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Abstract

Understanding the mechanisms that promote the assembly and maintenance of host-bene-

ficial microbiomes is an open problem. Empirical evidence supports the idea that animal and

plant hosts can combine ‘private resources’ with the ecological phenomenon known as

‘community bistability’ to favour some microbial strains over others. We briefly review evi-

dence showing that hosts can: (i) protect the growth of beneficial strains in an isolated habi-

tat, (ii) use antibiotics to suppress non-beneficial, competitor strains, and (iii) provide

resources that only beneficial strains are able to translate into an increased rate of growth,

reproduction, or antibiotic production. We then demonstrate in a spatially explicit, individual-

based model that these three mechanisms act similarly by selectively promoting the initial

proliferation of preferred strains, that is, by acting as a private resource. The faster early

growth of preferred strains, combined with the phenomenon of ‘community bistability,’

allows those strains to continue to dominate the microbiome even after the private resource

is withdrawn or made public. This is because after a beneficial colony reaches a sufficiently

large size, it can resist invasion by parasites without further private support from the host.

We further explicitly model localized microbial interactions and diffusion dynamics, and we

show that an intermediate level of antibiotic diffusion is the most efficient mechanism in pro-

moting preferred strains and that there is a wide range of parameters under which hosts can

promote the assembly of a self-sustaining defensive microbiome. This in turn supports the

idea that hosts readily evolve to promote host-beneficial defensive microbiomes.
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Author summary

Host-associated microbiomes are complex communities, harbouring a great diversity of

beneficial, neutral, or harmful species. Microbiome composition can have a significant

effect on the health status and fitness of the host, and thus host species are selected to

evolve mechanisms that favour the assembly of certain kinds of microbiomes over others.

As we demonstrate, both by reviewing the literature and by using a detailed, spatially

explicit, mathematical model, a host species can employ several cost-effective mechanisms

to promote the establishment of beneficial bacteria, for example antibiotic producers, and

to prevent the invasion of harmful microbes. These mechanisms include the host provid-

ing private resources in the form of a food source or inhabitable space that the preferred

antibiotic-producing species are able to use to their advantage against species that are

harmful to the host. After an antibiotic-producing species establishes itself with the help

of the host, its colony is now self-sustaining, even if host resources now become publicly

available, and can provide a reliable safeguard against parasites.

Introduction

A growing number of studies show that microbiome composition is structured by competition

[1–7], and it is hypothesized that a host could evolve to bias competition in order to promote

the establishment of host-beneficial microbes [6, 8–13]. Indeed, such microbes need support

because, first, it is inherently difficult to establish a colony of host-beneficial microbes in the

face of competition against the huge pool of available host-neutral or host-harmful species [1,

14–17], and second, while host-beneficial microbes can produce antibiotics that are employed

in direct competition against other microbes, providing protection against harmful microbes

both for themselves and for the host, the cost of production can reduce host-beneficial micro-

bial growth rates to below those of non-beneficial and parasitic microbes [18]. Here, we focus

on defensive microbiomes, in which case the trait that equips the bacterial strains to be suc-

cessful during the establishment of such a microbiome [9], the production of antibiotics, is

essentially the same trait that benefits the host by suppressing pathogens.

We distinguish three mechanisms by which a host can selectively favour beneficial strain(s),

namely by (1) providing a habitable space that the desired bacterial partner has preferential

access to, (2) producing specific compounds that selectively poison undesired bacteria, and (3)

providing a food resource that the desired partner is better able to metabolise. We now briefly

review examples of each:

Providing a habitable space that the desired bacterial partner has

preferential access to

Vertical and pseudo-vertical transmissions fall into this category [1, 19–23]. In strict vertical

transmission, host germline cells are infected with symbionts [22, 24]. Less strict transmission

(‘pseudo-vertical’) is achieved by keeping non-colonised host offspring in isolation after birth

until the parental microbiome can colonise it, which then shapes the composition of subse-

quent colonists from the environment [9, 11, 22]. In either case, the host ensures a competitor-

free space for inherited microbes, which are allowed time and resources to grow on a new-

born host before being exposed to competition with other colonists. For example, newly

emerging Acromyrmex leafcutter ants are inoculated with antibiotic-producing Pseudonocar-
dia bacteria within a 24-hour window after hatching [8, 25]. Mature worker ants serve as the
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source by carrying Pseudonocardia on their propleural plates, which grow to a high density

around specialised exocrine glands that likely provide nutrients for bacterial growth [26, 27]

(thus also serving as an example of a resource that can be metabolized by the preferred bacte-

ria, discussed in 3. below). Similarly, female beewolf digger wasps (Philanthus, Philanthinus,
Trachypus) inoculate their brood cell walls with a species of Streptomyces that they maintain in

their antennal glands [28–30]. These bacteria become directly incorporated into the larval

cocoon, where they dominate and produce an array of antibiotics that protect the developing

larva against infection [29–31]. Analogous to the above examples, the agricultural process of

applying bacteria, such as antibiotic-producing Pseudomonas and nitrogen-fixing Rhizobia, to

crop seeds before sowing mimics pseudo-vertical-transmission, by ensuring that high densities

of beneficial bacteria have better access to root exudates and are favoured during establishment

on the plant [32, 33]. Priority effects have also been demonstrated for mycorrhizae [34], bees

[35–38], wasps [28], leafcutter ants [25, 39], birds [40], plants [41], and humans [42]. A unique

structure for symbiont transmission, called a ‘‘symbiont capsule,” which serves as a private

space and resource, has been described for the stinkbug Megacopta punctatissima [43–45].

These capsules are deposited next to the eggs and provide food and protection for the symbi-

onts until the hatchlings open the capsules and ingest the symbionts [44, 45].

