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Abstract

Wheat is one of the most important cereals, whose growth and development is strongly lim-

ited by drought. This study investigated the physiological and metabolic response of six win-

ter wheat cultivars to drought with the emphasis on the induction of dominant metabolites

affected by the treatment and genotypes or both. The plants were exposed to a moderate

(non-lethal) drought stress, which was induced by withholding watering for six days under

controlled greenhouse conditions. A decline in CO2 assimilation (Pn) and transpiration rate,

stomata closure, a decrease in relative water content (RWC) and increase of malondialde-

hyde content were observed in drought-treated plants of all cultivars. These changes were

most pronounced in Ellvis, while Soissons was able to retain the higher RWC and Pn.

Among the studied metabolites, sugars (sucrose, glucose, fructose, several disaccharides),

organic acids (malic acid, oxalic acids), amino acids (proline, threonine, gamma-aminobu-

tyric acid (GABA), glutamine) and sugar alcohols such as myo-inositol accumulated to

higher levels in the plants exposed to drought stress in comparison with the control. The

accumulation of several metabolites in response to drought differed between the genotypes.

Drought induced the production of sucrose, malic acid and oxalic acid, unknown organic

acid 1, unknown disaccharide 1, 2 and 3, GABA, L-threonine, glutamic acid in four (Sois-

sons, Žitarka, Antonija or Toborzó) out of six genotypes. In addition, Soissons, which was

the most drought tolerant genotype, accumulated the highest amount of unknown disaccha-

ride 5, galactonic and phosphoric acids. The two most drought sensitive cultivars, Srpanjka

and Ellvis, demonstrated different metabolic adjustment in response to the stress treatment.

Srpanjka responded to drought by increasing the amount of glucose and fructose originated

from hydrolyses of sucrose and accumulating unidentified sugar alcohols 1 and 2. In Ellvis,

drought caused inhibition of photosynthetic carbon metabolism, as evidence by the

decreased Pn, gs, RWC and accumulation levels of sugar metabolites (sucrose, glucose

and fructose). The results revealed the differences in metabolic response to drought among

the genotypes, which drew attention on metabolites related with general response and on

those metabolites which are part of specific response that may play an important role in

drought tolerance.
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Introduction

Wheat (Triticum aestivum L.) is one of the most important cereals used in daily human con-

sumption as a main source of proteins and carbohydrates. Its growth, development and yield

are strongly limited by drought that causes huge economic losses worldwide, even in the non-

wheat producing areas like South and Central Asia region [1, 2]. It is estimated that between

2005 and 2015 the drought caused 30% crop damage in developing countries of Latin America,

Asia, Africa and Pacific Islands, which amounted to over 29 billions of dollars in loss making

drought as the most expensive natural disaster [3]. Since drought periods are predicted to

become more frequent and severe due to accelerated climate changes, the studies on wheat

response to drought become more and more acute [4].

Drought occurs when available water is not sufficient for optimal growth and development

of plants [5]. Plants sense drought when water provision of the root system becomes restricted

or when the transpiration rate becomes so intense that it causes imbalance between water intake

and water loss [6]. At the beginning of the drought, plants usually close the stomata, which limit

the carbon uptake of the leaves, with concomitant decrease of CO2 assimilation rate (Pn) and

intercellular CO2 level [6, 7]. Besides the stomatal closure–especially during long, severe

drought–CO2 assimilation is also inhibited by several non-stomatal events, which results in a

decrease of ATP production [8] and several metabolic failures [6, 7, 9]. The drought-induced

decline of photosynthesis relates to the changes of plant metabolic responses including sugars

and starch production, to the accumulation of compatible osmolites and activation of abscisic

acid (ABA) dependent and independent regulatory pathways [10, 11, 12]. In addition, the inhi-

bition of the photosynthetic CO2 assimilation results in an imbalance between light absorption

and its usage, thus leading to the development of oxidative stress conditions [13]. Accumulation

of reactive oxygen species (ROS) also affect the metabolic response of plants.

The responses of many plant species to drought stress have been extensively studied and

several primary and secondary metabolites have been identified that take part in drought stress

response [14, 15, 16]. Proline (Pro) and quaternary ammonium compound glycine-betaine (GB)

are often accumulated during drought [17]. They have osmoprotective role in the maintenance of

cell turgidity. While reducing the osmotic potential of the cells, these compounds both retain the

cellular water content and stabilize the cellular structures by forming hydration shell around the

proteins [18, 19]. Pro and GB also have a protective role against ROS, provide stability to the mac-

romolecules (such as lipids, nucleic acids, proteins) and may act as sources of nitrogen and carbon

under drought [20, 21]. Other amino acids, like serine or GABA are also reported to accumulate

under drought stress [22, 23]. Drought can also trigger the accumulation of soluble sugars (both

mono- and disaccharides), sugar alcohols, such as fructans, myo-inositol and mannitol [24, 25].

They preserve the structure of functional and structural proteins of the cell in a manner that pro-

mote the stabilization of the subunits against the water loss [26, 27]. Moreover, several osmolites

including sucrose, glucose and fructose can serve as metabolic precursors in different biosynthetic

pathways and together with GABA they can act as signalling molecules that control the expression

of several genes involved in different metabolic pathways [28–30].

Metabolic adjustment in response to drought is a dynamic and multifaceted process which

depends on the strength and duration of drought and also on the sensitivity of cultivars. Tradi-

tional metabolic studies focused on single metabolites or groups of metabolites. Today, the

modern analytical techniques such as gas chromatography mass spectrometry (GC-MS) pro-

vide powerful tools for tracking the metabolomics alternations occurring in plants during

water deficit. The GC-MS analyses allow two different approaches for identification of metab-

olite: non-targeted and targeted. The non-targeted metabolic analyses provide a comprehen-

sive insight in alternations of all the measurable metabolites in the samples. It is not as
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sensitive as the selective, targeted metabolomics that focuses on some special metabolite

groups [31], but it enables to demonstrate the complexity of metabolic adjustment to drought

and reveal the different responses of genotypes to drought [32, 33].

