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a b s t r a c t

To carry out a clique search in a given graph in a parallel fashion, one divides the problem
into a very large number of smaller instances. To sort out as many resulted smaller
problems as possible, one can rely on upper estimates of the clique sizes. Legal coloring
of the nodes of the graphs is a commonly used tool to establish upper bound of the clique
size.Wewill point out that coloring of the nodes can also be used to divide the clique search
problem into smaller ones. We will introduce a non-conventional coloring of the edges of
the given graph. We will gather theoretical and computational evidence that the proposed
edge coloring provides better estimates for the clique size than the node coloring and can
be used to divide the original problem into subproblems.
© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Let G = (V , E) be a finite simple graph. It means that G has finitely many nodes, and G does not have double edges or
loops. Let k be a fixed positive integer. A subgraph ∆ of G is called a k-clique if each two distinct nodes of ∆ are adjacent,
and ∆ has k nodes. Sometimes we call a k-clique a clique of size k. A k-clique ∆ in G is called a maximal clique if ∆ is not a
subgraph of any (k + 1)-clique in G. A k-clique ∆ in G is called a maximum clique if G does not contain any (k + 1)-clique.
The size of a maximum clique in G is called as the clique number of G, and it is denoted by ω(G).

We describe the clique search problems relevant to this paper.

Problem 1. Given a finite simple graph G and given a positive integer k. Decide if G contains a k-clique.

Problem 1 is a decision problem, and it is well-known that it belongs to the NP-complete complexity class [9].

Problem 2. Given a finite simple graph G and a positive integer k. List all k-cliques in G.

It is clear that Problem 2 is not a decision problem and that it cannot be computationally less demanding than Problem 1.
In other words Problem 2 belongs to the NP-hard complexity class.

Clique search problems havemany practical applications, and there is a considerable amount of research devoted to them.
For details, see for example [3,8,10,11,13,16,18].
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Definition 1. We color the nodes of a given finite simple graph Gwith k colors such that

(1) each node receives exactly one of the colors.
(2) adjacent nodes never receive the same color.

This is themost commonly encountered coloring of the nodes of a graph.Wewill refer to it as a legal coloring of the nodes
of G. If the nodes of G have a legal coloring with k colors, then ω(G) ≤ k.

We will point out that coloring of the nodes of the graph helps in dividing the problem into a large number of smaller
problems that can be executed in a completely independent fashion. In other words coloring the nodes is relevant in
constructing parallel clique search algorithms. This is one of the main results of the paper. As the other main result of this
paper, we propose a non-conventional coloring of the edges of a graph, in contrast to edge coloring proposed by Vizing [20].

Definition 2. We color the edges of a graph Gwith k colors in the following way.

(1) Each edge receives exactly one color.
(2) If x, y, z are distinct nodes of a 3-clique in G, then the edges {x, y}, {y, z}, {x, z} cannot receive the same color.
(3) If x, y, u, v are distinct nodes of a 4-clique in G, then the edges {x, y}, {u, v} cannot receive the same color.

We call this type of coloring of the edges of G a legal edge coloring. It turns out that if the edges of G can be legally colored
with t colors and k is the largest integer for which k(k − 1)/2 ≤ t holds, then ω(G) ≤ k. Therefore, legal coloring the edges
of a graph G can be used to establish an upper bound for ω(G).

The outline of the paper is the following. In Section 2 we will define a set of nodes, the so-called k-clique covering set,
that plays a role in dividing a clique search problem into smaller problems. Wewill point out that legal coloring of the nodes
can be used to construct such sets.

In order to use legal edge coloring to divide a clique search problem into smaller problems, we define a k-clique covering
edge set in Section 3.Wewill introduce the concept of quasi-coloring of the nodes and show how this concept can be utilized
in constructing k-clique covering edge sets.

We will introduce the concept of derived graph and show that legal edge coloring cannot give weaker clique estimates
than the legal node coloring.

In order to compare the performances of greedy node and edge colorings in Section 4, we carried out a large-scale
numerical experiment. The benchmark problems and the results are presented in the last part of the paper. The results
confirm that the proposed edge coloringmethod systematically gives us better estimates than legal coloring.We also present
examples of when the edge coloring can actually give better bound than the chromatic number.