Producing specific compounds that selectively poison undesired bacteria,

whilst allowing desired strains to grow

A wide range of plant species secrete compounds, known as allelochemicals, which are toxic

to a broad range of bacteria, fungi, and invertebrates in the rhizosphere, as well as toward

other plants growing nearby [46–49]. For example, the compound 2,4-dihydroxy-7-meth-

oxy-1,4-benzoxazin-3-one (DIMBOA) is an antimicrobial produced by maize seedlings

[48], which the plant-beneficial species Pseudomonas putida is able to degrade, thus avoid-

ing its effects. P. putida also uses this compound as a chemoattractant and a signal for upre-

gulating the production of the broad-spectrum antibiotic phenazine [48]. Together, these

mechanisms allow P. putida to colonise maize roots in the presence of mostly DIMBOA-

intolerant, competitor bacteria [48]. Similarly, the rhizobial species, Mesorhizobium tian-
shanense, which forms root nodules on liquorice plants, is able to outcompete other bacteria

in the rhizosphere due to an efflux mechanism that confers resistance to the antimicrobial

compound canavanine. Canavanine is abundant in liquorice root exudates and thus allows

the host to filter out non-beneficial rhizobial species [50]. As another example, nitric oxide

(NO), a potent oxidising agent and antimicrobial, can play an important role in dictating

symbiont specificity [51, 52]. A classic example arises during the symbiosis between the

bobtail squid, Euprymna scolopes, and bioluminescent bacteria in the species Vibrio fischeri.
V. fischeri are the exclusive colonisers of the squid’s light organ, where they emit light to

deceive predators, and are acquired horizontally from the environment within 48 hours

after squid hatching [53]. High nitric-oxide synthase (NOS) activity and its product NO can

be detected in the epithelial mucus of the light organ during the early stages of bacterial col-

onisation [54], which V. fischeri are able to tolerate via the activity of two proteins, flavohe-

moglobin (Hmp) and a heme NO/oxygen-binding protein (H-NOX) [55–58]. Eliminating

the genes for these proteins in V. fischeri leads to colonisation deficiency [56, 58], and

diminishing the concentration of host NO results in a greater diversity of non-mutualistic

bacterial species in the light organ epithelium [54]. Similar mechanisms of host selection

are also reported for other animal species. For example, members of the Hydra family pro-

duce antibacterial arminins that help them to shape the establishment of the bacterial

microbiota during their embryogenesis [59]. Hydra not only suppresses undesired strains

Microbiome assembly via private resource and community bistability

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007109 May 31, 2019 3 / 22

https://doi.org/10.1371/journal.pcbi.1007109


[59] but also modifies the quorum-sensing signals by which bacteria communicate, hence

manipulating the social behaviour of bacteria [60].

Providing a food resource that the desired partner is better able to

metabolise

Enhanced metabolic activity from consuming a private resource can confer competitive supe-

riority on a preferred microbial strain. Besides acquiring higher reproduction and growth

rates, the beneficial bacteria can also achieve a higher rate of antibiotic production that results

in the suppression of competitors [61] or achieve a higher production of other factors that pro-

mote colonization and symbiotic interaction with the host, such as adhesive molecules facili-

tating biofilm formation on the host surface [62, 63]. The provision of specific metabolites is

thought to play a key role in structuring the species-specific microbial communities associated

with marine corals [64, 65]. Coral juveniles, as well as their dinoflagellate symbionts, produce

large quantities of the compound dimethylsulfoniopropionate (DMSP) [66]. In vitro and meta-

genomic studies have shown that several coral-associated bacterial groups can specifically

metabolise the DMSP and use it as a sole carbon and sulphur source [64, 65, 67]. Such species

are also amongst the first bacteria to colonise coral larvae, suggesting a nutritional advantage

for them over bacteria that cannot degrade DMSP [64, 68]. This includes a species of Pseudovi-
brio which can additionally use DMSP as a precursor for the production of antibiotics that

inhibit coral pathogens [65]. Another example of a specific host-derived resource is human

breast milk, which contains a large number of complex oligosaccharides that are preferentially

consumed by a single species of co-adapted gut bacterium Bifidobacterium longum subsp.

infantis [69]. In plants, experiments have shown that root exudates can be directly metabolised

by the microorganisms that live endophytically within the plant roots [70–73]. Different spe-

cies exude different groups of metabolites, and studies suggest that plant hosts may be able to

tailor root exudate composition in order to recruit bacteria with particular metabolic traits [46,

70, 73]. For example, the concentration of the plant phytohormone salicylic acid (SA) has been

shown to correlate with the abundance of several bacterial taxa, including the antibiotic-pro-

ducing genus Streptomyces [73, 74], which can use SA as a sole carbon source [74, 75]. As dis-

cussed earlier, leaf-cutter ant exocrine glands, which provide a nutrient source for

Pseudonocardia bacterial growth, also fall into this category [26].

These mechanisms achieve one of two effects: (I) they either ensure the protected growth of

the preferred strains and/or (II) they enhance the competitive abilities of preferred strains

against non-preferred strains, for example by increasing the rate of antibiotic production or

the rate of growth of the beneficial strain, for certain duration of time. Taken together, these

examples show that hosts have access to multiple mechanisms that can provide a ‘private

resource’, in the form of space and/or food, to a subset of bacterial strains, and if those strains

are beneficial to the hosts, the host is selected to apply one or more of these mechanisms to

assemble host-beneficial microbiomes.

However, once the private resource is withdrawn, the host becomes a public habitat on

which a diversity of microbes can thrive, either feeding on generally available resources com-

ing from the host (for example, secretions, excretion, or dead epithelium) or from the physical

environment. The question therefore is whether and how a time-limited private resource can

be translated into a persistent host-beneficial microbiome.

To answer this question, we now abstract these mechanisms into an individual-based, spa-

tially explicit model of host-associated defensive microbiomes (Fig 1A and 1B) (reviews in 9,

29, 30), which typically contain antibiotic-producing bacteria [76, 77]. In our model, dispersal

and direct competition for empty sites is limited to small numbers of neighbouring

Microbiome assembly via private resource and community bistability
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individuals, in accordance with experimental results [78]. At the same time, due to diffusion,

indirect, antibiotic-mediated competition can occur amongst distant bacteria. We show that a

host is indeed able to assemble a defensive microbiome, by providing a private resource that

has the effect of exploiting the community bistability which emerges when bacterial species

engage in interference competition [9]. We also show that the host only needs to provide the

private resource until the beneficial microbe’s colony reaches a self-sustaining size, that bacte-

rium-produced antibiotic defends the colony most effectively at an intermediate level of diffu-

sion rate, and that the antibiotic-efflux resistance mechanism is the most efficient mechanism

for achieving competitive superiority.

