
A Time Petri Net Description of Membrane
Systems with Priorities, Dissolution, and
Promoters/Inhibitors

Péter Battyányi, György Vaszil?

Department of Computer Science, Faculty of Informatics
University of Debrecen
Kassai út 26, 4028 Debrecen, Hungary
{battyanyi.peter,vaszil.gyorgy}@inf.unideb.hu

Summary. We continue the investigations of the connection between membrane sys-
tems and time Petri nets by extending simple symbol-object membrane systems with
promoters/inhibitors, membrane dissolution and priority for rules. By constructing the
simulating time Petri net, we retain one of the main characteristics of the Petri net
model, namely, the firings of the transitions can take place in any order, there is no need
to introduce maximal parallelism in the Petri net semantics. Instead, we substantially
exploit the gain in computational strength obtained by the introduction of the timing
feature for Petri nets.

1 Introduction

Several models have emerged in the past decades to model distributed systems
with interactive, parallel components. One of them was developed by C.A. Petri
[6], and since then the Petri nets have become the underlying system of a vast field
of research with a considerable practical interest on the other hand. The theory
of membrane systems was invented by Gh. Păun [4], and it has proved to be
a very convenient and many-sided model of distributed systems with concurrent
processes. Here we continue the investigations concerning the relationship of these
two computational models.

Place/transition Petri nets are bipartite graphs, the conditions of the events
of a distributed system are represented by places and directed arcs connect the
places to the transitions, that model the events. The conditions for the events are
expressed by tokens, an event can take place, i.e., a transition can fire, if there are
enough tokens in the places at the ends of the incoming arcs of a transition. These
places are called preconditions. The outgoing edges of a transition represent the

? Gy. Vaszil was supported by grant K 120558 of the National Research, Development
and Innovation Office of Hungary (NKFIH), financed under the K 16 funding scheme.

270 P. Battyányi, G. Vaszil

postcondition of the events. Firing of a transition means removing tokens from
the preconditions and adding them to the postconditions. The number of tokens
moved in this way are prescribed by the multiplicities of the incoming and outgoing
arcs.

In some cases the original place/transition model has turned out not to be
satisfactory, for example, we are not able to model systems where a certain order
of events must be taken into account. In order to deal with this difficulty, various
extensions of the Petri net model have appeared. In this paper we deal with the
time Petri net model developed by P.M. Merlin [3]. In this model, time intervals
are associated to transitions. The local time observed from a transition can be
modified by the Petri net state transition rules, and a transition can fire only if its
observed time lies in the interval assigned to the transition by the construction of
the model. In this way, the computational power of Petri nets is increased: the time
Petri net model is Turing complete in contrast with the original state/transition
Petri net.

Membrane systems are models of distributed, synchronized computational sys-
tems ordered in a tree-like structure. The building blocks are compartments, which
contain multisets of objects. The multisets evolve in each compartment in a paral-
lel manner, and the compartments, in each computational step, wait for the others
to finish their computation, hence the system acts in a synchronized manner. In
every computational step, the multisets in the compartments evolve in a maximal
parallel manner, this means that, in each step, as many rules of the compartment
are applied simultaneously as possible.

In this paper we continue the research on the connection between time Petri
nets and membrane systems initiated in [1]. We extend the basic construction
of the time Petri net simulating a symbol object membrane system developed
in [1] in order to represent some more membrane computational tools like pro-
moters/inhibitors, membrane dissolution and priority of rules. One of the main
features of our construction is that the unsynchronized characteristics of Petri
nets is retained when a Petri net equivalent of a membrane system is presented.
That is, unlike the construction in [2] (and unlike the constructions in many other
Petri net descriptions of membrane systems), we do not stipulate that the Petri
nets should perform their computational steps in a maximal parallel manner, the
attached time intervals provide the synchronization in the corresponding Petri
nets. Similarly, there will be no need to introduce any other “special features”
(beside the feature of time) to be able to capture the effect of priorities, the use
of promoters/inhibitors, or membrane dissolution.

2 Membrane Systems

Membrane systems are computational models operating on multisets. A finite mul-
tiset over an alphabet O is a mapping M : O → N, where N is the set of non-
negative integers. The number M(a) for a ∈ O is called the multiplicity of a in

A Time Petri Net Description of Membrane Systems 271

M . We write that M1 ⊆ M2 if for all a ∈ O, M1(a) ≤ M2(a). The union or sum
of two multisets over O is defined as (M1 + M2)(a) = M1(a) + M2(a), while the
difference is defined for M2 ⊆M1 as (M1−M2)(a) = M1(a)−M2(a) for all a ∈ O.
The set of all finite multisets over an alphabet O is denoted by M(O); the empty
multiset is denoted by ∅.

The notation N>0 stands for the set of positive integers, while Q and Q≥0
denotes the set of rational numbers and non-negative rational numbers and R and
R≥0 the set of real numbers and non-negative real numbers, respectively.

We define the notion of the basic symbol-object membrane system [5] together
with the additional features discussed in Section 5. A membrane system (or P sys-
tem) is a tree-like structure of hierarchically arranged membranes. The outermost
membrane is usually called the skin membrane. The membranes are labeled by
natural numbers {1, . . . , n}, and we use the notation mi for a membrane labeled
by i. Each membrane, except for the skin membrane, has its parent membrane.
We use µ for representing the structure of the membrane system itself, in fact,
the structure itself can be given as a balanced string of left and right brackets
indexed by their labels. For example, µ = [skin [1 [2]2 [3]3 [4]4]skin. Here, the skin
membrane has two submembranes, while region 1 also contains two embedded re-
gions. Abusing the notation, µ(i) = k can also mean that the parent of the i-th
region is region k.

The regions contain multisets over a finite alphabet O. The contents of the
regions of a P system evolve through rules associated with the regions. The rules
constitute the micro steps of the computations. They are applied in a maximal par-
allel manner. A computational step is the macro step of the process: it ends when
each of the regions have finished their computations. A computational sequence is
a sequence of computational steps.

Here we make the assumption that the computational steps in the regions
consist of two phases: first the rule application phase produces from the objects
on the left-hand sides of the rules the labeled objects on the right-hand sides
(the labels of the labeled objects describe the way they should be moved between
the regions: stay where they are, move to the parent region, or move into one
of the children regions); then we have the communication phase when the labels
are removed and all the objects are transported to the regions indicated by their
labels. The P system gives a result when it halts, i.e., when no more rules can be
applied in any of the regions. The result is a number or a tuple of natural numbers
counting certain objects in the membrane designated as the output membrane.