2. k-clique covering node set and coloring of the nodes

Definition 3. Let G = (V , E) be a finite simple graph, and let k be a positive integer. Let W ⊆ V . If each k-clique in G has at
least one node inW , then we callW a k-clique covering node set of G. (See Fig. 1.)

LetW be a k-clique covering node set in G and let

{v1, v2, . . . , vn}

be all the nodes in W . Consider the subgraph Hi of G induced by the set of nodes N(vi) in G for each i, 1 ≤ i ≤ n. Here N(vi)
denotes the set of all the nodes of V that are neighbors to vi.

Let∆ be a k-clique in G. The definition ofW states that vi is a node of∆ for some i, 1 ≤ i ≤ n. Consequently, the subgraph
Hi contains exactly k − 1 nodes of the clique ∆. This observation has a clear intuitive meaning. The problem of locating a
k-clique in G can be reduced to a list of smaller problems of locating a (k − 1)-clique in the graph Hi for each i, 1 ≤ i ≤ n.

The smaller is the n, the fewer are the subproblems we end up with.

Problem 3. Given a finite simple graph G and a positive integer k, find a minimum size k-clique covering set in G.

Problem 3 cannot be computationally easier than Problem 1, and so Problem 3 belongs to the NP-hard complexity class.
The message is that determining the optimal size of the k-clique covering node sets is a computationally demanding

problem. For this reason, instead of workingwith optimal size k-clique covering node sets, wewill workwith not necessarily
optimal size k-clique covering node sets. There are many widely-used methods in the literature for colorings of the nodes,
as for example in [4,6]. One should color the nodes of the graph legally, and then choose the (k − 1) biggest color classes
C1, C2, . . . , Ck−1. Let the set of nodes U be the union of these color classes. Clearly, the maximum clique in the subgraph
induced by U at most (k − 1) as the coloring puts an upper bound on the clique size. From this, it follows that for any
k-clique, there should be at least one node outside this set U , so the nodes outside these color classes, namely the nodes in
the setW = V \U , are forming a k-clique covering node set. This implies that the above described subproblems of searching
(k−1)-cliques in the Hi induced subgraphs will form a branching in a Branch-and-Bound algorithm. In fact this method was
described with some minor modifications in considerable details in [1]. We included it as an example to illustrate our more
general approach.
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Fig. 1. 5-clique covering node set.

3. k-clique covering edge set and quasi-coloring

Definition 4. Let G = (V , E) be a finite simple graph, and let k be a positive integer. Let F ⊆ E. If each k-clique in G has at
least one edge in F , then we call F a k-clique covering edge set of G. (See Fig. 2.)

Let F be a k-clique covering edge set in G and let

e1 = {u1, v1}, . . . , en = {un, vn}

be all the edges in F . Consider the subgraph Hi of G induced by the set of nodes N(ui) ∩ N(vi) in G for each i, 1 ≤ i ≤ n.
Let ∆ be a k-clique in G. The definition of F gives that ei = {ui, vi} is an edge of ∆ for some i, 1 ≤ i ≤ n. Consequently,

the subgraph Hi contains exactly k − 2 nodes of the clique ∆. This observation has a clear intuitive meaning. The problem
of locating a k-clique in G can be reduced to a list of smaller problems of locating a (k − 2)-clique in the graph Hi for each i,
1 ≤ i ≤ n.

The smaller the n, the fewer the subproblems we end up with. Thus starting with a k-clique covering edge set with a
minimum number of edges may lead to saving computational resources.

Problem 4. Given a finite simple graph G and a positive integer k. What is the minimum size of a k-clique covering edge set
in G?

A standard argument gives that Problem 4 is in the NP-hard complexity class [7,13,14].
Themessage of this observation is that determining the optimal size of the k-clique covering edge sets is a computationally

demanding problem. For this reason, instead of workingwith optimal size k-clique covering edge sets, wewill workwith not
necessarily optimal size k-clique covering edge sets. We will describe polynomial running time greedy algorithms to locate
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Fig. 2. 5-clique covering edge set.

suboptimal k-clique covering edge sets. These greedy algorithms are based on coloring the nodes or edges of the given graph.
We try to assess the performance of these greedy algorithms by carrying out large-scale numerical experiments.