We focus our modelling on the community dynamics of the bacteria, and therefore we only

model the host indirectly. This is because bacterial community dynamics play out much more

quickly (hours to days) than does the coevolutionary response of a host lineage to the fitness

consequences of its achieved microbiomes. In other words, a host might evolve a new private-

resource trait that changes the trajectory of microbiome assembly, which then affects host fit-

ness and either selects for or against that new trait. Our focus is on the first half: how differ-

ences in the host-provisioning of private resources affect microbiome assembly, which is not

well understood. We also simplify the modelling by binning multiple bacterial species into two

archetypes, beneficial and parasitic, because we are interested in whether (any number of) ben-

eficial species can coexist with or even competitively exclude (any number of) parasitic species.

The same approach has long been used in community ecology, such as in modelling the coexis-

tence of pioneer vs. shade-tolerant trees and superior competitors vs. superior dispersers [e.g.

79–81]. Typically, once two types can be shown to coexist, subsequent modelling shows that

the same coexistence mechanism can be extended to allow the coexistence of multiple species

[e.g. 82], or additional mechanisms can be invoked.

Our take-home message is that there is a wide range of conditions under which hosts can

successfully promote the assembly of a self-sustaining defensive microbiome, which, in turn,

supports the general idea that hosts can readily evolve to promote host-beneficial defensive

microbiomes.

Fig 1. Model schematics. (a) We model two strain types, parasitic (violet shading) and antibiotic-producer (blue shading), which compete with each other directly

(grey arrow), and indirectly via the diffusing antibiotic (red dots and coloured arrows). (b) The modelled N = M�M grid (bottom layer) represents the colonisable

surface of the host, and each point in the grid can be inhabited by a single individual (coloured quadrant). The produced antibiotic (upper layer) diffuses freely on the

grid, and its concentration decreases farther from the producing source (the shading and height depicting the concentration) and also decays with time. (c) The growth

dynamic of a colony follows a logistic trend in the model. We show the relative colony size (y-axis) with respect to time (x-axis) with ε = 1 (light blue), ε = 0.1 (medium

blue), and ε = 0.01 (dark blue), where ε is the fraction of randomly chosen grid cells that is updated in the cellular reproduction and death processes. The smaller the ε,

the slower the growth in our model. Relevant model parameters are: D = 5, Δt = 1/10, u = 100, for a nB,0 = 100, N = 10 000, and for b nB,0 = 1, M = 40, ρ= 1, αB = 0.5, βB =

0.6, γB = 0.3, φ = 0.5.

https://doi.org/10.1371/journal.pcbi.1007109.g001
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Models

We are interested in how the host influences the population dynamics of two different bacte-

rial strains: an antibiotic-producing, antibiotic-resistant beneficial strain (B), and a non-pro-

ducing, sensitive parasitic strain (P). (Note that antibiotic producing bacteria must also be

antibiotic resistant, or the production would be suicidal.) We model the host implicitly by

assuming that it is able to manipulate the composition of its microbiome through resource

supply on its surface, upon which colonising individual bacteria compete for space with their

neighbours according to their reproduction rates. The host surface further serves as a medium

for spatially limited diffusion of the antibiotic. For this, we employ an individual-based model

in which we model the host surface as a rectangular grid with toroidal boundary conditions

(N = M�M) serving as the habitat for colonising bacteria (Fig 1B). Each grid point can be

empty or inhabited by a single individual, and interactions take place within the immediate

neighbourhood of the focal grid point. Time is measured in units of update steps. We assume

that the dynamics of cell reproduction and death processes are much slower than small-mole-

cule dynamics, so the cell populations are updated after u (u�1) update steps in antibiotic

dynamics, during which the whole grid is updated in all relevant intracellular and extracellular

processes related to the small-molecule (antibiotic) dynamics (N number of sites). In the cellu-

lar update steps, εN number of randomly chosen grid cells is updated in the birth and death

processes, where ε is a small positive number (Fig 1C).

The private resource(s) provided by the host can confer two kinds of benefits to the benefi-

cial strain. We call the first kind (I) Protected Growth (mechanisms 1 and 2 from Introduc-

tion), because the parasitic strain is prevented from colonising (certain regions of) the host

until time τ. Accordingly, in the model, B is given preferential access to host-provided space or

is solely resistant to host-produced allelochemicals protecting the habitat until time τ, after

which the host resource is made ‘public’ by also giving the parasitic strain access to the space

or by withdrawing the host-produced compounds that have been facilitating B and poisoning

P. We call the second kind of benefit (II) Enhanced Metabolism because, in the model,

although P is allowed to invade from the beginning, B’s metabolism is enhanced until time τ,

after which this enhancement lapses (mechanism 3 from Introduction). The simplest outcome

of enhanced metabolism is that B’s advantage in metabolising host-provided food causes its

reproduction rate to be increased by an amount of rB,pr(t) until time τ, after which rB,pr(t) = 0

(e.g. rB,pr(t)�0|t<τ and rB,pr(t) = 0|t�τ), where index pr denotes the private resource. An

alternative outcome is that B is able to use the host-provided food to increase its own anti-

biotic-production rate (ρB(t) = ρB,pr(t)+ρB,0), without incurring higher unit costs. Thus,

similar to above, we distinguish a higher production rate fuelled by host-provided resource

(ρB,pr(t)�0|t<τ), and a lower, baseline production rate when the resource is not supplied after

time τ (ρB,pr(t) = 0|t�τ). Naturally, ρB,0>0, while the production rate of the non-producing

strain is always zero (ρP(t) = 0). (Alternatively, but not modelled here, the resource could allow

the antibiotic to be effective at a lower threshold concentration before τ and at higher level

after τ, which would give similar results to the previous).

Dynamics of the antibiotic molecules

The beneficial strain produces and exports antibiotic at rate ρB, into the extracellular environ-

ment, resulting in a distribution of concentrations AExt(i,t) at position i at time t.
The molecules are taken up by the cells at rates αB and αP (αB�αP) by the B and the P

strains, respectively, resulting in an AInt(i,t) interior concentration within the cell at position i
at time t. The cells decompose the intracellular antibiotics at rates γB and γP (γB�γP), and they

Microbiome assembly via private resource and community bistability
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can also perform active outbound transport, i.e. controlled efflux, to release intracellular anti-

biotics at rates βB and βP (βB�βP). The antibiotics decay at rate φ in the environment.

The model implements the three major antibiotic-resistance mechanisms: (a) reduced

influx through the membrane (αB), (b) a higher rate of intracellular decomposition and neutra-

lisation (γB), and (c) increased efflux of the molecules (βB), and combinations of these mecha-

nisms [76, 83–86].