A P system of degree n ≥ 1 is Π = (O,µ,w1, . . . , wn, R1, . . . , Rn) where O is
an alphabet of objects, µ is a membrane structure of n membranes, wi ∈ M(O)
with 1 ≤ i ≤ n are the initial contents of the n regions, Ri with (1 ≤ i ≤ n) are
the sets of evolution rules associated with the regions; they are of the form u→ v,
where u ∈M(O) and v ∈M(O× tar), and tar = {here, out} ∪ {inj | 1 ≤ j ≤ n}.

Unless stated otherwise, we consider the n-th membrane as the output mem-
brane. A configuration is the sequence W = (w1, . . . , wn), where wk is the multiset
contained by membrane mk (1 ≤ k ≤ n). For a rule r : u → v ∈ Ri, we denote

272 P. Battyányi, G. Vaszil

by lhs(r) and rhs(r) the left-hand side and the right-hand side of r, respectively
(u and v, for the rule u → v). By the application of a rule u → v ∈ Ri we mean
the process of removing the elements of u from the multiset wi and extending
wi with the labeled elements, which are called messages. As a result, during a
computational step, a region can contain both elements of O and messages. An
intermediate configuration is an n-tuple of multisets over O ∪ (O × tar). We say
that W is a proper configuration, if wi ∈M(O) for each of its regions wi.

The communication phase means that the elements coming from the right-hand
sides of the rules of region i should be added to the regions as specified by the
target indicators associated with them. If the right-hand side of a rule r contains a
pair (a, here) ∈ O× tar, then a ∈ O is added to region i, the region where the rule
is applied. If it contains (a, out) ∈ O× tar, then a is added to the parent region of
region i. If it contains (a, inj) ∈ O× tar, then a is added to the contents of region
j. In the latter case, µ(j) = i holds.

Given a (proper) configuration W , we obtain a new (proper) configuration W ′

by executing the two phases of the transformations determined by the maximal
parallel sets of rules chosen for each compartment of the membrane system. We
call this a computational step, and denote it by W ⇒W ′.

We might consider additional features being present in the membrane system.
First of all, we can add promoters and inhibitors to the rules. These are multisets
of objects that regulate the rule applications in a way that the promoter z ∈ O∗
assigned to the rule r prescribes that z must be present in the region where the
rule is applied, while the inhibitor ¬z with z ∈ O∗ prevents the rule from being
applied if z is present in the region.

Second, we deal with the so-called membrane dissolution. The set of objects is
extended with an additional element δ that can appear on the right-hand sides of
the rules. If δ appears in a rule r which is applied in the i-th region for some i, then
the communication phase is executed as before and, as the result of the presence
of δ in region i, the region together with its set of rules Ri disappears from the
P system. This means that the elements of region i (except δ, which disappears)
are passed over to the region containing i (the parent region) and the rules in Ri
are not applied anymore. Note that the outermost region (the skin region) cannot
dissolve.

Finally, we consider a priority relation among rules. That is, we consider a
partial order relation (an antisymmetric and transitive relation) ρi on the set Ri
for each 1 ≤ i ≤ n. We say that r′ has priority over r, or r′ has higher priority
than r, if (r′, r) ∈ ρi. In this case, if both r′ and r were applicable in a maximal
parallel step, then r is suppressed, that is, not allowed to be applied.

In Section 5 we show that all these features can be smoothly modeled by
time Petri nets. The advantage of using time Petri nets instead of the Petri net
models mostly applied in the literature (see e.g. [2]) is the fact that the usual
order of the firings of the transitions is preserved: we do not inflict any additional
firing condition on the transitions of the Petri nets (like the requirement that the

A Time Petri Net Description of Membrane Systems 273

transitions fired in a computational step should constitute a maximal multiset of
fireable transitions).

3 Time Petri Nets

In this section, following the definitions in [7] we define time Petri nets- a model
rendering time intervals to transitions along the concept of Merlin [3]. First of all
we define the underlying place/transition Petri nets, and then extend this model
to the timed version.

A Petri net is a tuple U = (P, T, F, V,m0) such that

1. P , T , F are finite, where P ∩ T = ∅, P ∪ T 6= ∅ and F ⊆ (P × T) ∪ (T × P),
2. V : F → N>0,
3. m0 : P → N.

The elements of P and T are called places and transitions, respectively. The el-
ements of T are the arcs, and F is the flow relation of U . The function V is
the multiplicity (weight) of the arcs, and m0 is the initial marking. In general, a
marking is a function m : P → N. We may occasionally omit the initial marking
and simply refer to a Petri net as the tuple U = (P, T, F, V). We stipulate that
for every transition t ∈ T , there is a place p ∈ P such that f = (p, t) ∈ F and
V (f) 6= 0.

Let x ∈ P ∪T . The pre- and post-sets of x, denoted by •x and x• respectively,
are defined as •x = {y | (y, x) ∈ F} and x• = {y | (x, y) ∈ F}.

For each transition t ∈ T , we define two markings, t−, t+ : P → N as follows:

t−(p) =

{
V (p, t), if (p, t) ∈ F,
0 otherwise ,

t+(p) =

{
V (t, p), if (t, p) ∈ F,
0 otherwise .

A transition t ∈ T is said to be enabled if t−(p) ≤ m(p) for all p ∈ •t.
Applying the notation M t(p) = t+(p) − t−(p) for p ∈ P , we define the firing

of a Petri net. Let U = (P, T, F, V,m0) be a Petri net, and m be a marking
in U . A transition t ∈ T can fire in m (notation: m −→t) if t is enabled in m.
After the firing of t, the Petri net obtains the new marking m′ : P → N with
m′(p) = m(p)+ M t(p) for all p ∈ P . Notation: m −→t m′.

We obtain time Petri nets if we add time assigned to transitions of the Petri
net. Intuitively, the time associated with a transition denote the last time when the
transition was fired. We are considering only bounded time intervals. We present
the definitions from [7], see also [8] for more information.

Definition 1. ([7]) A time Petri net is a 6-tuple N = (P, T, F, V,m0, I) such that

1. the skeleton of N given by S(N) = (P, T, F, V,m0) is a Petri net, and
2. I : T → Q × Q is a function assigning a rational interval to each transition,

that is, for each t ∈ T and I(t) = (I(t)1, I(t)2) we have that 0 ≤ I(t)1 ≤ I(t)2.

274 P. Battyányi, G. Vaszil

We call I(t)1 and I(t)2 the earliest and the latest firing times belonging to t, and
denote them by eft(t) and lft(t), respectively.

