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Complexity of life forms on the Earth has increased tremendously,
primarily driven by subsequent evolutionary transitions in
individuality, a mechanism in which units formerly being
capable of independent replication combine to form higher-level
evolutionary units. Although this process has been likened to
the recursive combination of pre-adapted sub-solutions in the
framework of learning theory, no general mathematical
formalization of this analogy has been provided yet. Here we
show, building on former results connecting replicator dynamics
and Bayesian update, that (i) evolution of a hierarchical
population under multilevel selection is equivalent to Bayesian
inference in hierarchical Bayesian models and (ii) evolutionary
transitions in individuality, driven by synergistic fitness
interactions, is equivalent to learning the structure of
hierarchical models via Bayesian model comparison. These
correspondences support a learning theory-oriented narrative of
evolutionary complexification: the complexity and depth of the
hierarchical structure of individuality mirror the amount and
complexity of data that have been integrated about the
environment through the course of evolutionary history.
1. Introduction
On Earth, life has undergone immense complexification [1,2]. The
evolutionary path from the first self-replicating molecules to
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structured societies of multicellular organisms has been paved with exceptional milestones: units that

were capable of independent replication have combined to form a higher-level unit of replication [3–5].
Such evolutionary transitions in individuality opened the door to the vast increase of complexity.
Paradigmatic examples include the transition of replicating molecules to protocells, the endosymbiosis
of mitochondria and plastids by eukaryotic cells and the appearance of multicellular organisms and
eusociality. Interestingly, it is possible to identify common evolutionary mechanisms that possibly led
to these unique but analogous events [6–9]. A crucial preliminary condition is the alignment of
interests: to undergo an evolutionary transition in individuality, organisms must exhibit cooperation,
originating from genetic relatedness and/or synergistic fitness interactions [4]. However, the story
does not end here: something must also maintain the alignment of interests subsequent to the
transition. At any phase, the fate of the organism depends on selective forces at multiple levels that
might be in conflict with each other. Incorporating the effects of multilevel selection is, therefore, a
crucial element of understanding evolutionary transitions in individuality [10].

These theoretical considerations above delineate conditions under which a transition might occur and
a possibly different set of conditions which help to maintain the integrity of units that have already
undergone transition. However, these considerations alone cannot offer a predictive theory of
complexification as they do not address the question of how necessary these environmental and
ecological conditions are. An alternative, supplementary approach that circumvents these difficulties is
to investigate whether mathematical theories of adaptation and learning can provide further insights
about the general scheme of evolutionary transitions in individuality. In this paper, we argue that
they do. We first provide a mapping between multilevel selection modelled by discrete-time replicator
dynamics and Bayesian inference in belief networks (i.e. directed graphical models), which shows that
the underlying mathematical structures are isomorphic. The two key ingredients are (i) the already
known equivalence between univariate Bayesian update and single-level replicator dynamics [11,12]
and (ii) a possible correspondence between properties of a hierarchical population composition and
multivariate probability theory. We then show that this isomorphism allows for a natural
interpretation of evolutionary transitions in individuality as learning the structure [13,14] of the belief
network. Indeed, following adaptive paths on the fitness landscape over possible hierarchical
population compositions is equivalent to a well-known method used for selecting the optimal model
structure in the Bayesian paradigm, namely, Bayesian model comparison. This suggests that
complexification of life via successive evolutionary transitions in individuality is analogous to the
complexification of optimal model structure as more (or more complex) data about the environment is
available. These ideas are illustrated in figure 1; for more details, see Methods and Results.

Relating the dynamics of evolutionary complexification to hierarchical probabilistic generative
models complements recent efforts of searching for algorithmic analogies between emergent
evolutionary phenomena and neural network-based learning models [15,16]. These include
correspondences between evolutionary-ecological dynamics and autoassociative networks [17] and
also linking the evolution of developmental organization to learning in artificial neural networks [18].
As such connectionist models account for how global self-organizing learning behaviour might
emerge from simple local rules (e.g. weight updates), our approach aims at providing a common
global framework for modelling both evolutionary and learning dynamics.

