
Further Results on the Power of Generating
APCol Systems

Lucie Ciencialová1, Luděk Cienciala1, and Erzsébet Csuhaj-Varjú2

1 Institute of Computer Science, Silesian University in Opava, Czech Republic
lucie.ciencialova@fpf.slu.cz

ludek.cienciala@fpf.slu.cz
2 Faculty of Informatics, Eötvös Loránd University, Budapest, Hungary

csuhaj@inf.elte.hu

Summary. In this paper we continue our investigations in APCol systems (Automaton-
like P colonies), variants of P colonies where the environment of the agents is given by a
string and the functioning of the system resembles to the functioning of standard finite
automaton. We first deal with the concept of determinism in these systems and compare
deterministic APCol systems with deterministic register machines. Then we focus on
generating non-deterministic APCol systems with only one agent. We show that these
systems are as powerful as 0-type grammars, i.e., generate any recursively enumerable
language. If the APCol system is non-erasing, then any context-sensitive language can
be generated by a non-deterministic APCol systems with only one agent.

1 Introduction

Automaton-like P colonies (APCol systems, for short), introduced in [1], are vari-
ants of of P colonies (introduced in [10]) - very simple membrane systems inspired
by colonies of formal grammars. The interested reader is referred to [14] for de-
tailed information on membrane systems (P systems) and to [11] and [5] for more
information to grammar systems theory. For more details on P colonies consult
the surveys [9] and [4].

An APCol system consists of a finite number of agents - finite collections of
objects in a cell - and their joint shared environment. The agents have programs
consisting of rules. These rules are of two types: they may change the objects of the
agents and they can be used for interacting with the joint shared environment of
the agents. While in the case of standard P colonies the environment is a multiset
of objects, in case of APCol systems it is represented by a string. The number of
objects inside each agent is set by definition and it is usually a very small number:
1, 2 or 3. The string representing the environment is processed by the agents and it
is used as an indirect communication channel for the agents as well, since through
the string, the agents are able to affect the behaviour of another agent. It can easily

80 Lucie Ciencialová, Luděk Cienciala, and Erzsébet Csuhaj-Varjú

be observed that APCol systems resemble automata. The current configuration of
the system (the objects inside the agents) and the current string representing the
environment correspond to the current state of the automaton and the currently
processed input string.

The agents may perform rewriting, communication or checking rules [10]. A
rewriting rule a→ b allows the agent to rewrite one object a to object b. Rewriting
rules are also called evolution rules. Both objects are placed inside the agent.
Communication rule c↔ d makes possible to exchange object c placed inside the
agent with object d in the string. A checking rule is formed from two rules r1, r2 of
type rewriting or communication. It sets a kind of priority between the two rules
r1 and r2. The agent tries to apply the first rule and if it cannot be performed,
then the agent performs the second rule. The rules are combined into programs in
such a way that all objects inside the agent are affected by execution of the rules.
Thus, the number of rules in the program is the same as the number of objects
inside the agent.

The computation in APCol systems starts with the an input string, represent-
ing the initial state of the environment, and with each agents having only symbols
e inside.

A computational step means a maximally parallel action of the active agents,
i.e., agents that can apply their rules. Every symbol can be object of the action of
only one agent. The computation ends if the input string is reduced to the empty
word, there are no more applicable programs in the system, and meantime at least
one of the agents is in so-called final state. This mode of computation is called
accepting. APCol systems can also be used not only for accepting but generating
strings. For more detailed information on APCol systems we refer to [2, 3].

In the first part of this paper, we deal with both variants of modes of compu-
tation. In general, a computation of APCol system is non-deterministic. It means
that in every configuration one set of maximal sets of applicable programs is non-
deterministically chosen to be executed. We focus on such APCol systems that
there exists only one maximal set of applicable programs in each configuration -
deterministic APCol systems. The second part of this paper is devoted to non-
deterministic generating APCol systems with one agent only.

2 Preliminaries and Basic Notions

Throughout the paper we assume the reader to be familiar with the basics of the
formal language theory and membrane computing [15, 14].

For an alphabet Σ, the set of all words over Σ (including the empty word, ε),
is denoted by Σ∗. We denote the length of a word w ∈ Σ∗ by |w| and the number
of occurrences of the symbol a ∈ Σ in w by |w|a.