We first assume that the antibiotic molecules are point-like particles moving on a host-sur-

face plane. Consequently, we can use reaction-diffusion dynamics to describe change in the

extracellular antibiotic concentration AExt(x,t) at points x = (x,y) (representing the coordinates

on a surface) and time t

@AExtðx; tÞ
@t

¼ D
@2AExtðx; tÞ

@x2
þ
@2AExtðx; tÞ

@y2

� �

þ FðAExtðx; tÞÞ ð1Þ

where the first term on the right hand side is the diffusion term, and F(AExt(x,t)) is the reaction

term, which depends on the extracellular antibiotic concentration (AExt(x,t)) and the positions

and types of the cells. Using the above defined parameters and dynamical processes, we can

write

FðAExtðx; tÞÞ ¼
PN

i¼1
ðr�ðtÞ þ b�A

Intði; tÞ � a�A
Extði; tÞÞdðx � iÞ � φAExtði; tÞ; ð2Þ

where the antibiotic sources and sinks are summed in the parentheses, i is the position of a cell

among the N cells, which can either be B or P denoted by � in the bottom index where applica-

ble, AInt(i,t) is the intracellular concentration of the antibiotic at position i, and δ is the Dirac

delta [87]. Since in our case the birth and death processes and the spatial positions of particles

are given by other complex interaction dynamics, writing down the complete dynamics of the

system leads to an analytically intractable model. Therefore, we next implement the time-and-

space-discretised dynamics of antibiotic concentration at site i on the rectangular grid and at

time t+Δt in the extracellular environment as

AExtði; t þ DtÞ ¼ AExtði; tÞ

þ
D
Dx2

Xv

j¼1
AExtðj; tÞ � vAExtði; tÞ

� �
þ r�ðtÞ þ b�A

Intði; tÞ � a�A
Extði; tÞ � φAExtði; tÞð ÞyðiÞ

� �

Dt
ð3Þ

where the first term corresponds to the diffusion of antibiotics according to the discretised dif-

fusion algorithm between the four nearest neighbouring points (v = 4) (Neumann-neighbour-

hood: north, south, east, west); Δx is the spatial resolution, and Δt is the time resolution. The

diffusion rate of the antibiotics, D, is measured in the unit of x2/t, where x denotes the spatial

resolution, here one cell of the grid, and t stands for time measured as an update step. θ(i)

takes the value one if there is a cell at the site i, else being zero. The dynamics of intracellular

concentration of the antibiotic at the site i can be written as

AIntði; t þ DtÞ ¼ AIntði; tÞ þ ða�A
Extði; tÞ � b�A

Intði; tÞ � g�A
Intði; tÞÞDt: ð4Þ

Naturally AInt(i,t+Δt) = AInt(i,t) = AExt(i,t) = 0 if there is no cell at site i.
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Growth dynamics of the cells

For the birth and death processes, we define the reproduction or growth rate of the antibiotic-

producing (B) and non-producing (P) strains respectively as

rBði; tÞ ¼ rB;0 þ rB;prðtÞ � c;

rPði; tÞ ¼ rP;0 � lða;T; k;AIntði; tÞÞ
ð5Þ

where c is the decrease in reproduction rate because of the costly processes of antibiotic pro-

duction and resistance. The reproduction rates rB,0, rP,0, and rB,pr(t) correspond to normal

(baseline) and temporarily increased resource conditions, respectively. We assume rB,0 = rP,0;

different assumptions would only rescale the value of c (see S5 Fig in the Supplementary

Information for different choices of rB,0). The effect of the antibiotic λ(a,T,k,AInt(i,t)) on the P

strain’s reproduction rate depends on the critical threshold (T), the maximum effect (a), the

steepness of the dosage effect (k), and the actual intracellular concentration of the antibiotic in

the sensitive cell at the site i (AInt(i,t)). Following empirical observations [61], we define a gen-

eral sigmoid function for the effect of the antibiotic:

lða;T; k;AIntði; tÞÞ ¼ a=½1þ expð� kðAIntði; tÞ � TÞÞ� ð6Þ

Dynamics of the population

Population dynamics are represented by a death-birth process in which a randomly chosen

focal individual at site i dies, and individuals from its Moore neighbourhood (8 nearest neigh-

bours, w = 8) can reproduce and place a progeny into this focal empty site, with probability

proportional to their reproduction rates

pðiÞ ¼ rxði; tÞ=
Pw

j¼1
rxðj; tÞ; where ðx�fP;BgÞ ð7Þ

At the beginning of the simulation, the beneficial strain is represented in low numbers

(nB,0), and the parasitic strain is missing (nP,0 = 0).

Invasion tests

We carried out two sets of invasion tests to demonstrate how host-provided private resources

can result in self-sustaining, beneficial microbiomes, even if the private resource itself eventu-

ally diminishes. In the first test, we used time, while in the second, we used colony size as the

signal to switch from private to public resources, or in other words, to stop the host’s selective

support for the beneficial strain.

Invasion test 1. Time-limited supply of private resources. We model the two kinds of

benefits conveyed by the private resources, as discussed earlier, the (I) Protected Growth of the

beneficial strain for τ time and (II) the Enhanced Metabolism of the beneficial strain for τ
time, either leading to (IIa) a higher population growth rate by the beneficial strain or to (IIb)

an increased antibiotic production by the beneficial strain.

In the Protected Growth scenario, before τ, an s+ proportion of cohesive space on the host

surface (s+ = ss/N, where ss is the number of protected sites) provides a safe growth opportu-

nity for the beneficial strain, as individuals from the parasitic strain are prevented from invad-

ing (strict and pseudo-vertical transmission), or parasitic individuals invading this region get

killed off (via host-provided allelochemicals). However, after τ time has passed, the parasitic

strain is finally allowed to gain a foothold on the grid. In other words, the private space

resource is made public at time τ. During an invasion attempt, we place nP,t number of
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individuals around a randomly selected focal grid point in a connected cluster with probability

f in each time step (if there are empty places, subsequent individuals will be placed next to the

focal site, but non-empty grid points can also be occupied if no empty place is available). In

the Enhanced Metabolism scenario, the beneficial strain experiences increasing advantages of

r+ = (rB,pr(t)+rB,0)/rB,0 or ρ+ = (ρB,pr(t)+ρB,0)/ρB,0 for τ time, respectively, and nP,t number of

parasitic-strain individuals are allowed to invade with probability f in each time step, starting

from the beginning (κ = 1).

