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Abstract: The specific relationships between the classical pole-placement state feedback, the RICCATI equation based LQ 
paradigm and the KALMAN frequency domain approach are discussed. It is shown that arbitrary pole placement is not 
possible by standard LQ optimality. A possible solution of this anomaly is to use more general LQ criterion with specific 
weights on the state, input and crossterm. 
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1. Introduction 
 
In the early time of control theory the optimization of transient processes in dynamic systems 
used a quadratic criterion, i.e., the integral square of error 
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Here e t( )  is the error signal of a closed-loop control system. The second half of (1) is the so-
called PARSEVAL theorem [3], [6], using the strictly proper E s( ) , the LAPLACE transform of 
e t( ) . 

This integral criterion was very popular, because the evaluation of (1) could be performed 
analytically and easily computed even by the early slow computers (by preprogrammed 
formulas). The general theory was called WIENER approach [3] and thousands of papers were 
published for the different optimal designs. The first critics came from the industry: the 
optimal regulators minimizing (1) were not acceptable in the practice, because they resulted a 
very large (20~25 %) overshoot in the step response transients. 

One way to overcome this problem was first to introduce a more general quadratic integral 
criterion, penalizing the different state variables as 
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which is called generalized quadratic criterion. It is not difficult to show that (2) has an 
equivalent form 
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where 
 
x !( ) = !x !( ) =… = x

n"1( )

!( ) = 0  and co = !1xo
2 , xo = x 0( ) . The coefficients of the two 

forms depend on each other by the REKASIUS-FELDBAUM equations [1], [2] 
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From (3) the minimum can be easily seen, if x t( )  fulfils the differential equation 
 

 
 
!
n
x

n( )

+ a
n"1 x

n"1( )

+!+ !1x + !o = 0      ;     !o = 1  (5) 
 
Here the signal x t( )  is more general than e t( ) , because it can be one of the state variables of 
a linear system. 
 

2. State feedback (SFB) 
 
Consider a SISO continuous time linear time invariant (LTI) dynamic plant described by the 
state variable representation (SVR) 
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Here u , y  and x  are the input, output and state variables of the controlled process and T  
stands for transposition. The transfer function representation (TFR) of the open-loop system 
can be calculated by 
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where I  is the unit matrix, 
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and 
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A s( ) = sn + a1s

n!1
+…+ an!1s + an = det sI ! A( )  (10) 

 
are the numerator and denominator polynomials, respectively. If the feedback is restricted to a 
linear SFB, then the classical solution can be written as 
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r
r!k

T
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where r  is the reference signal, k
r
 is a calibrating constant and kT  is the linear SFB vector. It 

is easy to check that the transfer function from the reference signal r  to the output y  is [4] 
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where k

r
 is obtained by requiring that the static gain of Try  should be equal to one 
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The usual classical design goal is to determine the feedback gain kT  so that the closed-loop 
system has the characteristic polynomial 
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The solution formally means equating the characteristic polynomial of the closed-loop with 
the desired polynomial ("pole placement method") 
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to compute kT . The solution always exists if P s( )  is controllable. 
If the TFR of the process is known then one can easily form a controllable canonical form 
Ac ,bc ,cc

T{ }  with 
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ac = a1 ,a2 ,…,an[ ]

T    ;   
 
bc = 1,0,…,0[ ]

T    ;   
 
cc = b1 ,b2 ,…,bn[ ]

T  (16) 

 
and now the feedback gain is obtained from (15) as 
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and 
 

 
  
kc
T
!c s( )bc = k1s

n"1
+…+ kn"1s + kn = K s( )  (19) 

 
The calibration factor is calculated by 
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The SVR of the closed-loop system is described by 
 

 
dx

d t
= A ! bk

T( )x+ kr b r = A + kr b r

y = c
T
x

 (21) 

 
It is easy to see from equation (12) that Try s( )  is now 
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i.e., besides reaching the desired pole-placement the SFB leaves the open-loop zeros 
untouched. 
 