Let G = (V , E) be a finite simple graph. We partition V into the subsets V1, . . . , Vk. Let us consider the particular case
when Vi is an independent set in G. In other words, for each distinct u, v ∈ Vi, the unordered pair {u, v} is not an edge of G. If
Vi is an independent set in G for each i, 1 ≤ i ≤ k, then we can use the sets V1, . . . , Vk to define a legal coloring of the nodes
of G. Namely, we identify the sets V1, . . . , Vk with the color classes of the coloring. In plain English, we color the node v of G
with the color i whenever v ∈ Vi.

Let Li be the subgraph of G induced by the node set Vi in G for each i, 1 ≤ i ≤ k. Let ti be the number of edges of the graph
Li. In the special case ti = 0, the set Vi is an independent set in G. When ti ̸= 0, then the set Vi is not an independent set in
G. The smaller the value of ti, the closer Vi is to being an independent set in G.

Definition 5. We refer to the edges of the graph Li as disturbing edges of the graph G. Set t = t1 + · · · + tk. We call the
partition V1, . . . , Vk of the node set V of G a (k, t)-quasi-coloring of the nodes of G.

The closer the value of t to zero, the closer the quasi-coloring is to being a legal coloring of the nodes of G.
Suppose that the partition V1, . . . , Vk−1 of the node set V of G is a (k − 1, t)-quasi-coloring of the nodes of G. Let

e1 = {u1, v1}, . . . , et = {ut , vt}

be all the disturbing edges of the graph G.

Lemma 1. The edge set F = {e1, . . . , et} is a k-clique covering edge set in the graph G.
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Table 1
The four cases.

Case 1 x = y u = v

Case 2 x = y u ̸= v

Case 3 x ̸= y u = v

Case 4 y ̸= y u ̸= v

Proof. Let us delete the disturbing edges e1, . . . , et from the graph G and let G′ be the resulting graph. (When we delete the
edges, we never delete any of the end nodes of the edges.) Note that the nodes of G′ have a legal coloring using k − 1 colors.
It follows that ω(G′) ≤ k − 1.

Let us pick a k-clique ∆ in G. If ei is not an edge of ∆ for each i, 1 ≤ i ≤ t , then ∆ is a k-clique in the graph G′. However,
this is not possible asω(G′) ≤ k−1. Therefore, ei is an edge of∆ for some i, 1 ≤ i ≤ t . In other words, F is a k-clique covering
edge set in G. □

The main difference between the node coloring based k-clique covering node set and the above described k-clique
covering edge set is that the second divides the problem into a larger collection of independent subproblems. Numerical
experiments show that when in the first case one gets around 10–100 subproblems in connection with a given graph, in
the second case one gets over 1000 subproblems [22]. This illustrates that the k-clique covering edge set is more suitable
for large-scale parallelization up to thousand processors. In fact, we used this approach with some modifications in our
previously published work with great success [22].

3.1. A greedy algorithm for quasi-coloring the nodes

We know from Section 3 that constructing a (k − 1, t)-quasi-coloring is sufficient to locate a k-clique covering edge set.
We would prefer quasi-coloring with a minimum value of t since this is the number of the subproblems we are facing. This
motivates the following problem.

Problem 5. Given a finite simple graph G and given a positive integer k, construct a (k − 1, t)-quasi-coloring of G for which
the value of t is the smallest possible.

A routine considerationprovides that Problem5 isNP-hard. The intuitivemeaning of this fact is that determining (k−1, t)-
quasi-colorings with a minimum value of t is a computationally expensive task. Thus in practical computations we have to
accept (k − 1, t)-quasi-colorings with suboptimal values of t .

There are simple and practical greedy algorithms to color the nodes of a graph in a legal manner. A legal coloring of the
nodes such as [4,6] can be used conveniently to construct a quasi coloring of the nodes of this graph. Suppose we would
like to construct a (k − 1, t)-quasi-coloring of the nodes of the graph G, where k is a given specified number. Using a greedy
coloring algorithm, we color the nodes of the graph G legally involving r colors, and C1, . . . , Cr are the color classes.