Invasion test 2. Protected growth of the beneficial strain to a minimum colony size.

Here, we let the host resource, the habitat, be private until the beneficial strain reaches a mini-

mum colony size, which we call the Colony Size at Invasion (CSI). We only allow the parasitic

strain to start invading empty places after the resident B strain’s colony size has grown to the

CSI (CSI = q/N, where q is the number of sites inhabited by B). The invasion proceeds with

probability f starting from κ and with nP,t number of invaders until the grid is fully occupied

by individuals. As a motivating example, one can think of a small host ‘crypt’ or ‘symbiont cap-

sule’ [43–45] in which the beneficial strain is initially housed. The strain eventually outgrows

the crypt, or the new-born host opens up the capsule, releasing the symbionts, which then col-

onise the host surface [43–45]; at this point, the host can only provide resources in a way that

makes them publicly available. The capsule serves de facto as a private resource, as the symbi-

onts are, through specialized mechanisms, encapsulated from the progenitor’s symbiont com-

munity, and these capsules are only broken upon the inhabitation of the new habitat [43–45],

which is now available to all bacterial strains.

Results

The colony growth follows a logistic growth dynamic in the model (Fig 1C). Depending on the

choice of ε, we observe full colonisation of the surface within a given timeframe. Without

involving the effects of the host-provided private resources for the beneficial strain, and with-

out the reproduction-rate reducing effect of the antibiotic on the parasitic strain, the faster

growing type would quickly become dominant in the habitat, which, in our case, is the para-

site, as it pays no cost of producing any compounds. To better investigate the competition

dynamics between the two types on a fine timescale, we choose ε = 0.01 for our further

investigations.

Invasion test 1. Time-limited supply of private resources

As discussed in the Introduction, the host has multiple mechanisms by which it can provide

private resources. We find that protecting initial growth (Fig 2A and 2B), increasing the repro-

duction rate (Fig 2C and 2D), and/or enhancing the antibiotic effectiveness (Fig 2E and 2F) of

the beneficial strain, can all result in a self-sustaining, beneficial-strain-dominated microbiome

that is resistant to invasion even after the host resource is made public (at time τ) and the bene-

ficial strain starts to experience a competitive disadvantage due to its costs of antibiotic pro-

duction and of expressing its antibiotic-resistance traits. In all three scenarios, the longer the

time τ that the resource is private (Fig 2, x-axis), the less of an advantage, in the form of pro-

tected growth (s+), increased population growth (r+), or increased antibiotic production (ρ+)

(Fig 2, y-axis), is required for the beneficial strain to be able to resist invasion after the resource

becomes public. This is because invasion resistance increases with the size of the beneficial col-

ony and with the concentration of antibiotic that the colony produces and transports into the

environment.

We also observe that if the physiological mechanism of resistance by the beneficial strain to

its own antibiotic is efflux, this can additionally enhance invasion resistance, even if the supply

Microbiome assembly via private resource and community bistability
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time is short and the advantage conferred by the private resource is small (Fig 2A, 2C, 2E vs.

2B, 2D and 2F). The reason is that re-exporting any ingested antibiotic increases the environ-

mental concentration of antibiotic, which aids suppression of invading parasitic strains.

Fig 2. The effect of a private resource supplied by the host for a limited time τ (Invasion test 1). Black areas

indicate parameter space where the non-producing parasitic strain can invade, and the yellow shading indicates that

the beneficial strain is able to resist invasion. Orange to red colours indicate mixed outcomes. In general, the beneficial

strain dominates over a larger proportion of the parameter space as the duration of the private resource supply

lengthens, regardless of whether the beneficial strain enjoys outright protected growth (a, b), an increased rate of

population growth (c, d), or an increased rate of antibiotic production (e, f). The efflux of accumulated intracellular

antibiotic in the antibiotic-producing beneficial strain also aids beneficial-strain dominance (βB = 0 for a, c, e, and βB =

0.25 for b, d, f). Simulations were run with 5 replicates for 100 000 generations or until the population was

homogenous. Model parameters are: rB,0 = 0.8, rP,0 = 0.8, c = 0.1, ρB,0 = 1, αB = 0.5, αP = 0.5, βP = 0, γB = 0.4, γP = 0.4, φ
= 0.3, D = 5, a = 1, T = 1, k = 25, N = 10 000, nB,0 = 100, nP,t = 10, κ = 1 f = 0.01, Δt = 1/10, u = 100, ε = 0.01, and r+ = 0,

s+ = 0, ρ+ = 0 when applicable.

https://doi.org/10.1371/journal.pcbi.1007109.g002
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Invasion test 2. Protected growth of the beneficial strain until a minimum

colony size

Consistent with the results from Invasion test 1, if the beneficial colony successfully reaches a

critical size (the Minimum Sustainable Colony size: MSC), it becomes resistant to invasion

over a wide range of parameters after the private resource is made public (Fig 3). Again, having

Fig 3. The Minimal Sustainable Colony size (MSC) (Invasion test 2). Invasion is initiated when the beneficial-strain colony reaches a

defined size (CSI) and continues until the habitat is fully colonized by either the beneficial or the parasitic strains. The MSC is represented by

the orange-red border separating the yellow (B wins) and black (P wins) regions. From left to right (a!c, d!f, and g!i), the extracellular

decay rate of the antibiotic φ increases (φ = 0.2,0.25,0.3). From top to bottom (a!g, b!h, and c!i), the efflux rate βB decreases (βB =

1,0.5,0). Simulations were run with 3 replicates for 100 000 generations, or until the population was homogenous. Black areas indicate

parameter space where the parasitic strain can invade, yellow indicates parameter space where the antibiotic-producing beneficial strain

successfully resists invasion, and orange areas correspond to mixed outcomes. Model parameters are: rB,0 = 0.8, rP,0 = 0.8, c = 0.4, ρB,0 = 1, αB

= 0.5, αP = 0.5, βP = 0, γB = 0.4, γP = 0.4, D = 5, a = 1, T = 1, k = 25, N = 10 000, nB,0 = 100, nP,t = 10, κ = 1, f = 0.01, Δt = 1/10, u = 100, ε =

0.01, r+ = 0, s+ = 0, ρ+ = 0, and τ = 0.

https://doi.org/10.1371/journal.pcbi.1007109.g003
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antibiotic efflux as the resistance mechanism promotes invasion resistance (Figs 3 and 4),

whereas (and intuitively) a higher rate of extracellular decay of antibiotic counteracts this effect

(Figs 3 and 4). When a large amount of antibiotic is in the environment, because efflux is high

and decay is low (Fig 3A and Fig 4A and 4C), the beneficial strain is able to dominate over a

wide range of diffusion rates. However, when the extracellular-decay rate is high, only high dif-

fusion rates allow the beneficial strain to dominate (Fig 4D). This is because at low diffusion

rates, the antibiotic produced in the centre of the colony is lost due to decomposition before it

diffuses to the colony edge, where it would have attacked invaders. In contrast, at high diffu-

sion rates, more of the antibiotic produced by cells deeper in the colony reaches the invasion

front at the edge (Figs 3, 4, and 5).