In the present study, the drought-induced changes in leaf photosynthesis, loss of water,

osmotic potential and metabolic adjustment were compared in six winter wheat genotypes.

Our aim was to present differences in the metabolites that play important role in metabolic

and physiological responses to drought. Particular question was to find which physiological

and metabolic changes were general in these genotypes and which ones depends on the geno-

type. Analyses of metabolite pools found in leaf saps can help to understand the drought toler-

ance mechanisms and selection of wheat varieties tolerant to drought.

Material and methods

Plant material, growth conditions and drough treatment

The experiment was carried out on six winter wheat (Triticum aestivum L.) genotypes Sois-

sons, Ellvis, Mv. Toborzó, Srpanjka, Antonija and Žitarka. The surface-sterilized seeds were

germinated on wet filter paper in Petri dishes for 3 days at room temperature, and planted into

Jiffy-7 pellets (www.jiffygroup.com). The 5-day-old seedlings were vernalized at 4˚C for 6

weeks under low photosynthetic photon flux density (PPFD) (20 μmolm-2s-1). After that,

plants were grown in 2L pots (1 plant/pot) filled with a 3:2:1 mixture of garden soil, compost

and sand in a plant growth chamber (PGV-36, Conviron, Controlled Environments Ltd., Win-

nipeg, Canada) for 4 weeks under the following day/night conditions: 16/8 h day/night photo-

period at 22/18˚C day/night temperature, 250 μmol m-2 s-1 PPFD, and 75% relative humidity

(RH). Afterwards, 20 plants of each genotype were placed in a greenhouse (Global Glasshouse

Venlo) in randomized complete block design. The growth conditions were similar for all

plants till flag leaf sheath extending stage (Z41 stage of Zadoks’s scale [34]). The average day/

night temperature were 30/22˚C and maximum light intensity was 750 μmolm-2s-1. The plants

were irrigated regularly keeping the volumetric soil moisture content (VSMC) values between

30 and 35%, where VSMC was measured by an HH2 moisture meter (Delta T device SM -100

sensor, Delta-T Devices Ltd, Cambridge, UK Delta-T Devices Ltd., Cambridge, UK).

After the plants reached the flag leaf sheath extending developmental stage (Z41 stage of

Zadoks’s scale), the pots of each genotype were divided into two sets. One set represented the

control plants and the second the drought-treated plants. Each set comprised eight to ten pots

per genotype. Drought stress was induced by withholding water and the average daily VSMC

was kept between 10 and 15% during the drought treatment. This VSMC represented a non-

lethal, moderate drought stress. It was chosen to activate the drought-induced metabolic

responses. The average VSMC values were kept continuously between 30 and 35% in case of

the control plants.

Determination of the photosynthetic activity of leaves by gas exchange

measurement

The photosynthetic activity of control and drought-treated plants were determined on intact

attached leaves after 6 days of drought treatment. The measurements were performed on five

randomly selected fully developed leaves with a Ciras 3 Portable Photosynthesis System (PP

Systems, Amesbury, MA, USA) using a narrow (1.7 cm2) leaf chamber, similarly as described

in [35]. The net photosynthetic rate (Pn), stomatal conductance (gs), transpiration rate (E) and

internal CO2 concentration (Ci) were determined at the steady state level of photosynthesis

using a CO2 level of 390 μL L-1 and light intensity of 500 μmol m-2 s-1.
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Sample collection

Leaf samples were collected from control and drought-treated plants after 6 days of treatment

for determination of relative water content (RWC) and malondialdehyde (MDA) contents of

leaves and for isolation of leaf sap. In this latter case, samples were immediately frozen in liquid

nitrogen and stored at -80˚C prior to analysis.

Determination of RWC and MDA contents of leaves

RWC content of leaves were determined in the middle part of the fully expanded leaves col-

lected from control and drought-treated plants after 6 days of treatment. Five, 2 cm long leaf

segments (app. 200 mg) were used for each sample and four biological repetitions were used

for each treatment (control and drought treatment). RWC was determined by measuring the

fresh weight (FW) of leaf segments, saturated weight (SW) after 24 h rehydration on distilled

water at 4˚C in the dark, and dry weight (DW) after oven drying for 48 h at 80˚C. The RWC

was calculated as the percentage of the amount of water in the leaf tissue at sampling to the

amount of water present at fully turgid state as described in [36].

The MDA content of samples (300 mg fresh leaves per sample) was determined as described

by Batish et al. [37] and five biological repetitions were used for the measurements.

Isolation of leaf sap and determination of osmotic potential of leaf tissue

Leaf saps were isolated for determination of the osmotic potential of leaves and the concentra-

tion of metabolites in leaf tissue. One gram of leaves was crushed in liquid nitrogen and the

cold powders were transferred into centrifuge tubes containing micro-SpinFilter (Micro-Spin-

Filter Tubes, Fisher Scientific; 0.45 μm) and centrifuged at 10 000 rpm for 10 min at 4˚C. The

leaf saps were divided to aliquots before storing them at -80˚C for different measurements. At

least 3 isolation processes were performed for each genotype and treatment.

The osmotic potential of leaf saps was determined using a freezing point osmometer

(Osmomat 030, Gonotech, Germany) and the osmotic potential (ψπ) values were calculated

according to Bajji et al. [38].

Determination of proline and glycine-betaine concentration of leaf sap

The proline and GB contents were determined from leaf saps diluted (1:17.5) with ultrapure

water. The determination of proline content was based on its reaction with ninhydrin and GB

was measured by using the periodide method according to Bates et al. [39] and Grieve and

Grattan [40], respectively.

