simulation, quantity 

surveying). Though many of these software packages are currently standalone applications that 

rely on human interaction, there is an increasing trend to provide an application programming 

interface (API) that enables customization and automation. Thirdly, the mentioned processes and 

calculations are influencing each other in various ways and several scenarios have to be assessed. 

Thus, a comprehensive and modular approach is required that promotes interconnectivity of the 

different software solutions and automation of the assessment. In this paper we propose a 

modular cross-platform framework for LCA of buildings aiming to support flexibility and 

scalability of building LCA. We present a conceptual framework, example data exchange 

requirements and highlight potential implementation strategies. 

1 Introduction 
The building and construction sector is related to around 40% of global primary energy consumption as 

well as a similar magnitude of global greenhouse gas (GHG) emissions and waste produced. Assessing 

and reducing the energy consumption, GHG emissions and other related environmental impacts across 

the building life cycle – i.e. from material production and construction, to building operation, incl. 

maintenance and replacement, down to the final processing at the end of life of buildings – has thus 

become an important point on the global agenda. Most measures in recent years have been focusing on 

increasing the energy efficiency of building operation in order to reduce energy consumption and the 

related GHG emissions. However, in recent years, the importance of assessing and optimizing the 

environmental performance across the building life cycle is becoming evident. In order to achieve a 
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science-based quantification of environmental impacts of processes and products, the method of Life 

Cycle Assessment (LCA) has been developed and is increasingly applied. However, its application to 

buildings is still hindered by several challenges, e.g. compilation and processing of extensive inventories 

of the complex product system ‘building’, mapping of inventories with related data from LCA databases, 

as well as the handling of trade-offs between embodied and operational impacts, to name just a few. In 

recent years, the application of Building Information Modelling (BIM) has gained interest, hoping to 

increase the applicability of LCA by managing the related data via a digital building data model. This 

integration of LCA into BIM has since been demonstrated in several papers with different maturity. In 

the following we give a brief overview into the state of play based on a literature review. 

1.1 Literature review 
The application of LCA for buildings’ environmental assessment has been of increasing interest for 

more than 5 years in the literature. However most of the papers were focusing on the applicability of 
BIM for building LCA [1] or the extension of BIM [2] to include environmental data. Soust-Verdaguer 

and colleagues [3] evaluated the limitations of BIM-based LCA in a comprehensive review. They 

identified three levels of integration, from which only the third level includes automated data exchange. 

It is also recognized that this is not the current practice yet. On the other hand Hollberg and Ruth [4] 

applied a different approach focusing on the parametric definition and optimization of the model instead 

of starting from a predefined BIM geometry model. They emphasized the advantages of a parametric 

model in optimization processes and in early design stages. Other studies were focusing on the data 

management to bridge the gap between the input requirements of an LCA and the data availability in 

BIM. Cavalliere et al. [5] defined the minimum requirements to include environmental data in BIM 

models. They developed an “architecture of variables” so that the various parameters can be included 

depending on the life cycle stage and the available data. Tecchio et al. [6] on the other hand described a 

hierarchic decomposition structure for building model data and proposed a method to conduct LCA even 

if the data availability is low and the information is underspecified. Further studies applied LCA on case 

studies [7]–[9], most of them facilitated some features of BIM (e.g. extract material quantities, 

visualization of 3D building model, etc.), but they either use some self-developed tools (e.g. Excel 

spreadsheet) [9] or apply commercial plug-ins [8] to evaluate the environmental impacts. Both 

approaches have their limitations that is discussed later in this paper. Some papers were focusing on the 

evaluation of LCA results through different visualization techniques by using the capabilities of a 

complex 3D building model [10]–[12]. The extended integration of LCA into the design practice [13] 

and into certification systems [14] is also in focus of recent research. 

1.2 Analysis of existing practice 

Based on the literature review, there has been increasing interest in the last few years focusing on the 

application of LCA in building design practice. However, no common practice or exact specification 

has been developed yet that facilitates the implementation of different software independent from the 

used methodology. There is an increasing number of existing software tools, and each of them is based 
on the own considerations of the developer team. In this research, six experts from different countries 

have been interviewed about their practice in the application of LCA for buildings. The detailed 

assessment of the interviews is carried out in the framework of the IEA EBC Annex 72 [15], and is out 

of scope of this paper, but the most important findings are summarized in the following. 