A multiset of objects M is a pair M = (O, f), where O is an arbitrary (not
necessarily finite) set of objects and f is a mapping f : O → N ; f assigns to each
object in O its multiplicity in M . Any multiset of objects M with the set of

Further Results on the Power of Generating APCol Systems 81

objects O = {x1, . . . xn} can be represented as a string w over alphabet O with
|w|xi

= f(xi); 1 ≤ i ≤ n. Obviously, all words obtained from w by permuting
the letters can also represent the same multiset M , and ε represents the empty
multiset.

2.1 Register machine

Definition 1. [13] A register machine is a construct M = (m,H, l0, lh, P) where

• m is the number of registers,
• H is the set of instruction labels,
• l0 is the start label,
• lh is the final label,
• P is a finite set of instructions injectively labelled with the elements from the set

H.

The instructions of the register machine are one of the following forms:
l1 : (ADD(r), l2, l3) Add 1 to the content of the register r and proceed to the in-

struction (labelled with) l2 or l3.
l1 : (SUB(r), l2, l3) If the register r stores the value different from zero, then

subtract 1 from its content and go to instruction l2, other-
wise proceed to instruction l3.

lh : HALT Halt the machine. The final label lh is only assigned to this
instruction.

If every ADD-instructions of M is of the form ADD-instruction l1 : (ADD(r), l2),
then M is called a deterministic register machine.

Register machine M accepts a set N(M) of numbers in the following way:
it starts with number x ∈ N in the first register and all the other registers are
empty (hence storing the number zero) and with the instruction labelled l0. Then
it proceeds to apply the instructions as indicated by the labels (and made possible
by the contents of registers). If it reaches the halt instruction and all registers are
empty, the input is said to be accepted by M and hence it is introduced in N(M).

It is known that any recursively enumerable set of natural numbers can be
accepted by a deterministic register machine with at most three registers.

Register machines can also generate sets of natural numbers. In this case the
first register is dedicated as the output register. The register machine starts with
empty registers (registers storing zero) and with instruction l0. Then it proceeds
with executing instructions, according to their labels. After halting, the generated
number is the value of stored in the first register.

2.2 APCol systems

In the following we recall the notion of an APCol system (an automaton-like P
colony) [1].

82 Lucie Ciencialová, Luděk Cienciala, and Erzsébet Csuhaj-Varjú

As standard P colonies, agents of the APCol systems contain objects, each of
them is an element of a finite alphabet. Every agent is associated with a set of
programs, every program consists of two rules that can be one of the following
two types. The first one, called an evolution rule or a rewriting rule, is of the
form a → b. This means that object a inside of the agent is rewritten to object
b. The second type of rules, called a communication rule, is of the form c ↔ d.
When this rule is applied, object c inside the agent and a symbol d in the string
representing the environment (the input string) are exchanged. If c = e, then the
agent erases d from the input string and if d = e, symbol c is inserted into the
string.

The computation in APCol systems starts with an input string, representing
the environment, and with each agent having only symbols e inside.

A computation step means a maximally parallel action of the active agents,
i.e., a maximal number of agents that can perform at least one of their programs,
has to execute such an action parallel. Every symbol can be object of the action
of only one agent. The computation ends if the input string is reduced to the
empty word and there are no more applicable programs in the whole system, and
meantime at least one of the agents is in so-called final state.

An APCol system is a construct
Π = (O, e,A1, . . . , An), where

• O is an alphabet; its elements are called the objects,
• e ∈ O, called the basic object,
• Ai, 1 ≤ i ≤ n, are agents. Each agent is a triplet Ai = (ωi, Pi, Fi), where

– ωi is a multiset over O, describing the initial state (content) of the agent,
|ωi| = 2,

– Pi = {pi,1, . . . , pi,ki
} is a finite set of programs associated with the agent,

where each program is a pair of rules. Each rule is in one of the following
forms:
· a→ b, where a, b ∈ O, called an evolution rule,
· c↔ d, where c, d ∈ O, called a communication rule,

– Fi ⊆ O∗ is a finite set of final states (contents) of agent Ai.