The colors classes C1, . . . , Cr may play the roles of the quasi-color classes V1, . . . , Vr , and we end up with a (r, 0)-quasi-
coloring of the nodes of G. If r ≤ k − 1, then there is nothing left to do.

In the r > k − 1 case, we still set V1 = C1, . . . , Vr = Cr . Note that by uniting two quasi-color classes Vi and Vj in a
(r, p)-quasi-coloring, we get a (r − 1, p + q)-quasi-coloring. Here q is the number of such edges of Gwhose one end node is
in Vi, and the other end node is in Vj. In a greedy manner, we will choose Vi and Vj in such a way which keeps the value of q
as small as possible. Repeating this procedure, finally we get a (k − 1, t)-quasi-coloring of the node of G.

Note that with a little extra work, we might be able to further reduce the value of t . If moving a vertex to another quasi-
color class reduces the number of disturbing edges, then move it, and repeat this until such vertex exists.

3.2. The derived graph

Using a finite simple graph G = (V , E) we construct a new graph Γ = (W , F ). The nodes of Γ are the edges of G. Let
{x, u}, {y, v} be distinct edges of G. Let us consider the subgraph H of G induced by the set {x, y, u, v}. If H is a clique in G,
then the nodes {x, u}, {y, v} of Γ are connected by an edge in Γ .

Let us distinguish four cases depicted in Table 1.
In case 1, the edges {x, u}, {y, v} of G are identical, contrary to our assumption that the edges are distinct. In other words,

this case cannot occur. In case 2, we connect the nodes {x, u}, {y, v} ofΓ if {u, v} is an edge of G, that is, if {u, v} ∈ E. Similarly,
in case 3, we connect the nodes {x, u}, {y, v} of Γ if {x, y} ∈ E. Finally, in case 4, we connect the nodes {x, u}, {y, v} in Γ if
each of the unordered pairs {x, y}, {u, v}, {x, v}, {y, u} is an edge of G.

Definition 6. The graph Γ we just constructed from G is called the derived graph of G.

Lemma 2. If there is an m-clique in G, then there is an [m(m − 1)/2]-clique in Γ .
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Proof. Let ∆ be an m-clique in G. The clique ∆ has m(m − 1)/2 edges in G. These edges of G form m(m − 1)/2 nodes in Γ ,
and clearly any two distinct nodes among these nodes are connected in Γ . □

Lemma 3. If there is a maximum r-clique in Γ , then there is an m-clique in G such that r = m(m − 1)/2.

Proof. Let Ω be a maximum r-clique in Γ , such that

W = {{x1, u1}, . . . , {xr , ur}}

is the set of nodes of Ω in Γ . Set

U = {x1, u1, . . . , xr , ur}.

Of course theremay be repetition among the elements x1, u1, . . . , xr , ur . We claim that if x, y are distinct elements of U , then
the unordered pair {x, y} is an edge of G. Indeed, since x ∈ U , there is an u ∈ U , such that {x, u} ∈ W . Similarly, since y ∈ U ,
there is a v ∈ U for which {y, v} ∈ W . In case 1, the edges {x, u}, {y, v} of G are identical. Case 2 is not possible since x ̸= y.
In case 3, the end points of the edges {x, u}, {x, v}, {x, y} of G are nodes of the clique Ω in Γ . In case 4, the end points of the
edges

{x, u}, {x, v}, {x, y}, {u, v}, {x, v}, {y, u}

of G are nodes of the clique Ω n Γ . In each possible case, the unordered pair {x, y} is an edge in G. From the fact that Ω is a
maximum clique in Γ , it follows that

W = {{x, y} : x, y ∈ U, x ̸= y}

and so r = |W | = m(m − 1)/2, where |U | = m. The subgraph spanned by U in G is a clique ∆ in G. Since |U | = m, it follows
that ∆ is an m-clique in G. □

A legal coloring of the nodes of the graph Γ leads a legal coloring of the edges of G. The graph Γ is typically much larger
than the graph G. For instance when G has 1000 nodes and 400 000 edges, then the derived graph Γ has 400 000 nodes. A
greedy sequential coloring of the edges ofG can be carried out using the adjacencymatrix ofG. That is, for a greedy sequential
coloring of the edges of G, we do not need to construct and store the adjacency matrix of Γ . If G has n nodes, then the colors
of the edges of G can be stored in an n by nmatrix such that the entry at the intersection of row p and column q contains the
colors of the edge {p, q}. In fact, the coloring of the edges of G can be stored in the entries that are above the main diagonal
of the matrix. Therefore, if needed, one can store two simultaneous colorings of the edges of G in one n by nmatrix.