The complement to this result is that if the diffusion rate is low, then even a large colony

size does not necessarily guarantee success unless the efflux rate is also high enough (Fig 4A

and 4B). Essentially, if antibiotic efflux is used as the resistance mechanism by the beneficial

cells, this can substitute for outright diffusion of the antibiotic, allowing the antibiotic to reach

the colony edge, where it can suppress invaders (Fig 4).

Fig 4. The effect of efflux rate, decay rate, and diffusion rate on the MSC. At low diffusion rates (upper row), efflux

rate limits the success, while at large diffusion rate (bottom row), colony size is the more limiting factor. From left to

right (a!b, c!d) extracellular decay rate increases (φ = 0.7 and 0.9). From the top to the bottom (a!c, and b!d),

diffusion rate increases (D = 0.5 and 12), respectively. Model parameters are: rB,0 = 0.8, rP,0 = 0.8, c = 0.1, ρB,0 = 1, αB =

0.6, αP = 0.6, βP = 0, γB = 0.3, γP = 0.3, a = 1, T = 1, k = 25, N = 10 000, nB,0 = 100, nP,t = 10, κ = 300, f = 0.01, Δt = 1/10,

u = 100, ε = 0.01, r+ = 0, s+ = 0, ρ+ = 0, and τ = 0.

https://doi.org/10.1371/journal.pcbi.1007109.g004
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Non-monotonous effect of diffusion

Interestingly, under some conditions there is a non-monotonous effect of diffusion rate on

invasion resistance, such that the Minimum Colony Size (MSC) can be much smaller for

medium-level diffusion rates. For example, looking at Fig 3B, for low antibiotic diffusion rates

(values 0−1 on the x-axis), the MSC is close to 100%; that is, the colony can resist invasion only

if more than 95% of the available habitat is already occupied by the producers; otherwise, para-

sites displace the whole population of antibiotic producers. Similarly, for high diffusion rates

(values D = 80−100 on the x-axis), although smaller, a considerable colony size still has to be

reached. However, the MSC curve reaches a minimum between low and high diffusion rates,

such that only a 1−10% MSC is enough to resist invasion (Fig 3B).

The important result is that for any intermediate efflux and decay parameters coupled with

intermediate diffusion rates, colonies with practically any non-zero initial size can withstand

parasite invasion (Fig 3A, 3B and 3D). This nonlinearity occurs because, in general, diffusion

carries antibiotic to the edge of the antibiotic-producing colony, where it can act against invad-

ing P strains, but diffusion also carries antibiotic away from the edge of the colony. An inter-

mediate diffusion rate turns out to maximise the amount of antibiotic at the fighting front (see

S1–S6 Figs in the Supplementary Information for further results of different parameter

combinations).

Discussion

The composition of host-associated microbiomes has been shown to correlate with host health

status and fitness [4, 88–94], and thus, there is likely to be strong selection on host species to

evolve mechanisms that favour the assembly of certain kinds of microbiomes over others [11,

12, 27]. Here we have explored how a host can favour the assembly of a defensive microbiome

that is persistently dominated by antibiotic-producing bacteria [7, 23, 77, 95].

We argue that a host can take advantage of an ecological phenomenon known as ‘commu-

nity bistability’: when two species compete via interference, such as when a bacterial species

uses antibiotics to hinder a competitor, the winner depends partially on the initial population

sizes of the two competitors [9]. If the antibiotic-producer initially establishes a larger popula-

tion in the new habitat, it can collectively produce a sufficient amount of antibiotic to suppress

its competitor and grow until the space of opportunity vanishes for the non-producer. In con-

trast, if the non-producer species starts with the larger or competitively superior population,

then the small amount of antibiotic produced by a small colony of a producer is insufficient to

suppress the non-producer, and the non-producer wins. It follows that by using an antibiotic-

producer as the initial (or ‘priming’) strain of the microbiome, a host can narrow down the

variety of strains able to invade this already established environment [4, 5, 9, 11]. The host is

thus efficiently able to canalise the composition of the emerging microbiome. Such priming

effects have been demonstrated in various experimental systems [25, 37, 39, 96]. Our argu-

ment, in a nutshell, is that an effective way for hosts to guide microbiome assembly is by

manipulating initial conditions, resulting in a cascade of bacterial community dynamics that

ultimately favour some kinds of microbiomes over others, which will, in turn, affect host fit-

ness. Another way of thinking about this is through the lens of game theory [9, 13]. The host is

able to ‘screen-in’ antibiotic-producing bacteria by exploiting a fundamental correlation: bac-

terial strains that make lots of antibiotics are both superior interference competitors against

other bacteria and also likely to produce compounds that are useful for host defence.

In this study, we have integrated local interactions and the explicit spatial dynamics of cellu-

lar and chemical components with the original phenomenological model that laid the founda-

tions of the theory [9]. In this now more realistic model, even for large populations, the
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number of directly interacting cells is relatively modest, and thus, the spatial correlations of

active agents determine dynamics meaningfully [5, 78]. Furthermore, such an integrated, spa-

tially-explicit model allows us to understand the effect of different antibiotic-resistance mecha-

nisms [75, 83–86, 97] on the microbiome assembly, and to investigate how attributes of the host

surface, which govern the diffusion dynamic of the antibiotic, can modify the outcome. We

have also widened the applicability of Scheuring and Yu’s original model [9] by reviewing mul-

tiple mechanisms allowing a host to prime a defensive microbiome, even if the beneficial strain

can only be recruited from the environment (horizontal transmission); the original model made

the restrictive assumption that the beneficial strain is strictly vertically transmitted.