1.1. Darwinian evolution of multilevel populations
Populations of replicators, like genes, chromosomes and cells, assemble into hierarchical groups, forming
multilevel populations (genes in bacterial cells, chromosomes in eukaryotes, organisms in populations,
populations in ecosystems, etc.). When the replication of particles (i.e. lower-level replicators) is not
fully synchronized with the replication of the collective they belong to, or, in other words, when
selective forces at different levels conflict, multilevel selection theory provides an effective description
of the system [10,19]. A key ingredient of models of multilevel selection is the partitioning of fitness of
particles to within-collective and between-collective components, once the collectives are defined. In
particular, these models address the question of how cooperation between parts are selected for and
maintained, against the ‘selfish’ within-collective replication of particles [20,21]. If selection on the
collective level becomes so strong that individual replicators forfeit their autonomy, a transition in
individuality takes place, forming a new, higher-level unit of evolution. Evolutionary transitions in
individuality mark significant steps in life history on Earth, like the joining of genes into
chromosomes, prokaryotes into the eukaryotic cell or individual cells into a multicellular organism
[3,6]. Importantly, the identity of a new organism (a new level of individuality) consists of
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Figure 1. Evolution of multilevel population as inference in Bayesian belief network. The stochastic environment e governs the
evolutionary dynamics of multilevel population composition f ðIi in C1j in C2k Þ. This is, in turn, equivalent to successive
Bayesian inference of hidden variables I, C1 and C2 based on the observation of current the environmental parameters e. Since
these environmental parameters are sampled and observed multiple times (i.e. at every time step t = 1,2,3,…), the
corresponding node of the belief network is conventionally placed on a plate. Also note that the deletion of links between
nodes of the belief network is corresponding to conditional independence relations between variables in the Bayesian setting
and to specific structural properties of selection and population composition in the evolutionary setting; see text for details.
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(i) inherited properties delivered by the replicators that form the group and (ii) emergent properties
evolved newly within the group.

1.2. The equivalence of Bayesian update and replicator dynamics
In the following, we provide a brief introduction to the elementary building blocks of our arguments:
Bayesian update and replicator dynamics. Bayesian update [22] fits a probability distribution PðIÞ of
hypotheses I ¼ I1, . . . ,Im to the data e. It does so by integrating prior knowledge about the probability
P(Ii) of hypothesis Ii with the likelihood that the actual data e ¼ e(t) is being generated by hypothesis
Ii, given by P(e(t)jIi). Mathematically, the fitted distribution P(Iije(t)), called the posterior, is simply
proportional to both the prior P(Ii) and the likelihood P(e(t)jIi):

P(Iije(t)) ¼ P(e(t)jIi)P(Ii)P
iP(e(t)jIi)P(Ii)

: ð1:1Þ

On the other hand, the discrete replicator equation [23] that accounts for the change in relative abundance
f(Ii) of types of replicating individuals Ii in the population driven by their fitness values w(Ii), reads as

f(Ii; tþ 1) ¼ w(Ii; t)f(Ii; t)P
iw(Ii; t)f(Ii; t)

: ð1:2Þ

As first noted by Harper [11] and Shalizi [12], equations (1.1) and (1.2) are equivalent, with the
following identified quantities. The relative abundance f ðIi; tÞ of type Ii at time t corresponds to the
prior probability P(Ii); the relative abundance f(Ii; tþ 1) at time t + 1 is corresponding to the posterior
probability P(Iije(t)); the fitness w(Ii; t) of type Ii at time t is corresponding to the likelihood P(e(t)jIi);
and the average fitness

P
i w(Ii; t)f(Ii; t) is corresponding to the normalizing factor

P
i P(e(t)jIi)P(Ii)

called the model evidence.
Building on this observation, a natural question to ask is if this mathematical equivalence is only an

apparent similarity due to the simplicity of both models, or it is a consequence of a deeper structural
analogy between evolutionary and learning dynamics. We propose two conceptually new avenues
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along which this equivalence can be generalized. First, we identify concepts of hierarchical evolutionary

processes with concepts of (i) multivariate probability theory, (ii) Bayesian inference in hierarchical
models and (iii) conditional independence relations between variables in such models. Building on
this theoretical bridge, we then investigate the dynamics of learning the structure (as opposed to
parameter fitting in a fixed model) of hierarchical Bayesian models and the Darwinian evolution of
multilevel populations, concluding that following adaptive evolutionary paths on the landscape of
hierarchical populations naturally maps to optimizing the structure of hierarchical Bayesian models
via Bayesian model comparison.
 .org/journal/rsos
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2. Results
To generalize the algebraic equivalence between discrete-time replicator dynamics (equation (1.2)) and
Bayesian update (equation (1.1)) to multilevel selection scenarios, multivariate distributions have to be
involved. In general, a multivariate distribution P(x1, . . . ,xk) over k variables, each taking m possible
values, can be encoded by mk � 1 independent parameters, which is exponential in the number of
variables. Apart from practical considerations such as the possible infeasibility of computing marginal
and conditional distributions, sampling and storing such general distributions, a crucial theoretical
limitation is that fitting data by a model with such a sizable parameter space would result in
overfitting, unless the training dataset is itself comparably large [24].