The edge coloring of G can be utilized relatively easily in the known clique search algorithms like the Caraghan–Pardalos
algorithm [5]. Before starting the clique search algorithm, we color the edges of the graph G and store the edge coloring in a
matrixM . The clique search algorithms typically unfold by constructing a search tree. The nodes of the search tree represent
subgraphs of G. Suppose that the subgraph represented by a node of the search tree is spanned by the subset U of the nodes
of G. The rows and columns of the matrixM are labeled by the nodes of G. The subset U identifies a submatrix N ofM . From
the matrix N , one can read off the number of colors used to color the edges of the subgraph of G spanned by U . The number
of colors provides an upper bound for the clique size of the subgraph. This upper estimate may lead to the elimination of the
subgraph from the search. In other words, an edge coloring of G can be used to prune the search tree. Since we may store
2, 4, 6, . . . edge colorings conveniently, it looks reasonable to try to use an even number of edge colorings.

Observation 1. The size t of a maximal clique in the derived graph of a finite simple graph must be in the form t = s(s− 1)/2 for
some integer s ≥ 2.

Proof. Let G be a finite and let Γ be the derived graph of G. Suppose that Γ contains a maximal t-clique ∆, where t ≥ 1.
Let {x1, y1}, . . . , {xt , yt} be the nodes of ∆. Let u1, . . . , us be all the distinct nodes among the nodes x1, y1, . . . , xt , yt of G and
set U = {u1, . . . , us}. Note that U is the set of nodes of a maximal s-clique in G and so {ui, uj}, 1 ≤ i < j ≤ s are nodes of a
maximal clique of size s(s − 1)/2 in Γ . □

Let G = (V , E) be a finite simple graph.

Observation 2. If there is a legal coloring of the edges of G with t colors, then ω(G) ≤ (1 +
√
1 + 8t)/2.

Proof. Set ω(G) = k. It follows that G contains a k-clique ∆. Then the edges of ∆ need at least k(k − 1)/2 colors in a legal
edge coloring. This means k(k − 1)/2 ≤ t must hold. In other words, if k is a positive integer for which t < k(k − 1)/2, then
G cannot contain a k-clique. Shortly, t < k(k − 1)/2 implies ω(G) < k, or equivalently, t ≤ k(k − 1)/2 implies ω(G) ≤ k.

The inequality t ≤ k(k − 1)/2 holds for k ≤ (1 −
√
1 + 8t)/2 or for (1 +

√
1 + 8t)/2 ≤ k. As ω(G), k, t are non-negative

integers, ω(G) ≤ (1 +
√
1 + 8t)/2. □
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Fig. 3. The adjacency matrix in the proof of Lemma 4.

Replacing t by χ (Γ ) in Observation 2, we get

ω(G) ≤ (1 +

√
1 + 8χ (Γ ))/2. (1)

It is known that

ω(G) ≤ χ (G). (2)

Between the two upper bounds (1) and (2), the first one is the better. This claim is equivalent to

(1 +

√
1 + 8χ (Γ ))/2 ≤ χ (G),

which in turn is equivalent to

χ (Γ ) ≤ {χ (G)[χ (G) − 1]/2}.

Lemma 4. Let G be a finite simple graph and let Γ be the derived graph of G. Then χ (Γ ) ≤ {χ (G)[χ (G) − 1]/2}.

Proof. Let s = χ (G). There is a legal coloring of the nodes of G with s colors. We will show that there is a legal coloring of
the edges of Gwith s(s − 1)/2 colors.