In the following we explain the work of an APCol system.
During the work of the APCol system, the agents perform programs. Since

both rules in a program can be communication rules, an agent can work with two
objects in the string in the same step of the computation. In the case of program
〈a↔ b; c↔ d〉, a substring bd of the input string is replaced by string ac. Notice
that although the order of rules in the programs is usually irrelevant, here it is
significant, since it expresses context-dependence. If the program is of the form
〈c↔ d; a↔ b〉, then a substring db of the input string is replaced by string ca.
Thus, the agent is allowed to act only at one position of the string in the one step
of the computation and the result of its action to the string depends both on the
order of the rules in the program and on the interacting objects. In particular, we
have the following types of programs with two communication rules:

Further Results on the Power of Generating APCol Systems 83

• 〈a↔ b; c↔ e〉 - b in the string is replaced by ac,
• 〈c↔ e; a↔ b〉 - b in the string is replaced by ca,
• 〈a↔ e; c↔ e〉 - ac is inserted in a non-deterministically chosen place in the

string,
• 〈e↔ b; e↔ d〉 - bd is erased from the string,
• 〈e↔ d; e↔ b〉 - db is erased from the string,
• 〈e↔ e; e↔ d〉; 〈e↔ e; c↔ d〉, . . . - these programs can be replaced by pro-

grams of type 〈e→ e; c↔ d〉.

At the beginning of the work of the APCol system (at the beginning of the
computation), the environment is given by a string ω of objects which are different
from e. This string represents the initial state of the environment. Consequently,
an initial configuration of the APCol system is an (n+1)-tuple c = (ω;ω1, . . . , ωn)
where w is the initial state of the environment and the other n components are
multisets of strings of objects, given in the form of strings, the initial states the of
agents.

A configuration of an APCol system Π is given by (w;w1, . . . , wn), where |wi| =
2, 1 ≤ i ≤ n, wi represents all the objects inside the ith agent and w ∈ (O−{e})∗
is the string to be processed.

At each step of the computation every agent attempts to find one of its pro-
grams to use. If the number of applicable programs is higher than one, then the
agent non-deterministically chooses one of them. At one step of computation, the
maximal possible number of agents have to be active, i.e., have to perform a pro-
gram.

By applying programs, the APCol system passes from one configuration to
another configuration. A sequence of configurations started from the initial con-
figuration is called a computation. A configuration is halting if the APCol system
has no applicable program.

The result of computation depends on the mode in which the APCol system
works. In the case of accepting mode a computation is called accepting if and only
if at least one agent is in final state and the string to be processed is ε. Hence, the
string ω is accepted by the APCol system Π if there exists a computation by Π
such that it starts in the initial configuration (ω;ω1, . . . , ωn) and the computation
ends by halting in the configuration (ε;w1, . . . , wn), where at least one of wi ∈ Fi

for 1 ≤ i ≤ n.
In [1] it was shown that the family of languages accepted by jumping finite

automata (introduced in [12]) is properly included in the family of languages ac-
cepted by APCol systems with one agent. It was also proved that any recursively
enumerable language can be obtained as a projection of a language accepted by
an APCol system with two agents.

In the case of generating mode, the string wF is generated by Π iff there exists
computation starting in an initial configuration (ε;ω1, . . . , ωn) and the computa-
tion ends by halting in the configuration (wF ;w1, . . . , wn), where at least one of
wi ∈ Fi for 1 ≤ i ≤ n.

84 Lucie Ciencialová, Luděk Cienciala, and Erzsébet Csuhaj-Varjú

In both cases, instead of a string, we can work with the number of symbols in
the string as the result of the computation. The set of natural numbers accepted or
generated with an APCol system Π is denoted Nacc(Π) or Ngen(Π), respectively.

The family of sets of numbers generated by APCol systems with n agents is
denoted by NAPColgen(n), if we consider only restricted APCol systems, then
we use notation NAPColgenR(n). The family of recursively enumerable sets of
natural numbers is denoted by NRE, and the family of sets of natural numbers
acceptable by partially blind register machines is denoted by NRMpb.

Results have been obtained about the generative power of APCol systems[3]:

• Restricted APCol systems with two agents working in generating mode gener-
ate any recursively set of natural numbers and conversely. Thus,

NAPColgenR(2) = NRE.

• The family of sets of natural numbers acceptable by partially blind register
machines can be generated by restricted APCol systems with one agent and
conversely. Thus,

NRMpb ⊆ NAPColgenR(1).