There are two major different approaches to achieve the integration of LCA into design practice. The 

first one has evolved from the traditional practice of design that is based on human interaction between 

stakeholders supported by CAD drawings and text documents (legacy method). Throughout the years, 

usually import and export possibilities have been developed to speed up manual work, or automation 

facilitates the fast processing of the input data. This approach has the advantage that full control over 

the calculations is in hand of the expert. The other approach is the extension of BIM solutions to include 
LCA in the workflow. This is a more straightforward solution to support information exchange between 
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stakeholders, but on the other hand the exact specification of the calculations is usually out of the hand 

of the LCA expert if a deep integration is achieved. 

Based on the experts’ opinion the following major requirements can be expressed against a platform 

for building LCA: Transparency, that covers both the background data that the assessment is working 

with (original source, presumptions, uncertainties) as well as the calculation methodology (bill-of-

quantities, replacement, energy demand, etc.). Interchangeability, that allows the integration of external 

solutions such as BIM, and finally automation, so that the assessment does not need too much manual 

work, and as a consequence it might be accessible for a wider audience. 

1.3 Scope of this paper 

There is a high need for the integration of Life Cycle Assessment into design practice [13]. However, 
there are some challenges that need to be faced before implementing such a system. First, the steps of 

the calculation need to be interchangeable, which means that alternative solutions should be easy to 
apply for each component. Second, the framework should be interoperable so that many external existing 

solutions (e.g. BIM software) can be connected to provide input to the calculations. Third, the system 

should be scalable in terms of the level of detail of the calculation. In an early design stage low 

information granularity is available, but after construction the calculation can be done based on much 

more specific information. The framework should be able to handle this problem. 

Additionally, there is high focus in current research [13] on how the calculation can be transparent 

for externals. This includes the transparency of the source data, the way how the bill of materials is 

extracted, as well as the consideration of time-specific issues of the environmental impact or the 

application of generic or manufacturer-specific construction products, etc. 

In this paper we propose a conceptual structure that supports the modular implementation and the 

interchangeability of modules as well as the other requirements stated above. First, we introduce the 

modules and the components, after that we define the conceptual exchange requirements in the system 

of the modules. The novelty of this approach is that the focus is on the application of existing solutions 

for each module instead of creating the next software from scratch. The same requires that a change of 

one component shouldn’t necessarily mean a new structure for the framework. 

 

2 Definition of the modules of the framework 
The following concept is based on own considerations concluded from the analysis of the current 

practice and the requirements of the experts. The structure of a building LCA calculation can be 

generalized to four major modules: background data, modelling, calculation and postprocessing. The 

main data flow is represented on Figure 1. In the usual case input is provided to the background data 

and to the modelling module, however, the background data is established prior to and independently 

from a single calculation (e. g. database), on the other hand the input to the modelling is given 

specifically for each calculation (usually manually). Output is provided either directly after calculation 

(e.g. raw data for further use in other systems), or after post-processing (e. g. visualization). The splitting 

of the latter two modules is necessary because both incorporate various methodological questions that 

are independent from each other (e. g. how to account for the replacement of the building elements in 

the calculation component, or how to aggregate the results into a single indicator in the postprocessing 

component). Each module consists of components that are described in the following. 
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Figure 1. Conceptual representation of the modules and the data flow in the framework 

 

2.1 Background Data module 

The first separate major module of the framework is called the background data module. This 

incorporates all the predefined information that is established independently from an assessment case. 

A component in this module is represented usually by a database (or a table in a simple case) that holds 

static data. The module includes five optional components (Figure 2). 