Let C1, . . . , Cs be the color classes of the legal coloring of the nodes of G. Let t = s(s− 1)/2. We list the ordered pairs (i, j),
1 ≤ i < j ≤ s in a fixed order and number them by the numbers 1, 2, . . . , t . In other words, we define a bijection f between
the sets {(i, j) : 1 ≤ i < j ≤ s} and {1, 2, . . . , t}. If the unordered pair {x, y} is an edge of G such that x ∈ Ci and y ∈ Cj, then
we color the edge {x, y} with the color f ((i, j)).

We claim that this is a legal coloring of the edges of G. In order to prove the claim, let {u, v} and {x, y} be distinct edges of
G. As {u, v} is an edge of G and as G does not contain any loop, u ̸= v must hold. Similarly, x ̸= y must hold. Since the edges
{u, v} and {x, y} are distinct, |{u, v, x, y}| is either 3 or 4.

In the case |{u, v, x, y}| = 3, we may assume that u = x since this is only a matter of changing the labeling of the nodes.
As {u, v} is an edge of G, the nodes u and v receive different colors in a legal coloring of the nodes of G. For the sake of
definiteness, we assume that u receives color 1 and v receives color 2. Thus u ∈ C1 and v ∈ C2. It means that the edge {u, v}

is colored with color f ((1, 2)).
The legal coloring of the edges of G is violated only if {y, v} is an edge of G and {x, y} is colored with color f ((1, 2)). In this

situation, x ∈ C1 and y ∈ C2. Now v ∈ C2 and y ∈ C2. In particular, the nodes v and y of G receive the same color in a legal
coloring of the nodes of G. This is clearly not possible as y and v are adjacent nodes in G. The first diagram of Fig. 3 illustrates
the argument in the adjacency matrix of G.

Let us turn to the case |{u, v, x, y}| = 4. Now the nodes u, v, x, y are the nodes of a 4-clique in G. As {u, v} is an edge of G,
the nodes u and v receive different colors in a legal coloring of the nodes of G. We assume that u ∈ C1 and v ∈ C2. The legal
coloring of the edges of G is violated only if

{u, x}, {u, y}, {v, x}, {v, y}

are edges of G and the edge {x, y} receives color f ((1, 2)). By symmetry, we may assume that x ∈ C1 and y ∈ C2. Note that
u ∈ C1 and x ∈ C1. Next note that {u, x} is an edge of G. The fact that adjacent nodes in a legal coloring of the nodes receive
the same color is an outright contradiction. The second diagram of Fig. 3 illustrates the argument in the adjacency matrix
of G. □

4. Numerical results

Using a greedy algorithm, one can color the nodes or the edges of the given graph G. The number of colors provide upper
estimates forω(G). In order to get reliable results, we selected test graphs to cover a broad range and carried out a large-scale
numerical experiment to compare the upper estimates for the clique size ω(G).
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Table 2
The symbols used for labeling the columns.

|V | Number of nodes
|E| Number of edges
ω The actual clique number
χN The actual node chromatic number
χN Estimate of χN by the algorithm
ω The estimate for ω using χN
χE Estimate of the χE by the algorithm
ω̂ The estimate for ω using χE

Table 3
Monotonic matrix, sequential greedy coloring.

n |V | |E| χN ω χE ω̂

3 27 189 6 6 10 5
4 64 1296 12 12 37 9
5 125 5500 20 20 113 15
6 216 17550 30 30 273 23
7 343 46305 42 42 565 34
8 512 106624 56 56 1063 46
9 729 221616 72 72 1807 60

10 1000 425250 90 90 2922 76
11 1331 765325 110 110 4477 95
12 1728 1306800 132 132 6602 115
13 2197 2135484 156 156 9390 137
14 2744 3362086 182 182 12998 161
15 3375 5126625 210 210 17600 188

We used the simplest greedy sequential coloring algorithm to construct a legal coloring of the nodes of G and its derived
graph Γ . As a more sophisticated approach, we employed Brelaz’s algorithm [4] to color the nodes of G and its derived
graph Γ .

These coloring algorithms are fairly efficient. The running times for the node coloring were under a second, as the graphs
mostly had a few thousand nodes.