3 Generative Power of APCol Systems

3.1 Deterministic APCol systems

The concept of determinism can be interpreted for APCol systems in several ways.
Here we consider the following concept:

Let c = (w1, . . . , wn;wE) be an arbitrary configuration of an APCol system
Π = (O, e,A1, . . . , An), n ≥ 1. We say that Π is deterministic if there is only one
maximal applicable multiset of programs MP in Π that can be applied to c.

We can construct an n-tuple xc of strings of length two, xiyi corresponding
to the string that agent i consumes from the environmental string by applying a
program from MP . If there is rewriting rule in the program, then e appears in the
string xiyi. If some agent has no applicable program then it is represented by ee
in the xc. Let O be a set of objects and Σ is input alphabet, then let f : O → Σ∗

be a function defined as follows: ∀x ∈ O − {e}f(x) = a; f(e) = ε and

u0 ai1bi1 u1 ai2bi2 u2 . . . un−1 ainbin un = wE (1)

We focus on deterministic APCol system working in generating mode.
The deterministic APCol system working in generating mode starts its compu-

tation in initial configuration given by initial contents of agents and with empty
string as environmental string. By execution of programs it passes from one con-
figuration to another one. Notice that to every configuration there is only one
maximal set of programs such that environmental string is formed as (1). The re-
sult of the computation - environmental string - is obtained only if APCol system
halts and at least one agent is in final state.

Further Results on the Power of Generating APCol Systems 85

Theorem 1. Let M be a deterministic register machine. Then there exists a de-
terministic APCol system Π with two agents such that M and Π generate the
same set of natural numbers.

Idea of the proof:

The environmental string stores information about the contents of the registers.
It is in a form #111 . . . 1222 . . . 2333 . . . n#′. When ADD-instruction is performed
on register r, then an agent puts ↓ just after # and moves ↓ through the string
from the left to the right until the agent consumes the number s ≥ r. Then the
agent insert new symbol r just before s, deletes ↓ and generates the label of the
next instruction performed by register machine.

The idea how to do zero-check, and thus subtraction (l1 : (SUB(r), l2, l3)) is
the following: Content of register r is represented by the number of objects r in
the environmental string. If the agent needs to erase some r, then it places mark
↑ just after # and moves it through the string. If there is any object r, then the
agent erases it and generates label l2. If there is no r, then the agent consumes ↑
together with s (s > r) or #′ it generates label l3.

If the next instruction is the halt instruction, then the agent exchanges # with
l and pushes it through the string. it leaves symbol 1 unchanged, the symbols
representing the contents of other registers are deleted. Finally, if agent consume
#′, then it erases l and stops working.

It can be seen that the instruction of the register machine can be simulated by
the deterministic APCol system.

3.2 APCol systems with one agent

In this part we deal with APCol systems with only one agent and working in
non-deterministic manner.

By the analogy of a non-decreasing Chomsky grammar, we introduce the notion
of a non-decreasing APCol systems working in the generating mode. We say that
an APCol system Π is non-decreasing, if no agent of Π has a rule of the form
e ↔ y, i.e., there is no rule for erasing a symbol from the string representing the
environment.

We first show that any ε-free context-sensitive language can be generated by
an APCol system with only one agent. Furthermore, the APCol system is non-
decreasing.

Theorem 2. Any ε-free context-sensitive language can be generated by a non-
decreasing APCol system with only one agent.

Sketch of the proof:

We show that to every context-sensitive grammar G = (N,T, P, S) in Kuroda
normal form there exists an APCol system Π with one agent working in generating

86 Lucie Ciencialová, Luděk Cienciala, and Erzsébet Csuhaj-Varjú

mode such that L(G) = L(Π). To do this, we construct an APCol system Π such
that every generation in G can be simulated by a computation in Π and any
successful computation in Π corresponds to a terminating derivation in G. To
help the easier reading, we provide only the description of the simulation of the
rules of G, the other components of Π can be extracted from the descriptions
below.

At the beginning of the simulating computation in Π we need to initialize
environmental string - there is only starting non-terminal at the beginning of
derivation in G. Let symbols X,X ′ /∈ N ∪ T .