Given a time Petri nets N = (P, T, F, V,m0, I), a function m : P → N is called
a p-marking of N . Note that talking about a p-marking of N is the same as talking
about a marking of S(N).

Let N = (P, T, F, V,mo, I) be a time Petri net, m : P → N a p-marking in
N , and h be a function called a transition marking (or t-marking) in N , h : T →
R≥0 ∪ {#}. A state in N is a pair u = (m,h) such that the two markings m and
h satisfy the following properties: for all t ∈ T ,

1. if t is not enabled in m (that is, if t−(p) > m(p) for some p ∈ •t), then
h(t) = #,

2. if t is enabled in m (that is, if t−(p) ≤ m(p) for all p ∈ •t), then h(t) ∈ R with
h(t) ≤ lft(t)).

The initial state is the pair u0 = (m0, h0), where m0 is the initial marking and
for all t ∈ T ,

h0(t) =

{
0, if t−(p) ≤ m0(p) for all p ∈ •t,
#, otherwise .

A transition t ∈ T is ready to fire in state u = (m,h) (denoted by u −→t) if t
is enabled and eft(t) ≤ h(t).

We define the result of the firing for a transition that is ready to fire. Let t ∈ T
be a transition and u = (m,h) be a state such that u −→t. Then the state u′

resulting after the firing of t denoted by u −→t u′ is a new state u′ = (m′, h′),
such that m′(p) = m(p) +4t(p) for all p ∈ P . Now, for all transitions s ∈ T , we
have

h′(s) =


h(s), if s−(p) ≤ m(p), s−(p) ≤ m′(p) for all p ∈ •s,
0, if s−(p) > m(p) for some p ∈ •s, but

s−(p) ≤ m′(p) for all p ∈ •s,
#, if s−(p) > m′(p) for some p ∈ •s.

Hence, the firing of a transition changes not only the p-marking of the Petri
net, but also the time values corresponding to the transitions. If a transition s ∈ T
which was enabled before the firing of t remains enabled after the firing, then the
value h(s) remains the same, even if s is t itself. If an s ∈ T is newly enabled with
the firing of transition t, then we set h(s) = 0. Finally, if s is not enabled after
firing of transition t, then h(s) = #.

Observe that we ensure that a rule can be chosen more than once in a maximal
parallel step that we allow transitions to be fired several times in a row: if t is fired
resulting in the new p-marking m′ and t−(p) ≤ m′(p) holds for all p ∈ •t, then
h(t) remains the same.

Besides the firing of a transition there is another possibility for a state to alter,
and this is the time delay step. Let u = (m,h) be a state of a time Petri net, and
τ ∈ R≥0. Then, the elapsing of time with τ is possible for the state u (denoted
u −→τ) if for all t ∈ T , h(t) 6= # we have h(t) + τ ≤ lft(t). Then the state u′,

A Time Petri Net Description of Membrane Systems 275

namely the result of the elapsing of time by τ denoted by u −→τ u′ is defined as
u′ = (m′, h′), where m = m′ and

h′(t) =

{
h(t) + τ, if h(t) 6= #,
otherwise.

Note that definitions ensure that we are not able to skip a transition when it
is enabled: a transition cannot be disabled by a time jump. This kind of semantics
is called the strong semantics in the literature [8].

We remark that classic Petri nets can be obviously obtained by having h(t) =
[0, 0] for every transition, and no time delay step is ever made.

4 Connecting Petri Nets and Membrane Systems

First of all, we introduce the time Petri net model constructed in [1], which serves
as our starting point in the constructions below. Our model relies on the corre-
spondence between Petri nets and membrane systems described in [2], with the
additional property that we do not require that our Petri net model should operate
in a maximal parallel manner. In general, both by membrane systems and by Petri
nets, a computational step can be considered as a multiset of rules or as a multiset
of transitions, respectively. In the case of Petri nets, an application of a multiset of
transitions is maximal parallel, if augmenting the multiset by any other transition
results in a multiset of transitions that cannot be fired simultaneously in that con-
figuration. In the case of membrane systems, maximal parallel execution means
that, if we consider any membrane mk, no rule of mk can be added to our multiset
of rules such that the remaining multiset still forms a multiset of executable rules
in mk. In our construction, the fireable transitions of the simulating Petri nets can
be executed in any order, we do not impose a restriction on the computational
sequence of the Petri nets. This involves that we have made an essential use of
the time feature, since the original place/transition Petri net model is not Turing
complete, unlike the majority of the symbol object membrane systems.

We remark that, similarly to membrane systems, Petri nets can also be con-
sidered as computational devices, which means that, if we start from an initial
configuration such that an input is represented by the tokens contained by some
designated places, then, when the computation halts, the content of the output
places provide the result of the computation. Depending on the construction, the
result can either be a number, or a tuple. The following statement is a reformu-
lation of Theorem 4.2 in [1]. We present the proof with details here, since the
subsequent Petri nets in the next section build upon this construction.

Theorem 1. ([1]) Let Π = (O,µ,w1, . . . , wn, R1, . . . , Rn) be a membrane system
without priorities, membrane dissolution and promoters/inhibitors.

Then there is a time Petri net N = (P, T, F, V,m0, I) such that N halts if and
only if Π halts and, if they halt, then they provide the same result.

276 P. Battyányi, G. Vaszil

Proof. The proof is a reinterpretation of that of Theorem 1 in [1]. We elabo-
rate the construction again in order to keep our presentation self-contained. Let
Π = (O,µ,w1, . . . , wn, R1, . . . , Rn) be a membrane system and let
N = (P, T, F, V,m0, I) be the corresponding Petri net. We define N so that a
computational step of Π is simulated by two subnets of N . The two subnets cor-
respond to the two computational phases of a computational step of a membrane
system, namely, the rule application and the communication phases. In our Petri
net model, the tokens in the places P0 = O × {1, . . . , n} stand for the objects in
the various compartments, while the tokens of the places P̄0 = Ō × {1, . . . , n},
where Ō = {ā | a ∈ O}, represent the messages obtained in the course of the rule
applications. Let us see the construction in detail.

• P = P0 ∪ P̄0 ∪ {initapp, initcom, sem, enabld}, where P0 = O × {1, . . . , n} and
P̄0 = Ō × {1, . . . , n}. Let m0(p) = wj(a) for every place p = (a, j) ∈ P0.