3. The LQR (Linear system - Quadratic criterion - Regulator) problem 
 
Not only the bad transient of the error signal obtained from the optimal quadratic criterion 
was the problem, but also the big amplitude jumps necessary to the control action. An other 
way suggested to overcome the combined problem was the introduction of a penalty for the 
energy of the control signal. This optimization was formulated by the more general [3], [4] 
quadratic criterion 
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where x t( )  is the state vector, u t( )  is the input of the process, respectively. The positive 
definite W

x
 stands for penalizing the variations in the state space, wu  is for penalizing the 

energy of the control action, which is more general than (2). The solution, minimizing (23) is 
again a negative SFB [7] 
 

 u t( ) = !kLQ
T
x t( )  (24) 

 

where kLQ
T  is given by 
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where the symmetric positive semi definite matrix P  can be obtained from the solution of the 
algebraic RICCATI equation [4] 
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Analytic solution is not possible, because this equation is nonlinear in P , therefore only 
numeric solution can be obtained by MATLAB© and other CACSD programs. 



 

 

Introducing the orthogonal factorization 
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the closed-loop system is stable if the auxiliary process 
 
 v = Gx  (28) 
 
is observable. 

The characteristic polynomial coefficients are computed now from 
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Note that this SFB also provides the same Try s( )  as (22) before. 
 
A joint use of time domain optimality criteria, prescribed constraints and pole locations are 
often required in practice. Optimal and partially optimal pole placement based on optimality 
criteria (58) was studied in [19], [20], [21] and [22]. It can be shown, however, that [20] does 
not provide solution for the general problem (illustrated by the examples later), mainly due to 
the fact that it uses only the weights W

x
, Wu  but not the cross term Wux . 

 
4. The frequency domain solution of the LQR problem 

 
The LQR approach is widely used for control problems in all over the world, however, in a 
practical problem it is not an easy task to find the best W

x
 and wu  weights, which are usually 

obtained by trial and error iterative methods. The LQR problem has an almost forgotten 
frequency domain solution, too, which will give us a deterministic design process to find 
useful relationships between the classical pole placement SFB solution and the LQR 
paradigm. It can be shown that the simpler dyadic factorization [3] 
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can also be used. The frequency domain condition of the minimum of (23) is called the 
KALMAN equation [3] or sometimes it is named frequency domain identity (FDI) 
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Assuming unity weight wu ! 1  the equation becomes even simpler 
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Using the well known relationship of complex functions 
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the equation (32) can be rearranged into a new form 
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which provides the quadratic polynomial solution of the KALMAN equation. Thus the final 
quadratic equation, ensuring relationship between the process 
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or in the general form 
 

 
 
wu R s( )

2
= wu A s( )

2
+ G s( )

2  (37) 
 
Observe that the solution tends to 

 
R s( ) = A s( )  if Wu !"  and gTx = 0  if wu ! 0 . Do not 

forget that 
 
K s( )  and 

 
G s( )  are of n !1( ) -th order [8]. 

 
5. Some anomalies in the LQR problem 

 
The solution of the polynomial equation can be a direct coefficient comparison or a spectral 
factorization approach [5]. Consider some examples in the sequel. 
 
Example 1 
Consider a first order example with 
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If we want to ensure (place) a required pole then the necessary weight in the LQR problem is 
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It is easy to see that only such r1  can be placed, which fulfills the condition 
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for stable design polynomial 

 
R s( ) . So this example shows that only a faster pole can be 

placed by the LQR optimization comparing to the original process pole. 
 
Example 2 
Consider a second order example with 
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The SFB to be applied is given by 

 
 k1 = r1 ! a1 > 0 ; k2 = r2 ! a2 > 0  (48) 
 

For pole placement the necessary LQR weights are 
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It is easy to see that there are such r1 ,r2{ }  domains, which can not be reached by any g1 ,g2{ }  
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Figure 1. Unreachable design parameter domains 
 
These conditions are graphically demonstrated on Fig.1, where the shaded area shows the 
unreachable design parameters for the case of open-loop process parameters a2 = 0.8  and 

2µa
2
= 0.5 . 

One can check these results either via the solution of the RICCATI equation (very time 
consuming method) or by the spectral factorization approach 
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as the solution of (36), i.e., by 
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6. Solutions for LQ-pole placement 
 
We can not explain the above anomalies physically and provide unique solutions, however, 
offer some applicable solutions. Therefore it is necessary to discuss first the original MIMO 
LQR problem. 
 



