
A new method to simulate restricted variants of
polarizationless P systems with active

membranes

Zsolt Gazdag1? and Gábor Kolonits2??

1 Department of Foundations of Computer Science
University of Szeged

gazdag@inf.u-szeged.hu
2 Department of Algorithms and their Applications

Eötvös Loránd University
kolomax@inf.elte.hu

Abstract. According to the P conjecture by Gh. Păun, polarizationless
P systems with active membranes cannot solve NP-complete problems
in polynomial time. The conjecture is proved only in special cases yet.
In this paper we consider the case where only elementary membrane
division and dissolution rules are used and the initial membrane structure
consists of one elementary membrane besides the skin membrane. We
give a new approach based on the concept of object division polynomials
introduced in this paper to simulate certain computations of these P
systems. Moreover, we show how to compute efficiently the result of
these computations using these polynomials.

Keywords: Membrane Computing, active membranes, computational complex-
ity

1 Introduction

P systems with active membranes, introduced in [13], are among the most inves-
tigated variants of P systems. Using the polarizations of the membranes and the
possibility of dividing elementary (or even non-elementary) membranes these sys-
tems can solve computationally hard problems efficiently. More precisely, with el-
ementary membrane division they can solve NP-complete problems [8,13,17,20],
while with non-elementary membrane division they can solve even PSPACE-
complete problems efficiently [1,18]. Solving computationally hard problems with
P systems with active membranes has a huge literature in Membrane Computing,
see e.g. [2,5,6,10,12,16], and the references therein.

? Research of this author was supported by the Ministry of Human Capacities, Hun-
gary, grant no. 20391-3/2018/FEKUSTRAT.

?? Research of this author was supported by NKFIH – National Research, Development,
and Innovation Office, Hungary, grant no. K 120558.

It is a frequently investigated question whether these P systems are still
powerful enough to solve hard problems when the polarizations of the mem-
branes are not used (see e.g. [3,7,9,11,19]). In the case when non-elementary
membrane division is allowed the answer to this question is positive since in
[3] the PSPACE-complete QSAT problem was solved efficiently without polar-
izations. On the other hand, no efficient solutions of hard problems exist when
non-elementary membrane division is not allowed. In fact, Gh. Păun conjec-
tured already in 2005 that without polarization and non-elementary membrane
division P systems with active membranes cannot solve NP-complete problems
in polynomial time [14]. Păun’s conjecture, often called the P conjecture, has
not been proven yet. A direct attempt to calculate efficiently all the elementary
membranes of a computation of such a P system fails as in general the number
of these membranes is exponential and, moreover, these membranes can contain
pairwise different multisets. However, it was discovered in [7] that if dissolution
rules are not allowed to use, then there is no need to simulate all the elemen-
tary membranes to determine the result of a computation. Instead, it is enough
to consider a certain graph, called the dependency graph [4] of the P system.
Roughly, this graph describes how the rules of the P system can evolve and
move objects through the membranes. To determine the result of a computation
in this case it is enough to check whether a distinguished object is reachable
from certain objects in the dependency graph.

If dissolution rules are also allowed, then things became much more compli-
cated. Consider a P system Π with active membranes and assume, for example,
that Π contains a membrane sub-structure [[a b]2]1. Assume moreover that a
can dissolve membrane 2 but b cannot. Then Π dissolves membrane 2 using a,
and b immediately gets to membrane 1 without directly being involved in any
application of a rule. Notice that when b gets to membrane 2 then it “knows”
that Π contained an occurrence of a in the same membrane. This way the ob-
jects can send information to each other and this kind of behaviour cannot be
captured by dependency graphs.

Using generalizations of dependency graphs the P conjecture was already
proved in some special cases where the P systems were allowed to use dissolu-
tion rules as well. In [19], for example, the P conjecture was proved using object
division graphs in the case where the initial membrane structure of the P sys-
tem is a linearly nested sequence of membranes, and the system can employ
only dissolution and elementary membrane division rules. In [9] the P conjec-
ture was proved in another case using a generalization of dependency graphs.
Here the P systems are deterministic, can use all types of rules except send-in
communication rules, and the membrane structure is such that the skin contains
only elementary membranes. In these papers the authors used these generaliza-
tions of dependency graphs in order to simulate a reasonable small part of the
configurations in a computation of the investigated P systems.

In this paper we propose a new method for simulating polarizationless P
systems using both division and dissolution rules. Using this method it is possible
to calculate efficiently the number of objects appearing in the skin membrane

during a computation of a P system. Our approach can be roughly described as
follows. Consider a P system Π, its input multiset ω, and a computation C of
Π. First we define object division polynomials based on the concept of object
division graphs. The object division polynomial of an object a describes which
and how many objects can be created by Π using only division rules starting
the division using a. Then we consider a polynomial Pω which is, roughly, the
multiplication of the object division polynomials of objects in ω. We show that
there is a strong relationship between the monomials of Pω and the number of
certain membranes in C. Using this we can calculate efficiently which and how
many objects get to the skin membrane in each step of C.