Initialization Agent Program String
(ee) 〈e→ S; e→ X ′〉 ε
(SX ′) 〈S ↔ e;X ′ → X〉 ε
(eX) S

There are four types of rules in grammar in Kuroda normal form: AB →
CD; A→ BC;A→ B and A→ a, a ∈ T, A,B,C,D ∈ N.

To every rule in form AB → CD, to the set of programs of the agent A, we
add the following set of programs:

pi : AB → CD Agent Program String
(eX) 〈e→ pi;X → X ′〉 u AB v
(piX

′) 〈pi ↔ A;X ′ ↔ B〉 u p′iX ′ v
(AB) 〈A→ p′′i ;B → C〉 u p′iX

′ v
(p′′i C) 〈p′′i → p′′′i ;C ↔ p′i〉 u p′iX ′ v
(p′′′i p

′
i) 〈p′′′i → qi; p

′
i → D〉 u CX ′ v

(qiD) 〈qi → q′i;D ↔ X ′〉 u CX ′ v
(q′iX

′) 〈q′i → X;X → e〉 u CD v
(Xe) u CD v
(p′′i C) 〈p′′i → A;C → B〉 u p′iX

′ v
The program 〈p′′i → A;C → B〉 can be used just after program 〈p′′i → p′′′i ;C ↔ p′i〉

and these two programs can cause loop in computation. This is because there can
exist more than one rule with AB on the left side and the agent can generate label
of a rule different from pi.

For every rule in a form A→ BC we add the following programs to the set of
programs of A:

pi : A→ BC Agent Program String
(eX) 〈e→ pi;X → X ′〉 u A v
(piX

′) 〈pi → p′i;X
′ ↔ A〉 u A v

(p′iA) 〈p′i → p′′i ;A→ B〉 u X ′ v
(p′′i B) 〈p′′i ↔ X ′;B ↔ e〉 u X ′ v
(X ′e) 〈X ′ ↔ p′′i ; e→ e〉 u Bp′′i v
(p′′i e) 〈p′′i → p′′′i ; e→ C〉 u BX ′ v
(p′′′i C) 〈p′′′i → p′′′i ;C ↔ X ′〉 u BX ′ v
(p′′′i X

′) 〈p′′′i → e;X ′ → X〉 u BC v
For every rule in a form A → B or A → a we add the following programs to

the set of programs of A (α is non-terminal or terminal symbol):

Further Results on the Power of Generating APCol Systems 87

pi : A→ α Agent Program String
(eX) 〈e→ pi;X → α〉 u A v
(piα) 〈pi → p′i;α↔ A〉 u A v
(p′iA) 〈p′i → e;A→ X〉 u α v

At the end we add one more set of programs to the set of programs of A that
is of the form

〈e→ Y ;X ↔ A〉 ; 〈Y → Y ;A→ A〉

where Y /∈ N ∪ T and A ∈ N . By execution of the first program, the computation
enters a loop and the computation never halts. We have to add these programs
to ensure that the computation will not halt if the derivation of a string in the
grammar stops with a non-terminal in the string.

The agent simulates execution of rules and computation ends only when there
is no non-terminal symbol in environmental string. By the definition of the rules
and the programs above, it can easily be seen that the program set of agent A can
only simulate the rules of G, furthermore any computation in Π successfully halts
only if the corresponding derivation successfully terminates in G. We also observe
that Π is non-decreasing.

It is known that any recursively enumerable language can be generated by a
Kuroda-like normal form grammar G = (N,T, P, S), where the rules are one of
the forms AB → CD, A → BC,A → B, A → a, and A → ε, where a ∈ T,
A,B,C,D ∈ N. Modifying the proof of the above theorem (simulation of rule
A→ α), we can extend the proof to obtain any recursively enumerable language.
The modification is the following: in the case of A → ε we use rule e ↔ A in the
corresponding rule set.

We also note that to generate a context-sensitive language which contains ε,
we have an extension of the Kuroda normal form grammar where the rules are
one of the forms AB → CD, A→ BC,A→ B, A→ a, and S → ε, where a ∈ T,
A,B,C,D ∈ N , and S does not appear at the right-hand side of any rule. It is
easy to see that the proof of the above theorem can be modified to be a proof of
this statement as well.