 

 

Infinite-horizon, continuous-time LQ Regulator (LQR) 
 
For a continuous-time MIMO linear system described by 
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with a LQ cost functional (performance index) defined as 
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with Wx ! 0  and Wu > 0 , the stabilizing feedback control law that minimizes the value of the 
cost is 
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where K  is given by 
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and P = PT > 0  is the solution of the continuous time algebraic RICCATI equation 
 

 A
T
P + PA ! PBWu

!1
B
T
P +Wx = 0  (61) 

 
It is possible to construct an even more general LQR performance index, which penalizes the 
interaction of the state and control variables, too: 
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where the stabilizing feedback control law that minimizes the value of the cost is again 
 
 u = Kx  
 
but here K  is given by 
 

 K = !Wu
!1
Wux + B

T
P( )  (63) 

 

and P = PT > 0  is now the solution of a more complex algebraic RICCATI equation 
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These results are standard facts of the LQR theory. For the sake of completeness a sketch of 
the proof for the sufficiency is given as follows: assume that Wux > 0 , Wx ! 0 , Wux  are 
given. Then it will be shown that (62) is minimized by K  in (60). The RICCATI equation can 
be rewritten as 
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Pre- and post-multiplying by xT  and x , respectively and substituting 
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Inverse optimality for LQR performance  
 
Given a stabilizing feedback u = Kx  for (57) one can formulate the problem whether there 
exists an LQR problem of the form (58) or (62) that has the given feedback as a solution, i.e., 
the feedback is optimal. If the pair A,B( )  is controllable, then for any given spectrum !  
there is a feedback gain K!  such that ! A + BK"( ) = " . Concerning the pole-placement 
problem one can state that a spectrum !  is LQ optimal if there is an associated K!  such that 
it is a solution of the RICCATI equation with a Wx ! 0 . 

It turns out that the problem associated to the performance index (58) is nontrivial while the 
general case, corresponding to (62) can be always solved. 
 
The MIMO KALMAN-FDI 
In frequency domain the solution of the problem leads to the so called return difference 
condition. Its single input formulation is due to Kalman and was later extended by Anderson 
and Moore [9]. 

Specifically, K  is optimal for Wx =Wx
T
! 0  and Wu =Wu
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stable and there exists an Wu =Wu
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> 0  that satisfies the return difference inequality: 
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Choosing Wu = wuI , wu > 0  one has: 
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where !i  denotes the singular values. For SISO systems the KALMAN-FDI becomes: 
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Denoting the closed loop characteristic align by
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if wu ! 1  is chosen. From the KALMAN-FDI one obtains: 
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which corrresponds to (36). We now give a simple test for a given state feedback gain k  to 
decide if it can be an LQ optimal gain. 
 
Proposition 2 Assume that with u = kTx  the closed loop is stable. Then k  is optimal for 
some Wx ! 0 , and wu > 0  if and only if 
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Proof. If k  is LQ optimal, then the closed loop is stable and from the KALMAN-FDI follows 
that 1+ HLQ!" #$ % 1  and (71) is satisfied. On the contrary, if k  is stabilizing and (71) is 
satisfied, one can find a Wx ! 0  and wu > 0  such that the KALMAN-FDI is satisfied, too, i.e., 
k  is LQ optimal with this W

x
 and wu .  

 
Example 3 
Let the system be given as 



 

 

  !x = !2x + u  
 
i.e., A = A = a = !2 , B = B = b =1 . The open loop (plant) transfer function is 
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Applying state feedback u = k x , allocate the pole to p1 = !r1 = !1 , i.e., 

 
R s( ) = s + r1 . This 

will be performed by k =1 and the closed loop system will be 
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Plotting the BODE diagram for 
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one can deduce that this is below the 0  dB for small frequencies and asymptotically 
approaches 0  dB if !" # . This shows that this k  cannot be optimal for the LQR 
performance index (58). 

It is seen that using static state feedback, it is not possible to "slow down" the system since 
r1 > a1  has to be satisfied for LQ optimality. 
 
Time domain conditions 
 
In time domain inverse optimality of the feedback gain can be described through the concept 
of passivity. 

For a LTI system passivity, equivalent in this case to the positive realness, is assured in 
accordance with the following lemma, often termed as the KALMAN-YACUBOVICH-POPOV 
lemma: 
 
Lemma 1 A stable system (57) is passive, if and only if, there exists a matrix P = PT > 0  
such that 
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with  C !R
m"n  a suitable output matrix for system (61). Then, inverse optimality is given by 

the following result: 
 
Proposition 3 A stable feedback gain-matrix K  is optimal for a given input weighting matrix 
Wu > 0  and some state weighting matrix Wx ! 0 , i.e., it minimizes a performance index of 
the form of (58), if and only if, the closed-loop system with gain-matrix 
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is passive for an output matrix C = !WuK . 
 