We have corroborated the earlier results [9, 13] that antibiotic producers and non-produc-

ers can form a bistable system and that the outcome of competition depends on their repro-

duction rates, how effectively the host is able to selectively promote the beneficial strain, and

the initial ratio of the two strains [9]. Once the antibiotic producer is able to gain dominance,

in such a system it can remain dominant for a lifetime, even if the host-provided private

resource vanishes or becomes public. The current model also shows that localized interactions,

which is an important realism that had been ignored in the simpler model [9], do not impede

Fig 5. Spatial dynamics for (a) low and (b) high diffusion rates. (a) A low diffusion rate (D = 0.5) reduces the protective effect of the antibiotic (orange shading,

lower panels), and the parasitic strain (black shading, upper panels) can invade the beneficial strain (yellow shading, upper panels). (b) A high diffusion rate (D = 50)

allows the beneficial strain to resist invasion, as considerable amount of antibiotic (lower panels) diffuses beyond the colony boundaries. Antibiotic concentration

ranges between zero (white), to intermediate (red-orange), to maximal concentrations (brown-black). Poisoned (cells with rP<0.05) but not yet removed parasitic cells

are coloured dark grey. In these simulations, the beneficial colony was allowed κ = 300 time steps to grow before invasion. The snapshots of the simulations are taken

every 500 update steps. Model parameters are: rB,0 = 0.8, rP,0 = 0.8, c = 0.4, ρB,0 = 1, αB = 0.5, αP = 0.5, βB = 0.4, βP = 0, γB = 0.4, γP = 0.4, φ = 0.25, a = 1, T = 1, k = 25,

N = 10 000, nB,0 = 100, nP,t = 10, κ = 300, f = 0.01, Δt = 1/10, u = 100, ε = 0.01, r+ = 0, s+ = 0, ρ+ = 0, and τ = 0.

https://doi.org/10.1371/journal.pcbi.1007109.g005
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this dominance because the antibiotic itself can diffuse to the colony edge to inhibit invaders.

This effect is strengthened when the mode of resistance employed by the producers is antibi-

otic efflux.

We also show with the current model that the host resource only needs to remain private

for a finite critical time, basically until the beneficial colony reaches a Minimal Sustainable Col-

ony Size (MSC), at which point it becomes resistant to a given rate of invasion. The critical

time and/or the MSC depends on the physiochemical properties of the system, most impor-

tantly the decomposition, decay, diffusion, and efflux rates of the antibiotic, and the advantage

provided to the beneficial colony by the private resource, all deriving from the fact that colony

size determines the amount of antibiotic produced.

Our brief review of the literature suggests that multiple forms of ‘private resource’ exist,

including food, space, and host-provided compounds that harm undesired strains. Nonethe-

less, privacy of resources is inherently difficult and costly to achieve, and it is therefore realistic

to assume that any host-provided resources will eventually become public. This inevitable

transition from private to public, which intuitively might be expected to allow the successful

invasion and establishment of parasitic strains, does not in fact do so, because of bistability.

After a beneficial colony establishes itself, a public resource is in practice only enjoyed by the

winner, the beneficial colony.

Finally, we show that an intermediate diffusion rate can maximise the amount of antibiotic

accumulating at the colony edge. Our findings suggest that the attributes of the host surface,

for example the diffusion rate, can either increase or reduce the effect range of the antibiotic

[98]. As there is no conflict of interest between antibiotic-producer and host, their coevolution

is expected to optimise the diffusion speed, and hence the effectiveness, of the antibiotic. Over-

all, evolutionary optimisation can act by minimising the host investment required to attain a

beneficial microbiome, by reducing the duration of a private resource supply, and by evolving

the optimal physiochemical properties of the habitat, the host surface. If so, then we might also

expect that the co-evolution of host and preferred strains results in an efficient and well-con-

ducted build-up of a beneficial microbiome, an orchestrated symbiosis that efficiently narrows

down the enormous number of possible scenarios to canalise the emergence of a microbiome

towards the most favourable one.

Supporting information

S1 Fig. The effect of different decay rates (φ) on the effectiveness of the private resource

for the beneficial strain in the form of increased antibiotic-production rate for τ time.

High extracellular decay rates reduce the effectiveness of the antibiotic and thus decrease the

effectiveness of the help provided by the host to the beneficial microbe for τ time. Therefore, to

compensate for higher decay rates, higher effort is needed from the host either in the form of

more help (along the y-axis) or in the form of same amount of help provided for longer time

(x-axis). Results are shown for (a) zero (βB = 0) and for (b) modest (βB = 0.25) efflux rates. The

upper right areas correspond to beneficial-dominated outcomes, while the bottom left corners

correspond to parasite-dominated outcomes. The light (ochre) shadings represent the regions

in which the beneficial strain wins for more than 50% of the simulations, and the darker

(black) shaded areas mark the parameter combinations in which the parasitic strain wins for

the majority of simulations. The black lines mark the boundaries separating these two regions.

Model parameters are: rB,0 = 0.8, rP,0 = 0.8, c = 0.1, ρB,0 = 1, αB = 0.5, αP = 0.5, βP = 0, γB = 0.4,

γP = 0.4, D = 5, a = 1, T = 1, k = 25, N = 10 000, nB,0 = 100, nP,t = 10, κ = 1, f = 0.01, Δt = 1/10,

u = 100, r+ = 0, and s+ = 0.

(TIF)
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S2 Fig. The trade-off between the extracellular decay rate (φ) and the intracellular decom-

position rate (γ). High decay rates reduce the effect of the antibiotic; hence, the antibiotic is

effective against the parasitic strain only if the decomposition rate is low and the antibiotic

accumulates more quickly in the sensitive cells to lethal concentrations. Results are shown for

(a) low (D = 0.5) and (b) modest (D = 5) diffusion rates. The upper right areas correspond to

parasite-dominated outcomes, and the bottom left areas correspond to beneficial-dominated

outcomes. The light (ochre) shadings represent the regions in which the beneficial strain wins

for more than 50% of the simulations, and the darker (black) shaded areas mark the parameter

combinations in which the parasitic strain wins for the majority of simulations. The black lines

mark the boundaries separating these two regions. Model parameters are: rB,0 = 0.8, rP,0 = 0.8,

c = 0.1, ρB,0 = 1, αB = 0.5, αP = 0.5, βP = 0, a = 1, T = 1, k = 25, N = 10 000, nB,0 = 100, nP,t = 10,

κ = 1, f = 0.01, Δt = 1/10, u = 100, τ = 0, r+ = 0, s+ = 0, and ρ+ = 0.