Determination of polar metabolites from the leaf sap by GC-MS

Before the extraction of polar metabolites, 60 μl of leaf sap of each sample was diluted with

140 μl of ultrapure water. The samples were boiled and centrifuged at 10000 g for 10 min. An

aliquot of 100 μl of supernatant was completed with 6 μg ribitol (as an internal standard) and

these samples were used for the extraction.

Sample extraction and GC-MS analysis was carried out according to Schauer et al. [41] with

slight modifications as described by Juhász et al. [42]. The method is based on extraction with

methanol and water followed by separation of polar compounds by adding chloroform, and

then the methanol/water layer was evaporated under vacuum. The dried extracts were methox-

yaminated with methoxyamine hydrochloride (MEOX) in pyridine and derivatized with N-

methyl-N-(trimethylsilyl) trifluoroacetamide (MSTFA). Samples were analyzed in split mode

in a GCMS-QP2010 system (Shimadzu, Kyoto, Japan) where chromatography was carried out
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on an SLB-5ms 30m × 0,25mm × 0,25μm capillary column. Analysis conditions were the same

as described by Juhász et al. [42]. Mass spectra were recorded at 5 scans sec-1 with an m/z 45–

650 scanning range. Data analysis was carried out using Shimadzu GC-MS Solution Postrun

analysis software with searching the Wiley 9th edition mass spectral database and comparing

the analytes using the Kovats retention index (RI). For quantification, all peak areas were nor-

malized to the response of ribitol. In addition, the sugars and amino acids, myo-inositol and

some organic acids were identified and quantified based on a comparison of the retention

time and mass spectrum to an authentic standard that was analysed under identical conditions.

Where a reference material was unavailable, amounts were estimated by the use of a standard

from the same compound class having the closest tentative molecular weight. Capillary col-

umn, all chemicals and standards were purchased from Sigma-Aldrich (Darmstadt, Germany).

The method and protocol has been verified for leaf sap matrix where average RSD% for the

response of 20 analytes selected from all analyzed compound classes was less than 5% for five

technical replicates.

Statistical analyses

Eight to 10 plants of each genotype and treatments were used in the experiments. Randomized

complete block design was used both in the phytotron growth chamber and in the greenhouse

in order to minimize the differences caused by the environment. Samples were collected from

each pot and the measurements were performed in 3–5 biological replicates per genotypes and

treatments. Factorial analysis of variance (ANOVA) was conducted using STATISTICA soft-

ware package (version 13.4) for determination of the effect of genotypes (G), drought treat-

ment (T) and G × T. In addition, Tukey’s post hoc test was also used for the determination of

the statistical significant difference between the mean values. The correlation between the

measured physiological parameters and metabolites were also determined with Spearman’s

rank order correlation coefficients (R). Principal component analysis (PCA) was used to evalu-

ate and discriminate the metabolic response of different wheat genotypes subjected to drought

and well-watered conditions. The data set used for PCA consisted of 32 variables. PCA was

applied to the standardized data set and the factor loadings were done in order to estimate the

proportion of total variance with different principal components. The loadings showed corre-

lations among different principal components (PC) and measurable variables whereby high

loadings represented strong correlation (>0.75) [43].

Results

Effect of drought on RWC, photosynthetic parameters and MDA content

of leaves

The RWC contents were similar under well-watered conditions in all genotypes. Drought

stress resulted in a decrease of RWC content in most genotypes except in wheat Soissons and

Žitarka. In these genotypes the decreases were not statistically significant as compared to con-

trol plants (Fig 1). The lowest RWC content of leaves was found in Srpanjka. This genotype

showed lower ability to reserve water as compared with Žitarka and Soissons.

The drought-induced stomatal closure and inhibition of CO2 assimilation were monitored

by gas exchange measurements (Table 1). All wheat genotypes showed similar photosynthetic

properties in control plants as indicated by the similar values of CO2 assimilation rate (Pn), the

stomatal conductance (gs), transpiration rate (E), and intercellular CO2 level (Ci) among the

genotypes. These parameters decreased significantly under drought in all genotypes (Table 1),

which indicates a decrease in CO2 assimilation rate, the stomatal closure and a decrease of
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transpiration to avoid the water loss of plants. Comparing the genotypes, the most pronounced

decrease of Pn, gs and E was found in Ellvis followed by Srpanjka, while the highest values of

these parameters were detected in Soissons (Table 1).

MDA content indicates the membrane damage through lipid peroxidation. Lower MDA

content was detected in all genotypes under control conditions, while the MDA content

increased under drought stress (Fig 2). However, there was no significant difference in MDA

content among the genotypes under drought stress conditions.

Comparative statistical analyses were performed to indicate the interactions of all physiologi-

cal factors (gas exchange parameters, RWC, and MDA content). The results are presented in S1

Table. The drought stress (treatment, T) affected all parameters, while genotypic variations were

found in the drought stress response of most of the traits with the exception of Ci and MDA

content. The significant effects for G × T were noticed in the cases of RWC, Pn, gs and E.

Effect of drought on osmotic potential, proline and glycine-betaine

contents

The osmotic potential (ψπ) of leaf sap decreased under drought stress (Fig 3). The decrease was

less pronounced (appr. 30%) in genotypes Srpanjka than in Antonija, Žitarka and Ellvis, where

Fig 1. The relative water content (RWC) in wheat genotypes under control and drought conditions. Data are

means ± SD of four replicates per treatment and genotype. Different letters indicate significant differences among the

mean values at P< 0.05 using Tukey’s post hoc test.

https://doi.org/10.1371/journal.pone.0212411.g001

Table 1. The photosynthesis rate (Pn), stomatal conductance (gs), intercellular CO2 level (Ci) and transpiration rate (E) in wheat genotypes.