Intuitively, the relation |p| = t, where p = (a, i) ∈ O×{1, . . . , n}, means that there
are as many as t objects a ∈ O in compartment mi. In other words, wi(a) = t. On
the other hand, the equality |p̄| = s, where p̄ = (b̄, j) ∈ Ō × {1, . . . , n}, expresses
the fact that there are s copies of object b that will enter into membrane mj at the
end of the computational step. The places initcom, initapp, sem, enabld are places
enabling the synchronization of the Petri net model.

• T = T0 ∪ T ∗0 ∪ T# ∪ {tapp, tcom, t1sem, t2sem},

where the transitions are defined as follows.
Let ri,j ∈ Ri, where 1 ≤ j ≤ |Ri| and 1 ≤ i ≤ n, be a rule in mi. Then the
transition ti,j ∈ T0 corresponds to ri,j ∈ Ri. Let us define the arcs associated with
ti,j for a fixed i and j together with their multiplicities.

- Assume ti,j ∈ T0, where 1 ≤ i ≤ n and 1 ≤ j ≤ |Ri|. Then p = (a, i) ∈ •ti,j
if and only if a ∈ lhs(ri,j), and p̄ = (b̄, k) ∈ t•i,j if and only if either (b, ink) ∈
rhs(ri,j), that is, mi is the parent region of mk, or (b, out) ∈ rhs(ri,j), where
region k is the parent region of i, or k = j and (b, here) ∈ rhs(ri,j).
In addition, enabld ∈ •ti,j ∩ t•i,j (1 ≤ i ≤ n, 1 ≤ j ≤ |Ri|).
Regarding the weights of the arcs, let p = (a, i) and f = (p, ti,j) ∈ F . Then
the weight of f is the multiplicity of a ∈ O on the left-hand side of ri,j ,
namely, V (f) = lhs(ri,j)(a); furthermore, for p̄ = (b̄, k) and f = (ti,j , p̄) ∈ F ,
the weight of f is V (f) = rhs(ri,j)(b, ink) if region k is a child region of
i, V (f) = rhs(ri,j)(b, out) if region k is the parent region of i, or V (f) =
rhs(ri,j)(b, here) for k = j. Additionally, if f = (ti,j , enabld), then V (f) = 1
(1 ≤ i ≤ n, 1 ≤ j ≤ |Ri|).

The transitions in T# are in charge with the correct simulation of a maximal
parallel step: they fire only if there are any enabled rules in any of the regions.
Their inputs are the same as those of the elements of T0, only their outputs differ,
since they should not give rise to a change in the original distribution of the tokens
before the computational step takes place.

A Time Petri Net Description of Membrane Systems 277

- Let ri,j ∈ Ri, where 1 ≤ j ≤ |Ri|, 1 ≤ i ≤ n; then t#i,j ∈ T# is the transition

checking the applicability of ri,j . Let p = (a, i) ∈ P0 and let t#i,j ∈ T#; then

p ∈ •(t#i,j) and initapp ∈ •t#i,j and enabld ∈ (t#i,j)
• and p ∈ (t#i,j)

•. In words,

for a fixed i and j, t#i,j expects as many tokens from its outgoing places as the
number of distinct objects that is necessitated by an execution of the rule ri,j .
In the meantime, a token arrives in enabld, which ensures the continuation of
the simulation of the rule application phase. Then t#i,j gives back the tokens to
the places in P0.
As regards the multiplicities, if f = (initapp, t

#
i,j) then V (f) = 1, and if f =

(t#i,j , enabld) then V (f) = 1; furthermore, if f = (p, t#i,j) or f = (t#i,j , p) where
p = (a, i), then V (f) = lhs(ri,j)(a).

The transitions in T ∗0 ensure that tokens can flow back from P̄0 to P0, thus
representing the communication phase of the membrane computation.

- T ∗0 = {sa,i | a ∈ O, 1 ≤ i ≤ n}. Let p̄ = (ā, i) ∈ P̄0, then p̄ ∈ •sa,i and
initcom ∈ •sa,i. Moreover, if p = (a, i), then p ∈ s•a,i and initcom ∈ s•a,i.
Regarding the multiplicities, each arc has multiplicity 1.

The intervals belonging to the elements of T = T0 ∪T ∗0 ∪T# are [0, 0]. The rest of
the transitions are defined as follows.

- tapp connects enabld, and hence the rule application part of the Petri net with
the semaphore: enabld ∈ •tapp and sem ∈ t•app. Moreover, V (enabld, tapp) = 1
and V (tapp, sem) = 2 and I(tapp) = [1, 1].

The role of tapp is to guarantee that a sequence of firings of transitions correctly
simulates a maximal parallel application of membrane rules: every transition, ti,j
(1 ≤ j ≤ |Ri|, 1 ≤ i ≤ n), corresponding to a rule execution can fire only if a
token is found in enabld. On the other hand, if no transition ti,j can fire, then the
transition tapp connected only to enabld will be activated after a time unit’s delay.

- tcom connects initcom, and the communication part of the Petri net with the
semaphore: initcom ∈ •tcom and sem ∈ t•com. Moreover, V (initcom, tcom) =
V (tcom, sem) = 1 and I(tcom) = [1, 1].
The role of the semaphore is to make sure that the simulation of the rule
application and the communication phases takes place in an alternating order.
This is achieved by the following machinery.

- Let t1sem and t2sem be transitions of the semaphore. Then sem ∈ •(t1sem) and
sem ∈ •(t2sem); furthermore, initapp ∈ (t1sem)• and initcom ∈ (t1sem)•. If f =
(sem, t2sem), then V (f) = 2. The weights of the other arcs are 1. In addition,
I(t1sem) = [1, 1] and I(t2sem) = [0, 0].

To sum up the above construction: a computational step of a membrane system
is split into a rule application and a communication phase, and those two phases are
simulated separately and in an alternating order. The simulation of a phase finishes
when no more rule applications are possible, hence we ensure that a maximal

278 P. Battyányi, G. Vaszil

parallel step is correctly simulated. When the rule application phase finishes its
operation, 2 tokens are sent to the semaphore via tapp, and the simulation of
the communication phase can immediately begin by forwarding the 2 tokens to
initcom. Otherwise, when the communication phase finishes its operation, only 1
token is sent to the semaphore, so the rule application phase is initiated after a
time unit’s wait. The structure of the various subnets are described in Figures 1,
2 and 3, respectively.

initapp enabld (a, 1) (b, 1)

tapp[1,1] [0,0] t#1,1 [0,0] t1,1

sem (c̄, 1) (d̄, 2)

initapp enabld (a, 1) (b, 1)

tapp[1,1] [0,0] t#1,1 [0,0] t1,1

sem (c̄, 1) (d̄, 2)

2

Fig. 1. Assume a, b2 ∈ w(1) and r1,1 = ab → c3(d, in2), where m2 is child of m1. The
figure shows the result of a single application of the rule in a split table: to the left is the
subnet testing the applicability of r1,1 and to the right is the application of the rule itself.
The rule consumes an a and a b in region 1 and three tokens are sent to the place (c̄, 1),
and one token to (d̄, 2), in accordance with the fact that three objects of c should be
added to region 1, and one copy of d should be added to region 2 in the communication
phase.