2.1.1 Material Environmental data 

First and most important is the database for material environmental data. There are two different options 

for this component. The first and most commonly used is a collection of environmental impact 

information for a wide variety of building materials and for multiple environmental indicators. The 

impact is quantified on a per mass/volume/piece basis and the characteristics of the impact assessment 

method (e. g. weighting) is hardcoded into the results. This is called a Life Cycle Impact Assessment 

(LCIA) database. An example for this case is an EPD database. The other option is a link to a full LCA 

database, including all unit processes and elementary flows (e. g. ecoinvent processes). In this case the 

impact assessment method can be later incorporated in the calculation and is not limited to the predefined 

impact categories. This option also facilitates the update of other related processes in the database (e. g. 

electricity mix) during calculation. 

A further issue related to this component is the inclusion of time- and geographical dependency for 

the environmental impact associated to the material. Time is an important factor since the reference 

service period of buildings is most of the times estimated to be longer than the service life of the building 

components, so replacement is necessary. But the impact associated with the production of the 

replacement component is going to happen in the future when the available technological circumstances 

may be different from the current situation. The geographical location is also an important factor since 

many construction materials are locally produced and may rely on different technology and may use 

different energy resources (e. g. electricity mix). There are two proposals to overcome this issue: the use 

of a multi-dimensional database (time and geolocation as the second and third dimension), or the use of 
an adaptive database, where the environmental impact can be recalculated based on the time and location 

variables. 

2.1.2 Material life cycle data 

The second component of this module hold information on the life cycle properties of the materials that 

are independent from the environmental impact. The most important property is the service life of the 

materials, but other life cycle related data could be included such as transport and disposal scenario as 

well. 
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Figure 2. Visual representation of the framework structure and components 

2.1.3 Material physical data 
The third component incorporates all physical data related to the materials such as density, thermal 

conductivity () or specific heat capacity. Depending on the type of energy and building physics 

calculation, the entries can range from a single number to complex temperature- and humidity-dependent 

functions. 

2.1.4 Building element and Building construction data 
The last two components facilitate the use of the system in early design stages and for decision support 

[10]. In this case the environmental impact is associated to a construction (assembly of building 

materials, e. g. masonry structure) or to a building element (multi-layered construction, e. g. wall). The 

entries in this database can be established prior to the modelling of a building based on industry practice 

and existing solutions with help of the Material Environmental Database component. 

2.2 Modelling module 

The second major module is called the Modelling. This incorporates all actions that aim to establish a 

complete building model that is further used in the calculation module. The granularity of the model can 

range from the single definition of surface areas (without explicit geometry) and construction assemblies 

to the parametrically defined full model including geometry and HVAC systems. At this point many 
external applications can provide an input such as BIM capable systems. There are four major modelling 

components described in the following. 
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2.2.1 Geometry modelling 

This component provides the geometrical information of the model. In a simplified case, the geometry 

can be defined implicitly by determining surface areas for different types of building surfaces. In a more 

favourable case, the geometry is defined explicitly in a 3D space. This option supports the 3D 

representation of the model that can be further used for different LCA visualization options. A third 

option is the parametrical definition of the building geometry which further includes the optimization 

possibility. 

We can distinguish between two different options for the structure of the geometrical model. The 

first is based on the practice of energy models, which is usually a surface model divided into thermal 

zones. The second approach is the exact geometrical modelling of the building elements which is closer 

to the BIM practice. The advantage of the former over the latter one is the direct input to the energy 

calculation, but on the other hand there are many simplifications in terms of the bill of quantities 

(described later). The inverse is true for the “BIM” type of model. 

2.2.2 Assemblies 

The “assemblies” component describes all composite structures used in the building including the 

inhomogeneous materials (e.g. masonry made from brick and mortar) as well as the layered 

constructions (e.g. wall structure). As a further extension, joints can be defined at this point which 

represent the connection between constructions, and additionally can include geometrical properties too. 

2.2.3 HVAC 

The last two components of this module are mostly used if an energy calculation is part of the 

assessment. The “HVAC” component is used to describe technical systems (heating, ventilation, air 

conditioning, etc.) installed in the building. The level of specification can range from a single general 

system (e. g. residential gas heating), to very detailed model including all pumps and pipes. 