Pn (A) gs Ci E

Genotypes Control Drought Control Drought Control Drought Control Drought

Soissons 13.4±0.6a 8.3±0.9b 304±15A 114±13B 282±4a 238±18b 3.5±0.26a 1.3±0.10b

Žitarka 13.7±0.5a 6.0±1.2cd 297±13A 68±9C 276±3a 221±18b 3.5±0.18a 0.9±0.09c

Srpanjka 14.1±0.2a 5.5±1.0cd 291±14A 57±9CD 277±5a 229±24b 3.5±0.15a 0.6±0.11c

Antonija 13.9±0.3a 6.4±1.3c 286±13A 72±12C 274±6a 240±5b 3.4±0.11a 0.9±0.23c

Toborzó 14.3±0.4a 6.8±0.6bc 286±18A 65±15CD 281±9a 229±30b 3.4±0.27a 0.78±0.19c

Ellvis 14.4±0.4a 4.3±1.2d 295±6.2A 40±4D 275±4a 227±9b 3.5±0.15a 0.58±0.08c

Values are means ± S.D. (n = 5). Tukey’s post hoc test was used to compare the mean values of genotypes within each measured parameter. The different letters indicate

statistically significant differences at P<0.05.

https://doi.org/10.1371/journal.pone.0212411.t001
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the decrease ranged between 50 and 60%. Considering the drought-induced changes in the

osmotic potential and RWC together, it seems that the decrease of ψπ was mainly due to the

water loss of leaves in Srpanjka, Ellvis, and Antonija. No similar correlation was found between

these two parameters in Soissons and Žitarka, indicating that other factors may contribute to

the decrease of ψπ in these genotypes.

To determine which compatible solutes can be responsible for the decrease of osmotic

potential, the amount of several compatible solutes were determined from the leaf saps.

The contents of proline remarkably increased under drought stress in all genotypes as com-

pared with the corresponding controls (Fig 4A). The highest proline content was detected in

Antonija followed by Žitarka, Toborzó, Srpanjka and Soissons, while the lowest proline con-

tent was observed in Ellvis.

Fig 2. The MDA content in wheat genotypes under control and drought conditions. Values are means ± S.D.

(n = 5). Different letters indicate significant differences among the mean values of genotypes at P< 0.05 using Tukey’s

post hoc test.

https://doi.org/10.1371/journal.pone.0212411.g002

Fig 3. The osmotic potential (ψπ) of leaf saps of wheat genotypes grown under control and drought conditions.

Values are means ± S.D. (n = 3). The different letters indicate statistically significant differences among the mean

values of genotypes at P< 0.05 using Tukey’s post hoc test.

https://doi.org/10.1371/journal.pone.0212411.g003
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The increment of GB content was less intense than it was for proline; it ranged between

1.7-fold (in Srpanjka and Soissons) and 7.7-fold (in Ellvis). The highest GB content was found

in wheat Toborzó followed by Ellvis (Fig 4B).

To indicate connection between the osmotic potential and the compatible solutes, proline

and GB, analysis of variance was performed (S2 Table). Drought stress (treatment, T) and

genotype (G) had significant impact on all parameters, which can be seen through genotype

(G) and treatment (T) interactions (G × T) too suggesting similar drought response.

Effect of drought on the accumulation of other polar metabolites

The composition of polar primary metabolites was also determined from the leaf saps of the

six wheat genotypes under control and drought conditions using GC-MS analyses. In total 30

metabolites were detected from the leaf saps and 20 of them were identified. These metabolites

are distributed into 5 classes, such as sugars, sugar alcohols, organic acids, lipids and amino

acids and presented in S3 Table. To visualise the comparison of genotypes and treatments, the

Fig 4. The changes of proline (A) and glycine betaine (B) contents of leaf saps of wheat genotypes grown under

control and drought conditions. Values are means ± S.D. (n = 3). The different letters indicate statistically significant

differences among the mean values of genotypes at P< 0.05 using Tukey’s post hoc test.

https://doi.org/10.1371/journal.pone.0212411.g004
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amount of the polar primary metabolites was also presented in a heat-map (Fig 5). The results

of the comparative statistical analyses which indicated the interactions of all metabolic param-

eters (sugar components, lipids, organic acids, amino acids and sugar alcohols) are presented

in S4–S6 Tables.

Leaf saps contained sugars (such as sucrose, fructose and glucose) in the largest amount.

Regarding content, they were followed by cis-aconite acids and malic acids, the two com-

pounds of citrate cycle (TCA cycle). The amount of phosphoric acids, citric acids and several

unidentified disaccharides (1–3) ranged between 0 and 400 μg/mL, while several minor com-

pounds ranged between 0 and 50 μg/mL were also determined in the leaf saps (Fig 5).

Generally, the concentration of many polar primary metabolites significantly increased

under drought exposure in regards to control in most of the genotypes. Active metabolism

response to drought was observed for 7 sugar components (sucrose, glucose, fructose, galac-

tose and unidentified disaccharides 1, 2, 3 and 5), 2 fatty (stearic and palmitic) acids, 3 organic

acids (malic and oxalic acid, unidentified organic acid 2), 2 sugar alcohols (myo-inositol and

Fig 5. Heat map presenting the metabolite accumulation under control and drought conditions in wheat genotypes Soissons,

Žitarka, Srpanjka, Antonija, Toborzó and Ellvis. Values are means ± S.D. of three replicates per treatment and genotype. Different

colour represents different concentration of metabolites. Abbreviations in the heat map means: Sois. (Soissons), Srpa. (Srpanjka), Žit.

(Žitarka), Ant. (Antonija), Tob. (Toborzó) and Ellv. (Ellvis), respectively.

https://doi.org/10.1371/journal.pone.0212411.g005
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unidentified alcohols 3) and 3 amino acids (GABA, glutamic acid and L-threonine) (Fig 5).

The amount of 7 metabolites (ribose, galactonic acid, succinic acid, cis-aconitic acid, phospho-

ric acid and unidentified organic acids 1) remained unchanged under drought application as

compared to control. Suppressed metabolism response was found for unidentified disaccha-

rides 4 and propanoic acid under drought stress (Fig 5 and S3 Table).