By this, we have simulated a membrane system with a time Petri net such that
in the Petri net model no restriction on the transitions is made: the transitions
that are ready to fire can be fired in any order. �

5 Extending the Correspondence to Membrane Systems
with More Features

In this section we examine the possibility of extending our core model to Petri
nets that are able to represent various properties of membrane systems, such as the
presence of promoters/ inhibitors, membrane dissolution and priority among rules.
The obtained Petri nets each build upon the basic model defined in the previous
section, so, in most of the cases, we restrict ourselves to emphasize only the new
elements of the constructions by which the basic Petri net model is extended.

First we begin with discussing the case of promoters and inhibitors in the
membrane system. Below we present a formal definition of promoters/inhibitors

A Time Petri Net Description of Membrane Systems 279

sem (c, 1) (d, 2)

tcom[1,1]

1

sc,1[0,0] sd,2[0,0]

initcom (c̄, 1) (d̄, 2)

Fig. 2. The Petri net simulating the communication phase of a membrane computational
step. When the simulation of a maximal parallel rule application step is finished, a token is
given to the semaphore sem. The transitions sc,1, sd,2 ∈ T ∗

0 ensure the correct placement
of the tokens corresponding to the messages.

sem

[1,1]

t1sem

[0,0]

t2sem

initapp initcom

1 2

Fig. 3. The semaphore for the Petri net. When the simulation of the rule application
phase of a computational step of the membrane system is complete, two tokens appear at
sem, and then sent to initcom, activating the simulation of the communication phase of
the computational step. When the simulation of the communication phase is completed,
one token appears at sem, which is then sent to init0, activating the simulation of the
rule application phase of a subsequent computational step.

in a form which is unusual, but technically well suitable for the presentation of the
corresponding time Petri net model.

Definition 2. Let Π = (O,µ,w1, . . . , wn, R1, . . . , Rn,P) be a membrane system
with promoters/inhibitors, where P(rj,i) ⊆ O∗ × O∗, for every rj,i ∈ Ri. Then
P(rj,i) = (ρj,i, τj,i) ⊆ O∗ ×O∗ is a promoter/inhibitor pair for rj. We denote the

280 P. Battyányi, G. Vaszil

pair (ρj,i, τj,i) by (promr, inhibr). Let R be a multiset of rules. A multiset R is
applicable, if each of the following conditions fulfill.

1. lhs(rj,i)(a) · R(j, i) ≤ wi(a) (a ∈ O),
2. promr(a) ≤ wi(a) (r ∈ R, a ∈ O),
3. wi(a) < inhibr(a) (r ∈ R, a ∈ O).

In what follows, we give the structure of the Petri net simulating a general
example of a membrane system with promoters/inhibitors.

Theorem 2. Let Π = (O,µ,w1, . . . , wn, R1, . . . , Rn,P) be a membrane system
with promoters/inhibitors.

Then there is a time Petri net N = (P, T, F, V,m0, I) such that N halts if and
only if Π halts, and if they halt, both of them provides the same result.

Proof. LetΠ be as in the statement of the theorem. We constructN in a way anal-
ogous to the construction of the Petri net of Theorem 1. The Petri net simulates
the rule application and the communication phase separately, we only concentrate
on the rule application part, since the other parts of the construction are identical
to that of the proof of Theorem 1. Let us detail the proof a bit more.

• P = P0∪ P̄0∪{initapp, initcom, sem, enabld, contd}, where P0 = O×{1, . . . , n}
and P̄0 = Ō × {1, . . . , n}. Let m0(p) = wj(a) for every place p = (a, j) ∈ P0.

As before, if |p| = t, where p = (a, i) ∈ O×{1, . . . , n}, then there are as many as t
objects a ∈ O in compartment mi. Likewise, we retain the meaning of p̄ = (b̄, j) ∈
Ō× {1, . . . , n}, where |p̄| = s expresses the fact that there are s copies of object b
that are going to appear in membranemj at the end of the computational step. The
places initcom, initapp, sem, enabld, contd are places enabling the synchronization
of the Petri net model. The new element here is the place contd, which is introduced
in order to handle conditions 2 and 3 for rule applicability in Definition 2.

• T = T0 ∪ T ∗0 ∪ T# ∪ T## ∪ {tapp, tcom, t1sem, t2sem},

where the transitions are defined as follows.

- The definitions of the transitions T0 and T ∗0 are unchanged. The construction
of the arcs and their weights, with respect to T0 and T ∗0 , is exactly the same
as above.

The difference lies in the definitions of T# and T##. They ensure that the
conditions of rule applications presented in Definition 2 are simulated correctly.

- Let ri,j ∈ Ri, where 1 ≤ j ≤ |Ri|, 1 ≤ i ≤ n; then t#i,j ∈ T# is the transition

checking conditions 1 and 2 in Definition 2. Let p = (a, i) ∈ P0 and let t#i,j ∈ T#;

then p ∈ •(t#i,j) and initapp ∈ •t#i,j and contd ∈ (t#i,j)
• and p ∈ (t#i,j)

• and

enabld ∈ (t#i,j)
•.

A Time Petri Net Description of Membrane Systems 281

As regards the multiplicities, if f = (initapp, t
#
i,j) then V (f) = 1, and if f =

(contd, t#i,j) or f = (t#i,j , enabld) then V (f) = 1; furthermore, if f = (p, t#i,j)

or f = (t#i,j , p), where p = (a, i), then V (f) = max{lhs(ri,j)(a), promri,j (a)}.
The time interval assigned to t#i,j is [1, 1].

The novelty in this Petri net is the appearance of the transitions T## =
{t##
i,j | ri,j ∈ Ri}, that are responsible for the correct simulation of the inhibitors.

- Let ri,j ∈ Ri, where 1 ≤ j ≤ |Ri|, 1 ≤ i ≤ n; then t##
i,j ∈ T## is the transition

checking condition 3 in Definition 2. Let p = (a, i) ∈ P0 and let t##
i,j ∈ T#;

then p ∈ •(t##
i,j) ∩ (t##

i,j)•.