2.2.4 Usage 
The last component of this module includes all user-specific information about the building such as 

occupancy schedules, door and window opening schedules, temperature setpoints, etc. (depending on 

the type of energy calculation) as well as life cycle related usage information such as renovation cycle, 

expected type of usage or expected lifetime of the building. 

In most of the cases, all the information that is added to the calculation system in the modelling 

module can be described in a BIM model, however further attention should be paid to the exchange 

requirements between the database module as well as with the calculation module, an example is 

provided in the last chapter. 

2.3 Calculation module 

The calculation module provides the heart of the framework. This module is intended to perform all 

transformations and evaluations that provide all information which is not included explicitly in the 

model. The module includes three components described as follows. 

2.3.1 Quantity take-off 
For a building life cycle assessment, the amount of materials used in the building needs to be quantified 

in order to calculate the embodied impact as well as other related impacts (transport or disposal). 

Therefore, this component takes the model of the building as input and provides the bill of quantities 

(list of materials with amounts) for which the environmental impact can be assigned to. 

The required calculations are highly dependent on the type of the model. For example, for the 

“surface” type of model the volume of material used at the joints needs to be added/subtracted depending 

on the reference line of the surface in the wall construction (innermost/outermost surface). 

Inhomogeneous constructions (e.g. wooden roof systems) serve as another good example, as the profile 
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used in the construction may be described indirectly (e.g. beam size and axis distance) without explicit 

geometry. 

The type of output can depend on the purpose and type of the result evaluation. For a simple 

calculation the list of all materials may be sufficient, but if the assessment aims to locate the surface of 

the model with the highest impact, the provided amounts need to include a placeholder (where it is 

located in the building). 

2.3.2 Energy calculations 

The highest impact related to the operational phase of the building is usually caused by the operational 

energy use. To include this in the assessment, an energy demand calculation needs to be done. The type 

of calculation can range from a simple seasonal steady-state method to a very detailed energy simulation 
with an hourly resolution. The type of calculation again highly influences the required input from the 

model. This component can take further external input that may not be included in the model, for 
example weather data for the specified location of the building. 

2.3.3 LCA calculation 

This component is used to allocate the impact to the materials and energy that is used by the building 

during its life cycle. Also, other life cycle specific calculations are performed here, such as the counting 

of replacement of the building components as well as the calculation of transport and disposal scenarios 

for each material. The required output of this component depends on the type of applied postprocessing. 

This component can include methodological options, for example static/dynamic LCA calculation or 

localized/general evaluation. A static calculation means that all input data (e. g. environmental impact 

of brick production per kg) is expected to remain the same during the life cycle of the building. On the 

other hand, in a dynamic calculation the environmental impacts of the unit products assumed to change 

over time (e. g. because of the change in the electricity mix), and therefore they need to be updated 

during calculation. Depending on the available information, the localization of the building may also 

influence the results of the assessment (through transport distances and available manufacturing 

technology). 

2.4 Post-processing module 
The structure of the framework implies that all manipulation of the raw output of the calculation module 

is processed in the postprocessing module. This module aims to provide a range of options to 

communicate and interpret the results of the assessment. In a simple case the output can be a simple 

aggregated number based on a corresponding environmental impact indicator. In a more detailed case 

further visualizations can be performed (in graphs or on the 3D model of the building), examples are 

available in the literature [12], [16]–[18]. In some cases (e. g. certification) a full report needs to be 

created based on the results of the calculation, which can be done with a designated component. These 

three components cover a good range of possible postprocessing options, but the list is not limited to 

them. 

2.5 Optimization 

In the favourable case of an automized model generation an optimization module can be introduced in 

the system. The module takes one or several well quantified outputs of the postprocessing module, they 

serve as objective(s). It modifies the designated variables of the modelling module which act as 

parameters in the optimization. This way any optimization algorithm can be implemented in the 

workflow that is independent from the type of problem (e.g. evolutionary algorithms or other derivate-

free algorithms). This structure does not support the application of derivate-based optimization 

processes, because derivates are not available in the mathematical problem associated with building 

LCA, since many parameters are discrete and non-numeric (e.g. type of material). 