A way to overcome such obstacles is to explicitly abandon indirect dependencies between variables
by using structured probabilistic models, such as belief networks (also called Bayesian networks or
directed graphical models) [25,26]. Indeed, belief networks simplify joint distribution over multiple
variables by specifying conditional independence relations corresponding to indirect (as opposed to
direct) dependencies between variables.

In the following, we build up an algebraic isomorphism between discrete-time multilevel replicator
dynamics and iterated Bayesian inference in belief networks on a step-by-step basis. The key identified
quantities are summarized in table 1. This isomorphism is based on a mapping between the properties of
multilevel populations and multivariate probability distributions, which we elaborate on in detail in the
Methods section. Our first result extends the single-level replicator dynamics to the case of multilevel
populations. Next, we explain how structural properties of multilevel selection of such populations
map to the structure of Bayesian belief network, in particular regarding conditional independence
relations. Finally, building on these steps, we discuss how evolutionary transitions in individuality can
be interpreted as Bayesian structure learning.

2.1. Multilevel replicator dynamics as inference in Bayesian belief networks
Just like in the single-level case, the environmental parameters e(t), t = 1,2,3,… are assumed to be
sampled from an unknown generative process; the successive observation of them drives the
successive update of population composition. As discussed earlier, however, multilevel population
structures can be mapped to multivariate probability distributions, forming multiple latent variables
I,C1,C2, . . . to be updated upon the observation of e.

Formally, just as prior probabilities over multiple hypotheses P(Ii,C1
j ,C

2
k , . . . ; t) are updated to posterior

probabilities P(Ii,C1
j ,C

2
k , . . . ; tþ 1) based on the likelihood, P(e(t)jIi,C1

j ,C
2
k , . . . ; t), in the same way, multilevel

population composition at time t, f(Ii in C1
j in C2

k in . . . ; t) is updated to the composition at t + 1 based
on fitnesses w(Ii in C1

j in C2
k in . . . ; t). The critical conceptual identification here is therefore of (i) the

likelihood of the hypothesis parametrized by (Ii,C1
j ,C

2
k , . . .) and of (ii) the fitness of those individuals Ii

that belong to those collectives C1
j that belong to C2

k , etc. The normalization factor that ensures that
(i) the multivariate distribution is normalized (the model evidence

P
i,j,k,... PðeðtÞ jIi,C1

j ,C
2
k , . . . ; tÞ�

PðIi,C1
j ,C

2
k , . . . ; tÞ) or that (ii) abundances are always measured relative to the total abundance

of individuals (the average fitness
P

i,j,k,... wðIi in C1
j in C2

k in . . . ; tÞ � f ðIi in C1
j in C2

k in . . . ; tÞ is
conceptually irrelevant here as they do not change the ratio of probabilities or abundances. Their
equivalence will, however, play a critical role in relating evolution of individuality and structure learning
of belief networks.

To demonstrate how simple calculations are performed in this framework and also to elucidate
how fitnesses are determined, here we calculate the fitness of collective C1

j , w(C1
j ), which has been

identified with P(ejC1
j ). Using simple relations of probability theory, PðejC1

j Þ ¼
P

Ii Pðe,IijC1
j Þ ¼P

Ii PðejIi,C1
j ÞPðIijC1

j Þ. Translating this back to the language of evolution tells us that the fitness of C1
j is
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simply the average fitness of individuals being part of collective C1

j , as anticipated earlier. Crucially,
however, fitnesses of individuals depend on the identity of the collective they are part of. The fact that
the fitness of a collective is computed as the average fitness of its individuals, therefore, does not
constrain the way fitness of a collective emerges from the fitness and/or identity of its particles as being
free. Modelling the evolutionary path toward an emerging identity of collectives is out of the scope of
this paper; however, we point out that any such endeavour necessarily translates to coupling parameters
at different levels of the Bayesian hierarchy.
ing.org/journal/rsos
R.Soc.open

sci.6:190202
2.2. Mapping structural properties of multilevel selection to the structure of Bayesian
belief network