Besides these general responses, these changes were not always uniform among the geno-

types. Significantly higher amount of sucrose was found in wheat Soissons, Antonija and

Žitarka than in Ellvis and Srpanjka (S3 Table) under drought stress conditions. For instance,

the values of sucrose in Antonija was 3.3 times higher than in Srpanjka, which exhibited the

lowest amount of this sugar. However, in wheat Srpanjka the low amount of sucrose was asso-

ciated with high amount of fructose and glucose. This connection was not observed in other

genotypes. The total amount of these three sugar compounds (sucrose, fructose and glucose)

was the lowest in wheat Ellvis. Drought caused accumulation of galactose in most of the geno-

types except in Soissons. The difference in galactose content was most pronounced between

Ellvis and Soissons (S3 Table). Compared with Soissons, Ellvis had 78% more galactose.

Diverse sugar metabolite pattern response of genotypes could also be observed in the unidenti-

fied disaccharides 1–3 and 5. While under control conditions, their level was low in Soissons

and Žitarka and relatively high in Srpanjka and Antonija, their amount changed inversely

under drought stress: namely, they increased significantly in Soissons and Žitarka and decrease

in Srpanjka and Antonija. These compounds slightly changed in Toborzó and Ellvis (Fig 5).

These results indicate that these disaccharides are the compounds of the same metabolic path-

ways, whose activation may differ among the genotypes. On the other hand, the six wheat

genotypes differed in sugar metabolites under optimal water conditions too. In general,

among all genotypes, Antonija and Srpanjka contained the higher amount of sucrose and all

unidentified disaccharides (1–5). Significant accumulation of disaccharides (2, 3 and 4) was

also recorded in Ellvis. Contrarily, Soissons displayed high amount of monosaccharides, glu-

cose, galactose and fructose (Fig 5).

Besides the compounds of TCA-cycle (malic, citric, succinic, oxalic acids and cis-aconitic

acids), phosphoric acids and galactonic acid (derived from galactose) were identified in the

leaf saps (Fig 5 and S3 Table). Among the genotypes, differences in organic acids were appar-

ent in the cases of citric and cis-aconitic acids under both drought and well-watered conditions

(S3 Table). The lowest amount of cis-aconitic acid was detected in Srpanjka, while the amount

of citric acid was extremely high in this genotype both under control and drought conditions.

Drought stress induced an accumulation of the malic and oxalic acids of leaf saps in four geno-

types (Soissons, Žitarka, Antonija and Toborzó), while they did not change significantly in

Srpanjka and Ellvis. As a result of the drought stress, Soissons, Žitarka, Antonija and Toborzó

accumulated significantly more unidentified organic acid 2 than Ellvis or Srpanjka (Fig 5).

According to its mass spectra and retention index (RI), this organic acid is most likely to be

maleic acid, the cis-isomer of fumaric acid.

Considering sugar alcohol metabolites, the myo-inositol concentration increased under

drought stress in most of the genotypes, providing the highest values in Antonija and lowest in

Srpanjka (Fig 5). In addition, drought-exposed plants contained higher amount of unidentified

sugar alcohol 1 (which is most likely erythritol) in Ellvis and Toborzó, sugar alcohol 2 (most

likely arabitol according to its mass spectra and RI) in the most genotypes except Soissons and

sugar alcohol 3 in Žitarka, Toborzó and Soissons (S3 Table). Unexpectedly, in Soissons lower

amount of unidentified alcohol 2 was recorded in drought treated samples than in the controls.

Elevated concentration of sugar alcohol 1 in control plants was evident in Srpanjka, which pro-

duced (from 0.8 to 1.9 times) higher sugar alcohol 1 than the others genotypes.
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Under control conditions there were no differences in the amount of free amino acids

among the various genotypes (Fig 5 and S3 Table). Drought stress induced an accumulation of

all detected amino acids, especially in GABA and L-threonine (Fig 5). The increases were

more pronounced in Soissons, Žitarka, Antonija and Toborzó than in Ellvis or Srpanjka. Thus,

significantly higher GABA, glutamic acid and L-threonine production was detected in Sois-

sons, Žitarka, Antonija and Toborzó than in Ellvis or Srpanjka. For instance, the L-threonine

level was 2 times higher in Žitarka than in Srpanjka under drought (S3 Table). The amount of

glutamic acid was also increased by the stress conditions in the four genotypes, but not in Ellvis

or Srpanjka.

The amount of free fatty acids, such as palmitic and stearic acids, also increased as a result

of drought in all genotypes. Comparing the genotypes, the amount of stearic acid was signifi-

cantly higher in Antonija, Žitarka, Toborzó and Soissons than in Srpanjka and Ellvis under

drought stress conditions, in spite of the fact that there were no differences among the geno-

types under well-watered conditions, where low amount of stearic acids was detected. Similarly

the palmitic acid was also higher in those four genotypes (Antonija, Žitarka, Toborzó and Sois-

sons) than in Srpanjka. The propanoic acid concentration declined under drought in all geno-

types, especially in Ellvis and Srpanjka.

Analysis of variance of metabolic components displayed strong interactions among treat-

ments (T) except in case of ribose, unknown disaccharide 1 (D1), cis-aconitic acid, phosphoric

acid and unidentified organic acid 1 (OA1) (S3–S6 Tables). It seemed that the amount of these

compounds was constant regardless of treatment. However, significant genotypic variation

(G) was found for most of the compounds with exception of ribose and succinic acid. Simi-

larly, considering genotype (G) × treatment (T) interaction, significances were found for most

primarily metabolites except for ribose sugar, propanoic acid and several organic acids (phos-

phoric, galactonic, cis-aconitic and succinic).