If f = (p, t##
i,j) or f = (t##

i,j , p), where p = (a, i), then V (f) = inhibri,j (a).

The time interval assigned to t##
i,j is [0, 0].

In words, the transitions t##
i,j capture the tokens of p = (a, i) in the case when

|p| ≥ inhibri,j (a). The firing sequence can continue with the simulation of the
application of rule ri,j only if |p| < inhibri,j (a) holds for every a ∈ O for which
lhs(ri,j)(a) > 0.

The rest of the construction is the same as that of Theorem 1, hence we omit
the details. The changes in the Petri net compared to the core model are illustrated
in Figures 4. �

init enabld contd (a, 1)

tapp[2,2] [0,0] tr,1 [1,1] t#r,1

sem

[0,0] t##
r,1

2

sem (c̄, 1) (d̄, 2)

init enabld contd (a, 1)

tapp[2,2] [0,0] tr,1 [1,1] t#r,1

sem

[0,0] t##
r,1

2

sem (c̄, 1) (d̄, 2)

3

2

Fig. 4. The rule application phase for the Petri net, where a ∈ w1 and r = a→ c(d, in2)3

and promr(a) = 1, inhibr(a) = 2.

Next, we turn our attention to membrane systems with dissolution. Let Π =
(O,µ,w1, . . . , wn, R1, . . . , Rn, δ) be a membrane system with dissolution. We recall
form our previous definitions that this means that there exists a special element
δ ∈ O, which can appear on the right side of a rule only. Assume r ∈ Ri and
δ ∈ rhs(r). Suppose r is chosen in the actual maximal parallel rule application of
mi. Then all the rules of Ri appearing in that computational step are executed as

282 P. Battyányi, G. Vaszil

usual, and, after the maximal parallel step is over, the region mi disappears, its
objects wander into the parent region and the rules Ri cease to operate. With this
in mind, we construct a time Petri net simulating the operation of the membrane
system in the sense below.

Theorem 3. Let Π = (O,µ,w1, . . . , wn, R1, . . . , Rn, δ) be a membrane system
with dissolution.

Then there is a time Petri net N = (P, T, F, V,m0, I) such that N halts if and
only if Π halts, and if they halt, then both systems provide the same result.

Proof. Let Π be as in the theorem. We construct the Petri net N with the required
properties. The construction again leans on the proof of Theorem 1. The rule
application phase is exactly the same with one exception: places δi symbolizing
the dissolution of membrane mi appear. The difference manifests itself in the
definition of the communication phase. Moreover, we introduce one more phase, a
δ-phase, that serves for moving the elements of a previously dissolved membrane
to the parent region. First of all, we define the set of places as before.

• P = P0 ∪ P̄0 ∪ {initapp, initcom, sem, enabld, δi}, where P0 = O × {1, . . . , n}
and P̄0 = Ō × {1, . . . , n} and 1 ≤ i ≤ n. Let m0(p) = wj(a) for every place
p = (a, j) ∈ P0.

The only change is the presence of the places δi for every region mi. Intuitively,
they are indicators whether a membrane is going to disappear in the next step or
has been dissolved already. This is reflected in the design of the arcs for the rule
application phase. We require an extended set of transitions, since we have a third
phase also that transfers the objects of the dissolved membranes to their parent
membranes.

• T = T0 ∪ T ∗0 ∪ T δ0 ∪ T# ∪ T [∪ {tapp, tcom, tclean, t1sem, t2sem, t3sem},

and the arcs for the rule application phase are identical to those of Theorem 1
with the only exception of the arcs pointing from ti,j , where ri,j ∈ Ri, to the place
δi with multiplicity 1 provided δ ∈ rhs(ri,j). Thus we are only interested in the
transitions T ∗0 , T [and their corresponding arcs.

- Let T ∗0 = {sa,i | a ∈ O, 1 ≤ i ≤ n} and T δ0 = {sδa,i | a ∈ O, 1 ≤ i ≤ n}. Let mi

be a region other than the skin membrane, assumemk is its parent region. (Ifmi

is the skin membrane, it cannot disappear.) Let p̄ = (ā, i) ∈ P̄0, then p̄ ∈ •sa,i
and, if p = (a, i), then p ∈ s•a,i. Moreover, initcom ∈ •sa,i ∩ s•a,i. In addition, δi

is connected with sδa,i for every object a ∈ O, that is: δi ∈ •sδa,k ∩ sδa,i
•

and we

have q̄ = (ā, k) ∈ sδa,i
•
. Regarding the multiplicities, each arc has multiplicity

1.
Furthermore, I(sa,i) = [1, 1], I(sδa,i) = [0, 0] and I(tcom) = [2, 2], where tcom is
the transition connecting initcom with the place sem.

Intuitively, if mi is a region with parent region mk, the communication phase
transfers the tokens of p̄ = (ā, i) to the place p = (a, i), as long as the membrane

A Time Petri Net Description of Membrane Systems 283

mi exists. When mi is marked for dissolution or has been already dissolved, that
is, |δi| = 1, then the tokens of p̄ = (ā, i) are redirected to q̄ = (ā, k). This is
achieved by a time gap between the possible firings of the transitions sa,i and sδa,i.
This implies that the elements appearing on the right hand side of the rules of a
dissolved membrane find their correct place: they wander to the upper levels of the
tree until they find the first ancestor region not dissolved. The main ingredients
of the construction are illustrated in Figure 5.

The only missing part is the subnet directing the remaining object of a dissolved
membrane into an existing container membrane. We term this phase the cleaning
phase. The construction is quite simple: let mk be a region and assume that mi is
its parent region. Then, for every place p = (a, k), there corresponds a transition
tfp lat which transfers the objects of p to q = (a, i) when δk contains a token. The

place initclean is connected to all the transitions t[p in order to perceive when the
tidying phase is ready. After this, 3 tokens are sent to the semaphore and a new
application phase activates. More formally,

- let T [= {t[a,k | a ∈ O, 1 ≤ k ≤ n}. Assume mi is the parent region of region

mk. Then p = (a, k) ∈ •t[p and q = (a, i) ∈ t[p
•

and δk ∈ •t[p ∩ t[p
•
. Moreover,

initclean ∈ •t[p ∩ t[p
•

and initclean ∈ •tclean and sem ∈ t•clean. Regarding the
multiplicities, each arc has multiplicity 1, except for (tclean, sem), which has
multiplicity 3.
Furthermore, I(t[a,i) = [0, 0], I(tclean) = [1, 1].