Structured probabilistic models are useful because they concisely summarize direct and indirect
dependencies between multiple variables. Specifically, Bayesian belief networks depict multivariate
distributions, such as Pðe,I,C1,C2Þ, as a directed network, with the variables corresponding to the
nodes and conditioning one variable on another corresponds to a directed link between the two.
Since Pðe,I,C1,C2Þ can always be written as P(ejI,C1,C2)P(IjC1,C2)P(C1jC2)P(C2) in terms of conditional
probabilities, the corresponding belief network is the one illustrated in figure 1. The route to
simplify the structure of the distribution and correspondingly, the structure (i.e. connectivity) of the
belief network is through conditional independence relations. Conditional independence relations,
such as

PðejI,C1,C2Þ ¼ PðejC1,C2Þ, ð2:1Þ
correspond to the deletion of connections; (2.1), for example, corresponds to the deletion of the
connection between variables e and I, shown in red in figure 1, and it describes the conditional
independence of the observed variable e and a latent variable, I. What does this independence
relation mean in evolutionary terms? As it logically follows from the previous identifications, it
specifies that the units at level I are frozen in an evolutionary sense: their fitness is completely
determined by the collective they belong to. There is a second, qualitatively different type of
conditional independence relations: those between two latent variables, corresponding to two levels
of the population. For example, P(IjC1,C2) ¼ P(IjC1), corresponding to the deletion of the blue link
in figure 1, is interpreted as the following: the composition of any collective at level C1 is
independent of what higher-level collective (at level C2) it belongs to. Such simplifications in
hierarchical population composition allow for the step-by-step modular combination of units to
higher-level units, re-using existing sub-solutions over and over again.
2.3. Evolutionary transitions in individuality as Bayesian structure learning
It has been shown above that Bayesian inference in belief networks can be interpreted as Darwinian
evolutionary dynamics of multilevel populations, driven by the ‘observation’ of the actual
environment e(t). What fits the environment is the hierarchical distribution of individuals (i.e. lowest
level replicators) to collectives. However, the number of levels and the existing types within each
level, along with the assumptions of hierarchical containment dependencies (i.e. conditional
independence relations) has to be a priori specified. In this sense, fitting the environment by such a
pre-defined structure via successive Bayesian updates has limited adaptation abilities. In particular, it
is unable to adjust the complexity of the model to be in accordance with that of the environment, an
inevitable property to avoid under- or overfitting.

To enlarge the space of possible models and therefore fit the environment better, one might allow the
model structure to adapt as well (figure 2). More complex models, however, will always fit any data
better, and accordingly, adapting the model structure naively might result in overfitting, i.e. the
inability of the model to account for never-seen data, corresponding to possible future environments.
Organisms with too complicated hierarchical containment structures (and other adaptive parameters
that are not modelled explicitly here) would go extinct in any varying environment. To remedy this
situation, one has to take into consideration not only how good the best parameter combination fits
the data, but also how hard it is to find such a parameter combination. A systematic way of doing so
is known as Bayesian model comparison, a well-known method in machine learning and Bayesian
modelling. Mathematically, Bayesian model comparison simply ranks models (here, belief networks)
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Figure 2. Evolutionary transitions as Bayesian structure learning. Initially, a single-level population I fits the environment e via
replicator dynamics, or equivalently, via successive Bayesian update. Then, a new collective (the square) emerges at a new level
C1, represented as a new node in the Bayesian belief network. Then, another new collective emerges at level C1 (the circles),
therefore, the variable C1 is renamed to C1

0
as its possible values now include the circle as well. Finally, new collectives

emerge at an even higher level (the rectangle and the ellipse at level C2), and correspondingly, a new node is added to the
network again. Note that the evolution of parameters (i.e. population composition in a fixed structure) is not illustrated here
for simplicity.
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according to their average ability to fit the data, referred to as the evidence E(M) of model M,

E(M) ¼ P(ejM) ¼
X

i,j,k,...

PðejIi,C1
j ,C

2
k , . . . ,MÞ � PðIi,C1

j ,C
2
k , . . . jMÞ: ð2:2Þ

The first term in the sum describes the likelihood of the current parameters (i.e. their ability to fit the
data), whereas the second term weights these likelihoods according to the prior probabilities of the
parameters.