 



SUSTAINABLE BUILT ENVIRONMENT CONFERENCE 2019 (SBE19 Graz)

IOP Conf. Series: Earth and Environmental Science 323 (2019) 012103

IOP Publishing

doi:10.1088/1755-1315/323/1/012103

8

 

 

 

 

 

 

3 Example application of the framework using existing software tools 
While the aim of the previous chapter was to define the framework as general as possible, in the 

following we present a case study for the application of the concept where already available software is 

used for some modules. 

3.1 Parametric modelling with building optimization option 

The case study introduces a workflow where the focus is on the automatic model generation possibility 

(Figure 3). This means that manual input is only needed at the initial step, where the fixed parameters 

and the optimizable parameters of the model are defined. The entire framework is based on Grasshopper1 

environment. The Background Data consist of two components, a predefined custom database for 

material physical data (e.g. thermal conductivity) and lifecycle information (e.g. estimated service life) 

and an environmental database (e.g. ecoinvent) in OpenLCA2. The Modelling module is based on the 

Ladybug&Honeybee3, and only the Geometry and the Assemblies components are used. In this case, 

default values are used for the HVAC systems and for the corresponding schedules. The energy demand 

is calculated with EnergyPlus4 (through Honeybee). The results are visualized with Rhino3D5 (the 

modelling tool that the Grasshopper environment is based on). Finally, the optimization is carried out 

with the Octopus6 plug-in. In this case only three other custom components need to be created (e.g. using 

the python component of Grasshopper), the quantity extraction based on the model, the calculation of 

the environmental impact based on the inventory created by the previous component and the 

quantification of the selected results to provide numerical input to the optimization module. 

 
Figure 3. example application, setup of the framework and external software used. 

                                                      
1 https://www.grasshopper3d.com/ 
2 http://www.openlca.org/ 
3 https://www.ladybug.tools/honeybee.html 
4 https://energyplus.net/ 
5 https://www.rhino3d.com/ 
6 https://www.food4rhino.com/app/octopus 

https://www.grasshopper3d.com/
http://www.openlca.org/
https://www.ladybug.tools/honeybee.html
https://energyplus.net/
https://www.rhino3d.com/
https://www.food4rhino.com/app/octopus
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This application requires specific exchange information between the components. The modelling 

module takes additional input from the material database and extends the generated idf model (the 

standard input file of Energy Plus) with additional information needed for LCA (service lives, transport 

and disposal scenarios, and a reference ID to the environmental database). The output of the energy 

demand component is the same building model along with the calculated energy demand. The quantity 

take-off component uses the same model to create the inventory of the building (including the embodied 

materials and the operational energy use). The environmental impact is associated with the elements of 

the inventory based on the database ID. The impact of the inventory elements is provided by OpenLCA. 

Finally, the detailed results and the building model are passed to the visualization component to create 

views of the actual solution. In this case the quantification component is only used to extract (or 

aggregate) selected results to provide a numerical input (as objective) for the optimization component. 

This optimizes numeric parameters, which are translated into modelling parameters (e.g. different 

options for insulation material) and the calculation cycle is repeated until a specific criterium is met by 

the optimization component. 

 

4 Conclusions 
In this paper we presented a conceptual structure of a modular cross-platform framework for building 

Life Cycle Assessment. This approach aims to support interchangeability and interconnectivity of the 

different available software tools that are used for the specific aspects of LCA. We defined the 

conceptual workflow and illustrated the exchange strategies between the modules on a case study 

application. This also showed that for most of the modules existing software can be used by establishing 

the interface between them. High-level programming environments (such as Grasshopper or Dynamo) 

make the development of such interfaces easy and fast. During the development, the modules can be 

created and updated step-by-step so that the first simple version can be utilized from the very beginning. 

Also, fundamentally different components can be developed side-by-side (e.g. for simulation or steady-

state methods for energy calculation) and they can be compared based on the same case studies. This 

structure also supports the parallelization of calculations that is very useful for the case of optimization 

especially if the calculations need high computational capacity. 

The structure also aims to provide options for different levels of calculation, so that the framework 

can be utilized already in an early design stage with low information availability as well as at a late stage 

when detailed calculations can be done. 
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