Comparative statistical analyses were also performed to reveal the relationship between the

osmotic potential and the changes of metabolites found in leaf saps (S7 Table). The osmotic

potential was correlated positively to the amount of the glucose, galactose, sucrose, disaccha-

ride 5, cis-aconite acid, malic acid, SA3, myo-inositol, the amount of glutamic acid, GABA

threonine, GB and proline contents, and also to the amount of stearic and palmitic acids. Neg-

ative correlation was found for disaccharide 4, the amount of citric and succinic acids and pro-

panoid acid, indicating that their amount decreased in parallel to the increase of osmotic

potential (S7 Table).

PCA analyses

S8 Table shows the percentage of total variance described by several principal components

(PC) and their correlation with the metabolic compounds, proline, GB and osmotic potential.

The PCA yielded the total variation of three principal components showing 78.07% of data

variation under control and drought treatments (S8 Table). The most important were two

components explaining 61% of data variance (S1 Fig). The first component (PC1) was largely

determined by high negative loadings on myo-inositol, glutamic acid, GABA, L-threonine,

stearic and palmitic acids, malic acid, sucrose, glucose, galactose, D5, GB and proline, while

propanoic acid had high positive loadings. The second component (PC2) was largely deter-

mined by high positive loadings related to cis-aconitic and phosphoric acids and OA1, respec-

tively. In the same component (PC2), strong negative loadings were recorded for fructose and

SA1. Undetermined disaccharides (D1-D4) had high negative loadings in the third component

(PC3). The score plot (Fig 6) showed four clusters. Cluster I separates control plants of six

wheat genotypes grouped together based on metabolic response, which corresponds to well-
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water conditions (described as low amount of primarly metabolites, proline and GB contents

or low Cπ values). The variation found among the genotypes was due to the different amounts

of sucrose, citric acid, unknown unidentified disaccharides (1–5) and sugar alcohols. However,

these differences were less pronounced than those found under drought stress condition,

therefore all genotypes were grouped together and separated from the drought-treated plants

(Fig 6).

Drought treated genotypes of Toborzo, Žitarka, Soissons and Antonija were grouped into a

cluster II due to similar metabolic pattern related to active metabolism pathways and osmotic

adjustment accompanied with high production of compatible sugars and sugar alcohols. Ellvis

and Srpanjka responded to drought differently. They showed similar response in OA1, L-thre-

onine, proline content and palmitic and stearic acid, while based on some differences, the two

genotypes were separated into various groups. Ellvis exhibited decreased oxalic and malic

acids content and GABA production, and higher galactose level, cis-aconitic acid and GB

amount, which classified it in cluster III. Cluster IV included Srpanjka with increased amounts

of sugars (fructose and glucose), sugar alcohol 2 (SA2) and citric acid and lower oxalic acid.

Fig 6. Principal component analysis of combined wheat genotypes data sets. Scores of the first two factors. Black-coloured letters indicate

control; red-coloured letters indicate drought. Letters in the clusters means: S (Soissons), SR (Srpanjka), Ž (Žitarka), A (Antonija), T (Toborzó)

and (Ellvis), respectively. Principle component analysis (PCA) was performed to discriminate the metabolic response of wheat genotypes. Data

were analysed by using STATISTICA 13.4 software package.

https://doi.org/10.1371/journal.pone.0212411.g006
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Discussion

Drought stress response of the six wheat genotypes

The comparison of the drought stress responses of the six winter wheat genotypes revealed

that the wheat Ellvis and Srpanjka showed intense water loss, while the wheat Žitarka and Sois-

sons were able to preserve high RWC even under water limited conditions (Fig 1). The rela-

tionship between high RWC and drought tolerance has already been reported for various

wheat genotypes [44–46]. Retention of water under adverse environmental condition could be

a desirable trait, however, when the plants keep the stomata closed and the transpiration is

low, little CO2 is taken up. In addition, low transpiration due to stomata closure also means

poor cooling of the leaves and less uptake and transport of nutrients [47], which can adversely

affect the plant metabolism. On the other hand, only sustained photosynthesis results in a bet-

ter yield [48]. Finding the balance between maintenance of water content and photosynthetic

activity of leaves is a big challenge for the plants. In a drought-tolerant wheat cultivar Chan-

ghan 58 lower reduction of Pn was observed after exposure to drought than in drought-sensi-

tive cultivar Xinong 9871 [49], similarly as it was found for wheat Soissons. However,

Changhan 58 showed lower transpiration rate than Xinong 9871, which is opposite to the

drought response of Soissons in our study. The higher RWC accompanied with better photo-

synthetic activity, more open stomata and higher transpiration rate indicated occurrence of

active metabolic re-arrangements in wheat Soissons, which enabled the plants to maintain nor-

mal cellular function and growth. The other genotypes showed more intense water loss,

decrease of CO2 assimilation and stomatal closure than wheat Soissons (Table 1). These effects

were most pronounced in wheat Ellvis. Altogether, both of the drought-induced cell dehydra-

tion (passive water loss) and the synthesis of osmotically active substances (called active

osmotic adjustments) in the cells can lead to a decrease of the osmotic potential and an

increase of the concentration of metabolites in the cells [50]. Therefore, it is difficult to deter-

mine which metabolic changes are involved in the processes of the passive water loss or active

osmotic adjustments, and which metabolites provide common responses or are regulated in

genotype dependent manner. We believe that the accumulation of different metabolites may

reflect the differences in plant adaptation to drought. Therefore, we payed attention on those

the metabolic changes which had essential role in the drought-stress response of genotypes

and segregated in a similar manner as found by PCA analyses (Fig 6).