How evolution, on the other hand, limits the number of to-be-fitted parameters in any organism to
reinforce evolvability is an intriguing phenomenon. Here we show that in our minimal framework,
selection naturally accounts for model complexity: model evidence corresponds to the average fitness
�w of individuals, determined by their hierarchical grouping to higher-level replicators. Indeed,
interpreting equation (2.2) in evolutionary terms gives

X

i,j,k,...

w(Ii in C1
j in C2

k in . . . )� f(Ii in C1
j in C2

k in . . .) ¼ �w(M), ð2:3Þ

in which the first term in the sum corresponds to fitnesses of individuals according to what collectives
they belong to, and the second terms weights these fitnesses according to the abundance of such
hierarchical arrangements. It implies that not only the evolution of the composition of multilevel
population, but also the evolution of the structure of the multilevel population can be interpreted both
in Darwinian and Bayesian terms: adaptive trajectories in the fitness landscape over population
structures translate to adaptive trajectories of model evidence over belief networks. Note that the
word structure here is borrowed from learning theory for consistency, and it does not refer to
structured populations in population ecology.
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Let us now turn specifically to the Bayesian interpretation of the evolution of individuality.

Transitions in individuality, an evolutionary process in which lower-level units that were previously
capable of independent replication form a higher-level evolutionary unit, correspond to specific type
transitions in the Bayesian model structure: either a new node is added to the top of the network (in
the case where there was no such population level at all earlier), or a new value is added to any of
the existing variables (in the case where the new evolutionary unit is formed at an already existing
level). In each case, most of the belief network, including its parameters, remains the same, except the
part that is participating in the transition. This part, however, always involves only those values
(corresponding to types) of those variables (corresponding to levels) that are participating in the
transition. If average fitness of these types is larger by grouping them together, they undergo a
transition in individuality. Although this is a general description of transitions disregarding many
details, the correspondence with Bayesian model comparison is remarkable.
 os

R.Soc.open
sci.6:190202
3. Discussion
Having defined our model framework mathematically, we now review its relation to multilevel selection
and transition theory in more detail. Multilevel selection is conceptually characterized into two types,
dubbed multilevel selection 1 (MLS1) and multilevel selection 2 (MLS2), both assuming that
collectives form in a population of replicators, which themselves affect selection of lower-level units
[6,10,19]. In the case of MLS1, only temporary collectives form that periodically disappear to revert to
an unstructured population of lower-level units (transient compartmentation) [27,28]. MLS2, on the
other hand, involves collectives that last and reproduce indefinitely, hence being bona fide
evolutionary units [29], see also [30]). Only if collectives are evolutionary units can they inherit
information stably (i.e. being informational replicators [31]), thus the step toward a major evolutionary
transition is MLS2. Note that MLS1 can be understood as kin selection for most of the cases (cf. [29]),
and might not even be a necessary prerequisite for MLS2 to evolve. In general, compartmentalization
itself (transient or not) is not a sufficient property for a system to be a true evolutionary unit (cf. [32,33]).

Our framework allows for parametrization of collective fitnesses such that they only depend on the
collective’s composition, therefore corresponding to MLS2. The model is capable of handling MLS1 if, at
each time step, individuals are randomly reassorted among higher-level collectives; incorporating this in
the presented framework here is left for future work. Here we focus on the step from MLS2 toward a
major transition: when collectives evolve to inherit information above their own composition. In our
model, this corresponds to the case when a property of the collective appears, possibly assigning
different identities to collectives having identical composition. Such an identity-providing piece of
information is understood as an emergent property of the collective that does not depend on the
composition of lower-level particles. If this is granted, higher-level units can evolve on their own,
somewhat independent of their compositions. In biological context, such properties correspond either
to novel epistatic interactions among genes or epigenetically inherited information that is not coded
by genes.
4. Conclusion
In this paper, we introduced a mapping between concepts of hierarchical Bayesian models and concepts
of Darwinian evolution, providing a learning theory-based interpretation of complexification of life
through evolutionary transitions of individuality. The backbone of this interpretation is the fact that
measuring the abundance and the composition of any type (organism, population, ecosystem, etc.) at
any level can be naturally mapped to performing marginalization and computing conditional
probabilities, respectively, of multivariate discrete probability distributions. Another key ingredient is
that the stochastic environment determines the fitness of both individuals and collectives in a
multilevel selection process. These two pillars are united by the already known algebraic equivalence
between Bayesian update and discrete replicator dynamics. Accordingly, the learning theory narrative
of multilevel selection is as follows: as the environment e is successively observed, the distribution
over the latent variables I, C1,C2, . . ., corresponding to the hierarchical population composition, is
successively updated according to Bayes’ rule.