Constructing a legal edge coloring was accomplished by legally coloring the nodes of the derived graphs. The derived
graphs have as many nodes as the number of the edges of G. These problems were more time consuming. Some graphs
had 8 million edges. Therefore, the corresponding derived graphs had 8 million nodes. The running times were in hours
for the bigger instances. When we used Brelaz’s algorithm for coloring the edges of the largest instances, we relied on a
supercomputerwith a hundred CPU-s. The program ran for a couple of hours.We have not listed the exact running times. The
reason is the following: programs run ondifferent computers, so the running times are not directly comparable. Furthermore,
these colorings can be separated from the main body of the clique search algorithms. Legal coloring of the nodes or edges
serves simply as a preconditioning step before an actual clique search. The running times of the coloring phase areway below
the running times of an actual clique search algorithm. Note that the problems that needed a supercomputer to color them
are far beyond the potentials of any clique search program, and onemay consider that such a searchwould run for thousands
of years. Finally, our primary aim in this paper was to demonstrate that these colorings can be carried out in reasonable time
and provide useful bounds.

In our paper, we focused on the theoretical background, so we do not aim to perform tests on all possible graphs known
in the maximum clique search literature. These test graphs are commonly used to test the performance of various clique
search algorithms, and our aim is not such comparison. We selected three families of graphs as benchmark tests. The
members of these families are covering a large range of graphs. Some of these problems are not demanding for the standard
clique search algorithms while other graphs are hard instances and some of them are just not solvable with the present
solvers.

The selected test graphs are related to the constructions of monotonic matrices, single deletion error detecting codes and
Johnson’s codes (with number of 1s is equal to 4 and the Hamming distance is equal to 3). For more background information
on these graphs, the reader should consult the references [8,15,17,21].

The results are summarized conveniently in form of tables (see Tables 3–8). The symbols used for labeling the columns
are summarized in Table 2.

The comparison of the results is depicted in graphs (see Figs. 4 and 5). The results of the numerical experiments show
that the legal edge coloring provides better estimates for the clique number than the legal node colorings. It is also clear that
as the problems get harder this difference becomes more and more pronounced. Also, the node coloring was never better
than the edge coloring. Given these results, we were thinking that because the edge coloring able to outperform the node
colorings, this will also give an estimate under the chromatic number, which is obviously a limit that any node coloring
cannot supersede.
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Table 4
Monotonic matrix, Brelaz’s coloring.

n |V | |E| χN ω χE ω̂

3 27 189 5 5 10 5
4 64 1296 10 10 31 8
5 125 5500 16 16 82 13
6 216 17550 24 24 192 20
7 343 46305 35 35 400 28
8 512 106624 45 45 747 39
9 729 221616 60 60 1289 51

10 1000 425250 75 75 2073 64
11 1331 765325 91 91 3135 79
12 1728 1306800 109 109 4582 96
13 2197 2135484 128 128 6509 114
14 2744 3362086 156 156 8948 134
15 3375 5126625 178 178 11981 155

Table 5
Deletion error correcting code, sequential greedy coloring.

n |V | |E| χN ω χE ω̂

3 8 9 2 2 1 2
4 16 57 4 4 6 4
5 32 305 8 8 17 6
6 64 1473 14 14 60 11
7 128 6657 26 26 221 21
8 256 28801 50 50 875 42
9 512 121089 101 101 3406 83

10 1024 499713 199 199 13081 162
11 2048 2037761 395 395 49268 314
12 4096 8247297 782 782 186246 610

Table 6
Deletion error correcting code, Brelaz’s coloring.

n |V | |E| χN ω χE ω̂

3 8 9 2 2 1 2
4 16 57 4 4 6 4
5 32 305 6 6 15 6
6 64 1473 12 12 50 10
7 128 6657 22 22 189 19
8 256 28801 42 42 762 39
9 512 121089 81 81 2908 76

10 1024 499713 157 157 10568 145
11 2048 2037761 306 306 37481 274

Table 7
Johnson code, sequential greedy coloring.

n |V | |E| χN ω χE ω̂

6 15 45 4 4 3 3
7 35 385 10 10 23 7
8 70 1855 20 20 107 15
9 126 6615 35 35 391 28

10 210 19425 56 56 1131 48
11 330 49665 84 84 2754 74
12 495 114345 120 120 5918 109
13 715 242385 165 165 11610 152
14 1001 480480 220 220 21172 206
15 1365 900900 286 286 36514 270
16 1820 1611610 364 364 60054 347
17 2380 2769130 455 455 95038 436
18 3060 4594590 560 560 145441 539
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Fig. 4. Summary of the numerical data.