This is described in Figure 6. The semaphore is extended with a new transition,
t3sem which leads to the initialization of the third phase in the simulation of a
maximal parallel step. The new semaphore is depicted in Figure 7. �

Finally, we tackle the problem of the representation of membrane systems with
priorities in terms of Petri nets. Again, our construction is a slight modification
of the core model. We introduce some pieces of information in the simulation of
the rule application phase that accounts for the treatment of the priorities. Let
Π = (O,µ,w1, . . . , wn, R1, . . . , Rn, ρ) be a membrane system with priorities. This
means that ρ ⊆ R×R, and the rule application is modified in the following way.

Definition 3. Let Π = (O,µ,w1, . . . , wn, R1, . . . , Rn, ρ) be a membrane system
with priorities. Let r ∈ Ri, if 1 ≤ i ≤ n. Then r is strong-applicable, if

1. r is applicable, that is, lhs(ri) ≤ wi, and
2. for every r′ ∈ Ri such that r′ > r, r′ is not applicable.

Let r1, r2 ∈ Rk be two rules of region mk, assume that (r1, r2) ∈ ρ, that
is, r1 > r2. Then, considering a computational step, r2 can be applied if r2 is
applicable in the usual sense and, in addition, r1 fails to be applicable in the
maximal parallel step belonging to region mk. We remark that we use priority
in the strong sense: assume wk = a2b, r1 = a → c and r2 = ab → d. Then the
result of the maximal parallel step will be ad, instead of cd, since r1 > r2 and

284 P. Battyányi, G. Vaszil

δ2 (a, 2) (b, 2)

tr

(c̄, 2) (d̄, 3)

2

(c̄, 1) (c, 2)

sδc,2[0,0] sc,2[1,1]

(c̄, 2)δ2

Fig. 5. The Petri net simulating a membrane system with dissolution. In this case, m2

is dissolved, hence sδc,2 can be activated moving the elements of p̄(c, 2) to p̄(c, 1).

sem (a, 2) (a, 1)

tclean[1,1]

3

t[a,2[0,0]

initclean

δ2

Fig. 6. The Petri net simulating the phase when the objects of a dissolved membrane
are directed towards the parent membrane. Here we assume that region 1 is the parent
of region 2, and the place δ2 already has a token.

r1 is applicable, which implies that r2 cannot be applied in that maximal parallel
step at all, even if r1 is not applicable any more. The construction is again based
on the basic construction, the only difference is that we have to pick out the
applicable rules in order to obtain strong applicability. We do this by stratifying
the various tasks due in the rule application phase with respect to time. Finding
the strongly applicable rules takes place before the actual rule applications are
simulated. Below, the place pAti will represent the strong applicability of rule ri.

A Time Petri Net Description of Membrane Systems 285

sem

[2,2]

t1sem

[1,1]

t2sem

[0,0]

t3sem

initapp initcom initclean

1 2 3

Fig. 7. The semaphore for the Petri net with dissolution. The choice of the next phase
is uniquely determined by the number of tokens arriving in the place sem.

Now we are in a position to state the theorem on the simulation.

Theorem 4. Let Π = (O,µ,w1, . . . , wn, R1, . . . , Rn, ρ) be a membrane system
with priorities.

Then there is a time Petri net N = (P, T, F, V,m0, I) such that N halts if and
only if Π halts, and if they halt, then they provide the same result.

Proof. Let Π as above. We describe the Petri net N simulating Π. The only dif-
ferences in comparison with the model in Theorem 1 occur by the rule application
phase when we select the transitions that are candidates for the strongly applicable
rules. We omit repeating the communication phase and the alternating construc-
tion of the Petri net in detail and we confine ourselves to the rule application phase
only. The places are

• P = P0 ∪ P̄0 ∪PA ∪PB ∪Pρ ∪P ∗ρ ∪{initapp, initcom, sem, enabld}, where P0 =

O×{1, . . . , n} and P̄0 = Ō×{1, . . . , n} and the auxiliary places are defined as
in Theorem 1. Regarding the new places, PA = {pAi,j | ri,j ∈ Ri, 1 ≤ j ≤ |Ri|}
and PTB = {pBi,j | ri,j ∈ Ri, 1 ≤ j ≤ |Ri|}. Moreover, Pρ = {pri>rj | p ∈
P0 and (ri, rj) ∈ ρ}, and P ∗ρ = {p∗ri>rj | p ∈ P0 and (ri, rj) ∈ ρ}.

The new places accomplish some bookkeeping in order to keep track of which
rules are applicable and which ones are not. A token in pAi,j should symbolize the

applicability of an arbitrary ri,j ∈ Ri, while a token in pBi,j says that ri,j is blocked
by an applicable rule of higher priority. The places Pρ and P ∗ρ ensure that each pair
ri, rj with (ri, rj) ∈ ρ should be checked only once with the purpose of dropping
out the blocked rules. We define now the new transitions together with the arcs
induced by these transitions.

• T = T0 ∪ T ∗0 ∪ T# ∪ Tρ ∪ T ∗ρ ∪ TNA ∪ T [∪ {tapp, tcom, t1sem, t2sem}.

The transitions are defined as before, except for the arcs in connection with the new
sets of transitions. Regarding Tρ, where Tρ = {tri>rj | ri, rj ∈ mk, (r1, r2) ∈ ρ}
and T [= {t[i,j | ti,j ∈ T0}. The arcs in connection with transitions T0, T ∗0 and

286 P. Battyányi, G. Vaszil

T#, including the auxiliary transitions, are the same as in the core model. The
differences emerge by the subnet checking strong applicability: if a rule r ∈ Ri is
applicable, then a token is passed over to pAt , where t corresponds to r. Moreover,
when r′ ∈ Ri is applicable as well, and (r′, r) ∈ ρ, then the token in pr′>r is
consumed and a token is transferred to p∗r′>r and to pBt . The token in pBt symbolizes
that r is blocked in that maximal parallel step, which is expressed at time 1, when
the tokens in pAt and pBt are both consumed by the transition tNA. When only
tokens at pAt′′ are left, where the corresponding rule r′′ is strongly applicable, then
the usual rule applications take place with the refinement that transitions in T0
have places from pA as incoming places as well. After finishing with the simulation
of the rule applications, the tokens remaining in PA are discarded, moreover,
tokens are returned to Pρ at time instance 3.