Having identified this analogy, one might ask how the structure of the belief network (i.e. not just the
parameters of a fixed network) itself evolves. In learning theory, different structures can be scored
according to their model evidence, giving rise to Bayesian model comparison, which accounts not
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only for how good a given solution is, but also for how unlikely it is to find such a good solution in the
parameter space. Consequently, this procedure optimizes the trade-off between complexity and goodness
of fit, hence dubbed as automatic Occam’s razor. The evolution of belief network structure, in the context
of Bayesian learning theory, is therefore driven by comparing model evidences of different structures.
Interestingly, Bayesian model comparison fits neatly to our multilevel evolutionary dynamics
interpretation: model evidence turns out to be equivalent to the average fitness of individuals, i.e. of
the lowest level replicating units. This allows for a learning-theory-based view of evolutionary
transitions in individuality: units aggregate to form a higher-level replicating unit if their average
fitness increases by doing so; this is mathematically equivalent to performing Bayesian model
comparison between the different belief network structures.

This procedure of simultaneous data acquisition, fitting and structure learning is far from unique to
our proposed model framework; apart from its extensive use in machine learning algorithms, it is
conjectured to govern classified-as-intelligent systems such as the conceptual development in children
and also our collective understanding of the world in terms of scientific concepts, both relying on the
extraordinary generalization abilities from sparse and noisy data [34,35]. We argue, based on the
mathematical equivalence presented in this paper, that in order to devise seemingly engineered
complex organisms, evolution on Earth or anywhere, used comparable hierarchical learning
mechanisms as we humans do to make sense of the world around us.
5. Methods
Here we provide a mapping between properties of multilevel populations and multivariate probability
theory. A multilevel population is regarded as a hierarchical containment structure of types:
individual types Ii might be part of collectives C1

j which themselves might be part of higher-level
collectives C2

k , and so on, as illustrated in figure 1. Note that collectives at any level might possess
heritable information (henceforth referred to as their identity); collectives of the same (hierarchical)
composition might very well have different identities. This makes this framework flexible enough to
incorporate qualitatively different stages of evolutionary interdependence between organisms, leading
eventually to a transition in individuality: (i) selection in which individuals enjoy the synergistic effect
of belonging to a collective, but the collectives themselves do not possess any heritable information;
(ii) selection in which collectives possess their own heritable information but also the individuals in
them might replicate at different rates; and (iii) selection in which individuals have already lost their
ability to replicate independently, therefore, their fitness is totally determined by the collective they
belong to. As Michod & Nedelcu write [36, p. 61], ‘group fitness is, initially, taken to be the average
of the lower-level individual fitnesses; but as the evolutionary transition proceeds, group fitness
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becomes decoupled from the fitness of its lower-level components’. This, as we shall see, is exactly what

our model accounts for mathematically, incorporating also the effect of stochastically varying
environment.

A key assumption that enables the machinery of multivariate probability theory to work is that
abundance of collectives is measured in terms of abundance of individuals they contain. Indeed, by
identifying the abundance of individuals of type Ii, f ðIi in C1

j in C2
k in . . .Þ, that are part of collectives

of type C1
j that are themselves part of collectives of type C2

k , etc., with the joint probabilities
PðIi,C1

j ,C
2
k , . . .Þ, two important additional identifications follow:

— marginal distributions, such as PðC1
j Þ ¼

P
i,k,... PðIi,C1

j ,C
2
k , . . .Þ translate to the abundance distribution

of types at the corresponding level (here, C1), f ðC1
j Þ ¼

P
i,k,... f(Ii in C1

j in C2
k in . . .) ¼

f ðany I in C1
j in any C2 in . . .Þ;

— conditional distributions, e.g. PðIijC1
j Þ ¼ P(Ii,C1

j )=P(C
1
j ) or P(C1

j jIi) ¼ P(Ii,C1
j )=P(Ii) translate either to

composition of collectives f(Ii in C1
j )=f(any I in C1

j ) or membership distribution of individuals (or lower-
level collectives), f(Ii in C1

j )=f(Ii in any C1).

These computations are illustrated by a toy example in figure 3. The rest of our methodology forms an
integral part of our results hence it is explained under Results.
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