Let CS, CSε, RE denote the family of ε-free context-sensitive, context-
sensitive, and recursively enumerable languages, respectively. Since APCol systems
(both in the generating and in the accepting mode) can be simulated by Turing
machines, we obtain the following statement

Theorem 3.
CS ⊂ CSε ⊂ RE = APColgen(1).

4 Conclusion

In this paper we examined APCol systems working in generating mode. We defined
a deterministic version of APCol systems and showed that they are able to simulate

88 Lucie Ciencialová, Luděk Cienciala, and Erzsébet Csuhaj-Varjú

functioning of deterministic register machines. In second part of paper we focused
on generating APCol systems with only one agent. We have showed that these
systems generate the family of recursively enumerable languages, and if they are
non-decreasing (have no rule for decreasing the length of the environment).

Acknowledgments.

The work of L. Ciencialová and L. Cienciala was supported by The Ministry of Ed-
ucation, Youth and Sports from the National Programme of Sustainability (NPU
II) project IT4Innovations excellence in science - LQ1602, by SGS/11/2019. The
work of E. Csuhaj-Varjú was supported by Grant No. K 120558 of the National
Research, Development, and Innovation Office, Hungary.

References

1. Cienciala, L., Ciencialová, L., Csuhaj-Varjú, E.: Towards on P Colonies Processing
Strings. In: Proc. BWMC 2014, Sevilla, 2014. pp. 102–118. Fénix Editora, Sevilla,
Spain (2014)

2. Cienciala, L., Ciencialová, L., Csuhaj-Varjú, E.: P colonies processing strings. Fun-
damenta Informaticae 134(1-2), 51–65 (2014)

3. Cienciala, L., Ciencialová, L., Csuhaj-Varjú, E.: A Class of Restricted P Colonies
with String Environment. Natural Computing 15(4), 541–549 (2016)

4. L. Ciencialová, E. Csuhaj-Varjú, L. Cienciala, and P. Sośık. P colonies. Bulletin of
the International Membrane Computing Society 1(2):119–156 (2016).

5. Csuhaj-Varjú, E., Kelemen, J., Păun, Gh., Dassow, J.(eds.): Grammar Systems: A
Grammatical Approach to Distribution and Cooperation. Gordon and Breach Science
Publishers, Inc., Newark, NJ, USA (1994)

6. Csuhaj-Varjú, E., Vaszil, G.: Finite dP Automata versus Multi-head Finite Automata
In: Gheorghe, M. et. al. (eds.) CMC 2011, LNCS, vol. 7184, pp. 120-138. Springer-
Verlag, Berlin Heidelberg (2012)

7. Holzer, M., Kutrib, M., Malcher, A.: Complexity of multi-head finite automata: Ori-
gins and directions, Theoretical Computer Science 412, 83–96 (2011)

8. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, Reading, Mass. (1979)

9. Kelemenová, A.: P Colonies. Chapter 23.1, In: Păun, Gh., Rozenberg, G., Salomaa,
A. (eds.) The Oxford Handbook of Membrane Computing, pp. 584–593. Oxford Uni-
versity Press (2010)

10. Kelemen, J., Kelemenová, A., Păun, G.: Preview of P Colonies: A Biochemically
Inspired Computing Model. In: Workshop and Tutorial Proceedings. Ninth Interna-
tional Conference on the Simulation and Synthesis of Living Systems (Alife IX). pp.
82–86. Boston, Mass (2004)

11. Kelemen, J., Kelemenová, A.: A Grammar-Theoretic Treatment of Multiagent Sys-
tems. Cybern. Syst. 23(6), 621–633 (1992),

12. Meduna, A., Zemek, P.: Jumping Finite Automata. Int. J. Found. Comput. Sci. 23(7),
1555–1578 (2012)

Further Results on the Power of Generating APCol Systems 89

13. Minsky, Marvin L.: Computation: Finite and Infinite Machines. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA (1967)

14. Păun, Gh., Rozenberg, G., Salomaa, A.(eds.): The Oxford Handbook of Membrane
Computing. Oxford University Press, Inc., New York, NY, USA (2010)

15. Rozenberg, G., Salomaa, A.(eds.): Handbook of Formal Languages I-III. Springer
Verlag., Berin-Heidelberg-New York (1997)

90 Lucie Ciencialová, Luděk Cienciala, and Erzsébet Csuhaj-Varjú