(TIF)

S3 Fig. The trade-off between the cost of antibiotic production (c) and the effort provided

by the host to aid the beneficial strain (r+). The higher the cost of producing the antibiotic

(x-axis), the more support from the host, in the form of private resource increasing the growth

rate of the beneficial (y-axis) is required to secure the dominance of the beneficial strain. The

longer that the private resource is provided (τ) the higher the cost that can be tolerated. Results

are shown for (a) low (βB = 0), (b) modest (βB = 0.25), and (c) medium (βB = 0.5) efflux rates.

The upper left areas correspond to beneficial-dominated outcomes, while the right-hand and

bottom right areas correspond to parasite-dominated outcomes. The light (ochre) shadings

represent the regions in which the beneficial strain wins for more than 50% of the simulations,

and the darker (black) shaded areas mark the parameter combinations in which the parasitic

strain wins for the majority of simulations. The black lines mark the boundaries separating

these two regions. Model parameters are: rB,0 = 0.8, rP,0 = 0.8, ρB,0 = 1, αB = 0.5, αP = 0.5, βP =

0, γB = 0.4, γP = 0.4, φ = 0.3, D = 5, a = 1, T = 1, k = 25, N = 10 000, nB,0 = 100, nP,t = 10, κ = 1,

f = 0.01, Δt = 1/10, u = 100, s+ = 0, and ρ+ = 0.

(TIF)

S4 Fig. The relationship between the increasing cost of antibiotic production (c) and the

reproduction−rate reducing effect of the antibiotic on the parasitic strain (dosage effect,

a). The higher the cost of producing the antibiotic (x-axis), the more effective the antibiotic (y-

axis) must be to secure the dominance of the beneficial strain (where effectiveness is measured

as reducing the growth rate of the parasitic strain). Also, the higher the efflux rate (β), the

larger the cost can be tolerated. Very low (a; D = 0.5) and very high (c; D = 50) diffusion rates

hinder the effectiveness of the antibiotic, hence the highest costs are tolerated at medium (b;

D = 5) diffusion rates. The upper left corners correspond to beneficial-dominated outcomes,

while the right-hand and bottom right areas correspond to parasite-dominated outcomes. The

light (ochre) shadings represent the regions in which the beneficial strain wins for more than

50% of the simulations, and the darker (black) shaded areas mark the parameter combinations

in which the parasitic strain wins for the majority of simulations. The black lines mark the

boundaries separating these two regions. Model parameters are: rB,0 = 0.8, rP,0 = 0.8, ρB,0 = 1,

αB = 0.5, αP = 0.5, βP = 0, γB = 0.4, γP = 0.4, φ = 0.3, T = 1, k = 25, N = 10 000, nB,0 = 100, nP,t =

10, κ = 1, f = 0.01, Δt = 1/10, u = 100, τ = 2000, r+ = 0.4, s+ = 0, and ρ+ = 0.

(TIF)

S5 Fig. The trade-off between the growth rate of the beneficial strain (rB,0) and the cost of

producing the antibiotic by the beneficial strain (c). High reproduction rates allow for

higher costs, as the competitive disadvantage caused by the costly antibiotic production can be
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compensated by higher reproduction rates compared to that of the parasitic strain’s (rP,0 =

0.8). Higher efflux rates (βB = 0! βB = 1) can also help to compensate for a competitive disad-

vantage caused by lower reproduction rates and costly antibiotic production. Results are

shown for (a) low (D = 0.5), (b) medium (D = 5), and (c) high (D = 50) diffusion rates. Increas-

ing the diffusion rate further improves the effectiveness of the antibiotic, and hence the benefi-

cial can dominate even with relatively high cost and low reproduction rates, until a certain

point. Very high diffusion rates, on the other hand, hinder the effectiveness of the antibiotic.

The upper left areas correspond to parasite-dominated outcomes, while the bottom right cor-

ners correspond to beneficial-dominated outcomes. The light (ochre) shadings represent the

regions in which the beneficial strain wins for more than 50% of the simulations, and the

darker (black) shaded areas mark the parameter combinations in which the parasitic strain

wins for the majority of simulations. The black lines mark the boundaries separating these two

regions. Model parameters are: rP,0 = 0.8, c = 0.1, ρB,0 = 1, αB = 0.5, αP = 0.5, βP = 0, γB = 0.4, γP

= 0.4, φ = 0.3, D = 5, a = 1, T = 1, k = 25, N = 10 000, nB,0 = 100, nP,t = 10, κ = 1, f = 0.01,

Δt = 1/10, u = 100, τ = 2000, r+ = 0.4, s+ = 0, and ρ+ = 0.

(TIF)

S6 Fig. The relationship between invasion probability per update (f) and the start of inva-

sion of the parasitic strain (τ). During these simulations, the invasion of the parasitic strain is

blocked on the entire host surface, thus directing the host-provided resource entirely to the

beneficial strain, until time τ (τ = κ). The higher the probability of invasion by the parasite (y-

axis), the more time is necessary for the beneficial to reach a colony size big enough to resist

invasion (x-axis). The higher the extracellular decay rate is (φ), the more time is required for

the beneficial colony to become resistant to invasion, but this disadvantage can be compen-

sated by high efflux rates (βB = 0 for a and βB = 0.25 for b). There is a limit, however, to how

much invasion pressure the system can withstand; as can be seen, for high decay rates and

above a certain invasion pressure (high f values along the y-axis), even long-lasting host sup-

port cannot result in dominance of the beneficial strain. The upper left corners correspond to

parasite-dominated outcomes, while the bottom right areas correspond to beneficial-domi-

nated outcomes. The light (ochre) shadings represent the regions in which the beneficial strain

wins for more than 50% of the simulations, and the darker (black) shaded areas mark the

parameter combinations in which the parasitic strain wins for the majority of simulations. The

black lines mark the boundaries separating these two regions. Model parameters are: rB,0 = 0.8,

rP,0 = 0.8, c = 0.1, ρB,0 = 1, αB = 0.5, αP = 0.5, βP = 0, γB = 0.4, γP = 0.4, D = 5, a = 1, T = 1,

k = 25, N = 10 000, nB,0 = 100, nP,t = 10, Δt = 1/10, u = 100, r+ = 0, s+ = 1, and ρ+ = 0.

(TIF)
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