Role of proline and GB in response to drought of the six wheat genotypes

Several investigations on maize [51] and wheat cultivars [52] have demonstrated that drought

stimulate proline and GB production and that these compatible solutes are important in

drought tolerance [53, 54]. In the present experiments, the accumulation of proline and GB

was also observed, however, their changes did not refer to the observed physiological parame-

ter and differences in the adaptation to stress. Namely, similar proline content was found in

Soissons, Srpanjka and Ellvis, and GB content in Toborzó and Ellvis (Fig 4A). These results

suggest that although proline and GB have osmoregulatory role under drought in all geno-

types, they are not the main factor responsible for the differences among the genotypes. Simi-

larly, the proline was not a specific marker for drought tolerance when the drought response

of two wild wheat [Triticum turgidum ssp. diccocoides (Korn.) Thell.] genotypes were com-

pared. The proline content was not higher in the drought tolerant cultivar (TR39477) com-

pared to drought sensitive (TTD-22) genotype [55], in spite of the fact that elevated

trascription of genes involved in proline synthesis was found in drought-tolerant genotype

[56].
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Role of sugars and sugar alcohols in response to drought of the six wheat

genotypes

Comparing the amount of sugars among the genotypes revealed that drought stress induced a

high accumulation of sucrose together with glucose and fructose in wheat Soissons, Toborzó,

Žitarka and Antonija which were grouped together according to the PCA (Fig 6). The amount

of sucrose in leaf saps was extremely high (around 3mg/mL) in these genotypes. Similarly,

high amount of sucrose was observed in drought-tolerant wheat genotype JD17 [17]. The

amount of disaccharides 1, 2 and 3 also increased in Soissons, Toborzó and Žitarka genotypes

under drought stress conditions (but not in Antonija). These results indicate that the accumu-

lation of these osmolites can be part of an adaptation mechanism rather than degradation

products in these genotypes. Similarly, high production of water soluble carbohydrates (glu-

cose, fructose, sucrose and fructans) was also found in other drought tolerant wheat genotypes

[57–59]. In Ellvis the amount of sucrose was around 2mg/mL, while this genotype possesses

the lowest amount of fructose and glucose. The amount of disaccharides 1, 2 and 3 was slightly

decreased. In wheat Srpanjka, the sucrose content was even lower (appr. 1mg/mL) and did not

change as compared to control plants, while the fructose and glucose content was the highest

in this genotype, indicating the occurrence of intense sucrose hydrolization to glucose and

fructose. Similar results were found in dehydrated wheat seedling [60]. The degradation of

sucrose to glucose and fructose by invertase ensured the energy necessary for respiration and

carbon reserves needed for biosynthesis of other organic compounds in the cells [17, 61]. The

dominance of catabolic processes in Srpanjka is also supported by the decrease of the amount

of disaccharides 1, 2 and 3.

Significant correlation between the changes of osmotic potential and the amount of D1, 2, 3

and 5 disaccharides was also found (S6 Table). Besides sucrose, fructose and glucose, the accu-

mulation of these unidentified disaccharides 1, 2, 3 and 5, could play a detrimental role in the

osmotic adjustment, while others such as ribose and galactose have marginal roles. Many

disaccharides, such as raffinose or threhalose are known for taking part in the osmoregulation

[14]. According to their mass spectra and retention index the disaccharides found in the pres-

ent study differed from raffinose and threhalose. Therefore, further investigations are planned

to complete the identification of the unidentified disaccharides.

In general, sugar alcohols originate from the reduction of sugars and may have osmo-

protective role [62] or may be used as translocated carbohydrates for energy and carbon

supply [63]. In this experiment, the SA3 was accumulated in all genotypes under drought

stress and the highest amount of SA1 and SA3 was found in Srpanjka (Fig 5). It is possible

that the production of these sugar alcohols can be an alternative pathway for osmolite pro-

duction in this genotype. However, further investigations are necessary to determine their

roles. It was found that galactinol may be a source for production galactose and raffinose

family oligosaccharides which plants may use as compatible solutes [64, 65], although the

amount of galactinol decreased in a drought-sensitive wheat cultivar after drought treat-

ment [66].

The cyclic polyol, myo-inositol was also accumulated in drought-exposed plants, but the

highest production was found in Antonija followed by Žitarka which showed more negative

osmotic potential values than Srpanjka (Figs 3 and 5). Correlation between the myo-inositol

level and drought tolerance was also observed in chickpea [67], maize [68] and in olive tree

roots [69]. It is possible that signalling the myo-inositol affects the process that protects the

plants against water stress [70].
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Role of organic acids and amino acids in response to drought of the six

wheat genotypes

Organic acids play important role in energy production. They are precursors of amino acids

and may modulate plant adaptation to stress, including drought [71,72]. Intense accumulation

of malic acid, succinic acid and galacturonic acids was identified in response to drought

together with a decline of citric acid content in Bermuda grass [73]. Similarly, drought induced

notable malic and oxalic acid productions in Soissons, Žitarka, Toborzó and Antonija. In the

drought sensitive genotypes, especially in Ellvis, the drought had either no effect on the con-

tent of TCA cycle intermediates or decreased their accumulation levels, including the inor-

ganic acids (Fig 5), indicating that the energy production is blocked under drought in Ellvis.

These results suggest that the malic and oxalic acids have important roles in response to

drought in wheat and their levels can be related to drought tolerance. Besides being an essen-

tial storage carbon molecule during drought, malate has also a notable role in pH balancing

and stomatal functioning [74]. It has been reported that the malate accumulation in guard

cells plays a pivotal role in osmotic adjustment [75]. A link between stomatal opening and

malate accumulation in guard cells has also been demonstrated [76, 77]. Under drought,

malate can be converted into starch in order to decrease osmotic potential and turgor decline,

thus maintaining the cellular volume and preventing the stomata closure [78, 79]. In the pres-

ent study, the correlation found between the photosynthetic activity (Pn), stomatal conduc-

tance (gs) and the production of malic acid (S6 Table) also supported the theory related to the

relationship between the stomata movement and malic acid content. It is possible that stomatal

closure in Ellvis can be partly due to the low malic acid levels (Fig 5). However, it should also

be mentioned that high amount of sucrose can also stimulate the stomatal opening [80] and

promote the photosynthesis [81, 82]. Besides malate, high amount of sucrose was found in

Soissons, Žitarka, Toborzó and Antonija, which can also contribute to the higher stomatal con-

ductance and better photosynthesis.