Inverse optimality for LQR performance (67) 
 
Including the cross term Wux  in the LQR performance index makes the problem trivial. For a 
stabilizing state feedback K  one can find the extended matrix W  (see (75)) such, that K  is 
LQ optimal according to the performance (62). The procedure of deriving such weighting 
matrices, however, is neither trivial, nor unique. We show one possible solution that follows 
the procedure in [12]. 

It is obvious, that for any Wu > 0  the stabilizing feedback u = Kx  is optimal for the 
performance index: 
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i.e., Wx = K
T
WuK ! 0  and Wux = !WuK  in (58). Observe that this corresponds to the 

solution P = 0  of the RICCATI equation. 
A more standard solution is given by the following result: 

 
Proposition 4 For a given stabilizing feedback K  there exists a feedback law u = Kx  and an 
extended matrix 
 

 W =

Wx Wux

Wux
T

Wu

!

"
#

$

%
& > 0  (75) 

 
such that 
 

 [x
T
u
T
]
Wx Wux

Wux
T

Wu

!

"
#

$

%
&
x

u

!

"
#
$

%
&

0

'

( dt) min
K*K

s
tab  (76) 

 
if 
 

 Wu >

B
T
P

2 P A + BK( )
 (77) 

 

where P = PT > 0  satisfies the LYAPUNOV equation 
 

 P A + BK( ) + A + BK( )
T
P < 0  (78) 

 
Then 
 

 Wx = !P(A + BK) ! (A + BK)
T
P + K

T
WuK + K

T
B
T
P + PBK  (79) 

 Wux = !(B
T
P +WuK)  (80) 

 
Example 4 
Consider the Example 3 again. Let 



 

 

  !x = !2x + u  
 
and apply the state feedback k =1. The closed loop system  !x = !1x + u  becomes stable and 
"slower". It can be shown that this k =1 is optimal for the LQR performance index 
 

 5x
2 ! 4xu + u2( )

0

"

# d t  (81) 

 
Indeed, using the RICCATI-equation with 
 
 A = A = a = !2      ;     B = B = b =1      ;     Wx =Wx = wx = 5  
 Wux =Wux = wux = !2      ;     Wu =Wu = wu =1  
 
and 
 

 !4 p
2
! p ! 2( )

2
+ 5 = 0  

 
and choosing the positive solution p =1 , the state feedback is given by 
 

 k = !wu
!1
bp + wux( ) = ! 1! 2( ) =1  

 
and the closed loop matrix A = A = a = a + bk = !2 +1 = !1  as required, i.e., p1 = !r1 = !1 . 
So the closed-loop is slower !!! 

This result was obtained by using the method in Proposition 4. Pick any p > 0  such that it 
is a solution of the LYAPUNOV equation 2p a + bk( ) < 0 . Since a = a + bk = !1  and 
2p !1( ) < 0  for all p > 0 , one can choose p =1  and compute 
 

 wu,min =
bp( )

2

2p a
=
1

2
 

 
Choose any wu > wu,min , e.g., let wu =1 , then wx = 2 +1+ 2 = 5  and wux = !(1+1) = !2 . 
Notice that this solution is not unique, any Wu = wu ! 1 would do, e.g., wu = 2  results in 
wx =10 , wux = !4 . 
 

7. Conclusions 
 
The paper presents the specific historical comparison of the relationships between the 
classical quadratic integral criterion, the pole-placement state feedback, the algebraic RICCATI 
equation based LQR paradigm and KALMAN's frequency domain approach.  

Then two low order examples are shown how the obtained quadratic polynomial equation 
can be used. It is shown that arbitrary pole placement is not possible by standard classical LQ 
optimality by choosing only W

x
, Wu  weights. For a second order case the unreachable 

domains are graphically demonstrated. 
The MIMO LTI case is discussed next with more general LQR criterion which penalizes the 

interaction between the state and input variables. In this framework it is possible to obtain 
LQR solutions for the whole parameter space, but the design of the crossterm weight Wux  is 
necessary, too. The uniqueness of the proposed solution is not guaranteed. 
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