- Let ri,j ∈ Ri, where 1 ≤ j ≤ |Ri|, 1 ≤ i ≤ n; then, as in the previous

constructions, t#i,j ∈ T# is checking the applicability of ri,j . Let p = (a, i) ∈ P0

and let t#i,j ∈ T#; then p ∈ •(t#i,j) ∩ (t#i,j)
• and initapp ∈ •t#i,j and enabld ∈

•t#i,j ∩ (t#i,j)
•, which is a slight modification compared to Theorem 1. Enabled

iw wired to each t#i,j with both an incoming and an outgoing arc so that the
process of finding the transitions for the strongly applicable rules can continue
without hindrance. Furthermore, pAi,j ∈ (t#i,j)

•.

Regarding the multiplicities, V ((initapp, t
#
i,j)) = 1, and if f = (t#i,j , enabld)

then V (f) = 1; furthermore, if f = (p, t#i,j) or f = (t#i,j , p) where p = (a, i),

then V (f) = lhs(ri,j)(a). in addition, the multiplicity of (t#i,j , p
A
i,j) is 1.

- Now, we turn to the operations of the transitions Tρ. Let ri,j , ri,k ∈ Ri with
ri,k > ri,j . Then tri,k>ri,j ∈ Tρ, and for pAi,k and pAi,j , both of them are in
•tri,k>ri,j ∩ t•ri,k>ri,j . Moreover, pri,k>ri,j ∈ •tri,k>ri,j and p∗ri,k>ri,j ∈ t

•
ri,k>ri,j

.

Furthermore, pBri,j ∈ t
•
ri,k>ri,j

and, if rip ∈ Ri is arbitrary, pAtp and pBtp ∈
•tNAp .

Finally, ∪T ∗ρ return the elements of p∗ri,k>ri,j back to pri,k>ri,j , when the rule
application phase is over. That’s why p∗ri,k>ri,j ∈

•t∗ri,k>ri,j and pri,k>ri,j ∈
(t∗ri,k>ri,j)•.
The multiplicities of all the new arcs is 1.
The elements of T [collect the tokens that might remain in the places PA

when the simulation of the maximal parallel step is over. We have pAi,j ∈ •t[i,j
for every index pair i, j such that t[i,j ∈ T [. The multiplicities of the arc is 1.
The elements of T0 are extended with one more arc: for every t ∈ T0 we have
pAt ∈ •t ∩ t• with multiplicity 1.
The timing makes sure that finding the strongly applicable elements precedes
the rule applications themselves. For each tri,k>ri,j ∈ Tρ, we have I(tri,k>ri,j) =

[0, 0], moreover, I(tNA) = [1, 1] and I(t) = [2, 2], if t ∈ T0. Finally, I(t[i,j) =
I(t∗r′>r) = [3, 3].

- Regarding ti,j ∈ T0, where 1 ≤ i ≤ n and 1 ≤ j ≤ |Ri| is as before, let
p = (a, i) ∈ •ti,j if and only if a ∈ lhs(ri,j). In addition, enabld ∈ •ti,j ∩ t•i,j
(1 ≤ i ≤ n, 1 ≤ j ≤ |Ri|).

A Time Petri Net Description of Membrane Systems 287

(a, 1) pA2 pB2 pA1 (b, 1)

t2[2,2] [0,0] tr1>r2 [1,1] tNA2 [3,3] t[1 [2,2] t1

(c̄, 1) (d̄, 2)pr1>r2 p∗r1>r2

[3,3]

t∗r1>r2

(a, 1) pA2 pB2 pA1 (b, 1)

t2[2,2] [0,0] tr1>r2 [1,1] tNA2 [3,3] t[1 [2,2] t1

(c̄, 1) (d̄, 2)pr1>r2 p∗r1>r2

[3,3]

t∗r1>r2

Fig. 8. Assume w1 = a2b and r1, r2 ∈ R1, r1 = ab → d, r2 = a → c such that r1 > r2.
Then only t1 can fire: transition tr1>r2 delivers a token to place pB2 , and at time instance
1 the tokens from pA2 and pB2 are removed by transition tNA2 .

As regards the weights of the arcs, let p = (a, i) and f = (p, ti,j) ∈ F . Then the
weight of f is the multiplicity of a ∈ O on the left-hand side of ri,j , namely,
V (f) = lhs(ri,j)(a). If f = (ti,j , enabld) or f = (enabld, ti,j), then V (f) = 1
(1 ≤ i ≤ n, 1 ≤ j ≤ |Ri|). Moreover, if tapp is the transition connecting enabld
to sem, then I(tapp) = [4, 4].

The definition of the communication part is the same as that of the proof of
Theorem 1, we ignore omit repeating the construction. The main changes compared
to the core model can be seen in Figure 8. �

288 P. Battyányi, G. Vaszil

6 Conclusions

In this paper, we have made a step forward in relating the membrane systems
and time Petri nets. We connected membrane systems with promoters/inhibitors,
membrane dissolution and priority for rules with time Petri nets by extending the
Petri net model presented in [1]. We preserved the main characteristic of Petri
nets, namely, the firings of the transitions can take place in any order: we do not
impose any additional condition on the transition sequences in order to obtain
a Petri net model equivalent to the general Turing machine. We can ignore the
requirement of computing with maximal parallel transition sequences in the case of
the Petri nets. Instead, our simulating Petri net model adopts the usual semantics:
the fireable transitions can fire in any possible order.

References

1. Aman, B., Battyányi, P., Ciobanu, G., Vaszil, G.: Local time membrane systems and
time Petri nets. Theoretical Computer Science (to appear)
https://doi.org/10.1016/j.tcs.2018.06.013

2. Kleijn, J.H.C.M., Koutny, M., Rozenberg, G.: Towards a Petri Net Semantics for
Membrane Systems. In: Freund R., Păun G., Rozenberg G., Salomaa A. (eds)
Membrane Computing. WMC 2005. Lecture Notes in Computer Science, vol 3850.
Springer, Berlin, Heidelberg (2006) 292–309

3. Merlin, P.M.: A Study of the Recoverability of Computing Systems. PhD Thesis,
University of California, Irvine (1974)

4. Păun, G.: Membrane Computing. An Introduction. Springer, Berlin, Heidelberg
(2002)

5. Păun, G., Rozenberg, G., Salomaa, A: The Oxford Handbook of Membrane Com-
puting. Oxford University Press (2010)

6. Petri, C.A.: Kommunikation mit Automaten. Dissertation, Universität Hamburg
(1962)

7. Popova, L.: On Time Petri Nets. Journal of Information Processing and Cybernetics
27(4) (1991) 227–244

8. Popova-Zeugmann, L.: Time and Petri Nets. Springer, Berlin, Heidelberg (2013)