The TCA-cycle regulates the synthesis of several amino acids [83]. Higher amount of glu-

tamic acid, GABA and threonine was found in Soissons, Žitarka, Toborzó and Antonija under

drought as compared to Srpanjka and Ellvis. Glutamate derived from 2-oxoglutaric acid (an

intermediate of TCA cycle) is a precursor molecule of GABA [84]. Therefore, it is reasonable

that the amount of glutamate and GABA changed similarly. In a transgenic perennial grass,

Creeping bentgrass, an activation of glutamate metabolic pathway via the TCA cycle also pro-

moted the GABA production and induced the drought tolerance [23]. On the other hand, low

glutamic acid level was also found in drought-sensitive wheat genotype Bahar [15]. Threonine

can be accumulated through an interaction between the TCA cycle (via oxalic acid) and aspar-

tate metabolic pathway [85, 86]. Since drought induced the accumulation of oxalic acid in Sois-

sons, Žitarka, Toborzó and Antonija, but not in Srpanjka and Ellvis, it is possible that the

elevated amount of threonine was due to the induction of aspartate metabolic pathway. This

association was observed in drought-treated soybean [87] and maize [68].

Metabolites related to oxidative damage of leaves

In conditions of reduced CO2 assimilation, the formation of reactive oxygen species (ROS) can

be induced, which leads to oxidative damage of biomembranes [88]. A positive correlation was

found between the drought-induced accumulation of MDA content and the amount of pal-

mitic (0.694��) and stearic acids (0.702��), indicating that membrane damage is related to the

elevated levels of fatty acids in leaf saps. (S7 Table). Decreased desaturation degree of fatty

acids and galactolipids as well as increased phospholipid content provide a membrane stability

under drought [89, 90]. Conversion of stearic acid into polyunsaturated fatty acids under
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drought was noticed in fenugreek (Trigonella foenum-graecum L.) genotypes [91]. However,

there is a limited number of studies which demonstrate a connection between composition

and saturation degree of specific fatty acid and membrane damage under water deficit. Never-

theless, since only slight differences were found either in MDA or in the palmitic and stearic

acid contents among the genotypes, these results suggested that these metabolites have mar-

ginal role in drought tolerance mechanism. Our results may draw the attention to the propa-

noic acid, which shows negative correlation with drought stress response. It is possible that it

is a precursor in the drought-induced metabolic changes, however, its role has not been inves-

tigated yet.

In addition, Soissons genotype had a slightly higher amount of galactonic acid under

drought than those in Srpanjka and Ellvis (Fig 5). The galactonic acid, the oxidized form of D-

galactose [92] can be an intermediate in the ascorbic acid pathway [93]. Ascorbic acid is an

important antioxidant in plants against oxidative stress under stress condition [94]. In addi-

tion, galactonic acid, is a sugar acid component of pectin polysaccharides. It was presented

that pectins tend to form hydrated cloaks to protect cells from dehydration [95]. Studies of

wheat cultivars revealed a positive connection between pectin polymers biosynthesis and

drought tolerance [96, 97]. Thus it is possible that the increase in galactonic acid in Soissons

appeared to be linked with the reorganisation of cell wall polysaccharide network and drought

tolerance mechanism; however, further investigations are necessary to prove it.

Conclusions

In conclusion, in all tested genotypes the drought stress caused reduction in RWC, alteration

of membrane integrity, inhibition of photosynthetic parameters (Pn, gs, Ci and E), decrease in

osmotic potential and increase in accumulation levels of many compatible solutes such as sug-

ars, sugar alcohols, organic and amino acids. Specific differences in physiological and meta-

bolic responses among genotypes existed. Among the genotypes, Soissons proved to be the

most drought tolerant cultivar able to successfully withstand the dehydration provoked by

drought and to maintain the high RWC, assimilation rate and stomata conductions. Consider-

ing all physiological and metabolic responses together, Ellvis and Srpanjka were the most sen-

sitive to drought stress. These genotypes generally had inhibited TCA-cycle, glycoses and

amino acid metabolism, however, Srpanjka had a great accumulation of glucose and fructose,

higher amount of sugar alcohols 2 and 3 and increased citric acid than Ellvis suggesting

enhanced glycolysis process. The metabolic responses under drought among Soissons, Žitarka,

Antonija and Toborzó were similar but varied in magnitude. They had higher TCA-cycle
derived intermediates (malic and oxalic acid), unknown organic acid 1, higher sucrose,

GABA, unidentified disaccharide 5, glutamic acid and L-threonine amount. Soissons also

exhibited increased galactonic and phosphoric acid amounts. The results suggested that Sois-

sons, Žitarka, Antonija and Toborzó genotypes showed active metabolic pathways, energy bal-

ance and carbon circulation referring to greater tendency to overcome water deficit and have a

larger potential to resist drought stress than Ellvis or Srpanjka. Present results suggest that

although generally used wheat genotypes have a relatively narrow genetic variation, they may

use different metabolic strategies to adapt to water stress conditions. This may provide valu-

able information for the future breeding programmes.
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amino acids (green), sugar alcohols (orange), fatty acids (blue), osmotic potential (black), pro-

line (brown) and GB (olive green). Principle component analysis (PCA) was applied for evalu-

ation of metabolic response of wheat genotypes under control and drought. Data were

analysed by using STATISTICA 13.4 software package.
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The authors wish to thank Dr Ildikó Karsai (Agricultural Institute, Centre for Agricultural

Research of the Hungarian Academy of Sciences) and Dr Valentina Španić, (Agricultural Insti-
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