Fig. 5. Summary of the numerical data.

However, the chromatic numbers of our test graphs are not all known. Therefore, we do not know how the results of the
greedy colorings compare with the actual chromatic numbers from the first set of tests.

We then selected families of graphs with known chromatic and clique numbers as benchmark problems. These are the
so-called Kneser andMycielski graphs. The definitions of these graphs can be found in [2,12].We also used the product of the
Mycielski and a complete graph. In a complete graph, one replaces each node by aMycielski graph. This construction is called
the product of a Mycielski graph and a complete graph. For the last construction, see [19]. The results are very promising, as
there are several cases where the edge coloring bound was under the chromatic number of the given graph. See columns χN
and ω̂. We highlighted these occurrences by boldface type letters (see Tables 9–12).



128 S. Szabó, B. Zavalnij / Discrete Applied Mathematics 242 (2018) 118–129

Table 8
Johnson code, Brelaz’s coloring.

n |V | |E| χN ω χE ω̂

6 15 45 4 4 3 3
7 35 385 9 9 24 7
8 70 1855 14 14 109 15
9 126 6615 28 28 332 26

10 210 19425 44 44 861 42
11 330 49665 64 64 1880 61
12 495 114345 92 92 3612 85
13 715 242385 126 126 6289 112
14 1001 480480 169 169 10411 144
15 1365 900900 216 216 16633 181
16 1820 1611610 277 277 24877 223
17 2380 2769130 344 344 37123 272

Table 9
Kneser graph, sequential greedy coloring.

n k |V | |E| ω χN χN ω χE ω̂

15 1 15 105 15 15 15 15 105 15
15 2 105 4095 7 13 13 13 63 12
15 3 445 50050 5 11 11 11 32 8
15 4 1365 225225 3 9 9 9 10 5
15 5 3003 378378 3 7 7 7 3 3
16 1 16 120 16 16 16 16 120 16
16 2 120 5460 8 14 14 14 75 12
16 3 560 80080 5 12 12 12 40 9
16 4 1820 450450 4 10 10 10 16 6

Table 10
Kneser graph, Brelaz’s coloring.

n k |V | |E| ω χN χN ω χE ω̂

15 1 15 105 15 15 15 15 105 15
15 2 105 4095 7 13 13 13 55 11
15 3 445 50050 5 11 11 11 46 10
15 4 1365 225225 3 9 9 9 16 5
15 5 3003 378378 3 7 8 8 3 3
16 1 16 120 16 16 16 16 120 16
16 2 120 5460 8 14 14 14 62 11
16 3 560 80080 5 12 12 12 57 11
16 4 1820 450450 4 10 10 10 32 8

Table 11
Mycielski graphs, Brelaz’s coloring.

k |V | |E| ω χN χN ω χE ω̂

7 95 755 2 7 7 7 1 2
8 191 2360 2 8 8 8 1 2
9 383 7271 2 9 9 9 1 2

10 767 22196 2 10 10 10 1 2
11 1535 67355 2 11 11 11 1 2
12 3071 203600 2 12 12 12 1 2
13 6143 613871 2 13 13 13 1 2
14 12287 1847756 2 14 14 14 1 2

Table 12
Product of an Kn and a k-Mycielski graph, Brelaz’s coloring.

n k |V | |E| ω χN χN ω χE ω̂

3 7 285 29340 6 21 21 21 81 13
6 7 570 139905 12 42 42 42 434 29
9 7 855 331695 18 63 63 63 1053 46

12 7 1140 604710 24 84 84 84 1931 62
3 8 573 116523 6 24 24 24 107 15
6 8 1146 561375 12 48 48 48 558 33
9 8 1719 1334556 18 72 72 72 1362 52

12 8 2292 2436066 24 96 96 96 2540 71
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