In order to make the presentations as transparent as possible, we give our
method only for a rather restricted variant of P systems. In this variant the
P systems, for example, have only one elementary membrane in the skin at
the beginning of the computation and can employ only membrane division and
membrane dissolution rules. Moreover, we will simulate only such computations
of these P systems, where division rules have priority over dissolution rules.
However, we believe that our method can be extended to more general variants
of P systems as it is discussed in the Conclusions section.

2 Preliminaries

Here we recall the necessary notions used later. Nevertheless, we assume that
the reader is familiar with the basic concepts of membrane computing techniques
(for a comprehensive guide see e.g. [15]).

N denotes the set of natural numbers and, for every i, j ∈ N, i ≤ j, [i, j]
denotes the set {i, i + 1, . . . , j}. If i = 1, then [i, j] is denoted by [j]. We will
use polynomials with coefficients in N. A polynomial of the form p = cxj11 . . . xjnn
where c, n ∈ N, x1, . . . , xn are variables, and j1, . . . , jn ≥ 1 is called a monomial
and c is called the coefficient of p. An n × m matrix M has n rows and m
columns. We will consider matrices with entries in N. (M)ij denotes the jth
element of the ith row of M. By a vector v we mean an n× 1 matrix, for some
n ≥ 1. vT denotes the transpose of v, and instead of (v)j1 and (vT)1j (j ∈ [n])
we will write simply (v)j and (vT)j , respectively. If a vector v has n entries, for
some n ≥ 1, then v is called an n-dimensional vector or just an n-vector.

In this paper we consider polarizationless P systems. A polarizationless P sys-
tem with active membranes [13] is a construct of the form Π =
(O,H, µ,w1, . . . , wm, R), where m is the initial degree of the system, O is the
alphabet of objects, H is the set of labels of the membranes, µ is a membrane
structure consisting of m membranes labelled with the elements of H in a one-
to-one manner, w1, . . . , wm ∈ O∗ are the initial multisets of objects placed in the
m regions of µ; and R is a finite set of rules defined as follows:

(a) [a→ v]h, where h ∈ H, a ∈ O, v ∈ O∗
(object evolution rules);

(b) a[]h → [b]h, where h ∈ H, a, b ∈ O
(send-in communication rules);

(c) [a]h → []hb, where h ∈ H, a, b ∈ O
(send-out communication rules);

(d) [a]h → b, where, h ∈ H, a, b ∈ O
(membrane dissolution rules);

(e) [a]h → [b]h[c]h, where h ∈ H, a, b, c ∈ O
(division rules for elementary membranes).

For any rule r of the form u→ v, u (resp. v) is called the left-hand side (resp.
the right-hand side) of r.

As it is usual in membrane computing, P systems with active membranes
work in a maximally parallel manner: at each step the system first nondeter-
ministically assigns appropriate rules to the objects of the system such that the
assigned multiset S of rules satisfies the following properties: (i) at most one
rule from S is assigned to any object of the system, (ii) a membrane can be the
subject of at most one rule in S, and (iii) S is maximal among the multisets of
rules satisfying (i) and (ii).

Let Π = (O,H, µ,w1, . . . , wm, R) be a polarizationless P system with active
membranes. Π is called a simple divide-dissolve P system (sdd P system, for
short) if

– H = {1, s} and µ = [[]1]s,
– Π employs only membrane division and membrane dissolution rules,
– different rules of Π have different left-hand sides, and
– the dissolution rules have the form [a]1 → a (a ∈ O).

We call a membrane with label 1 a working membrane (notice that as the skin
cannot be divided or dissolved, the objects in the skin are not changing as they
cannot evolve in any way). An object a ∈ O is called a divider if a can divide
working membranes, that is, R contains a division rule with [a]1 on the left-hand
side. Likewise, an object a ∈ O is called a dissolver if a can dissolve working
membranes, that is, R contains the dissolution rule [a]1 → a. Furthermore, Π
is called halting, if each of its computations halts. In the rest of the paper we
consider only polarizationless halting sdd P systems.

3 Results

In the rest of the paper let Π = (O, {s, 1}, [[]1]s, ω1, ωs, R) be a halting sdd P
system, where O = {a1, . . . , an} (n ∈ N) and ω1 = ai1 . . . aim , for some m ≥ 1
and i1, . . . , im ∈ [n]. To simplify the arguments we assume also that ωs = ε.

In this section we show that the multiset content of the skin membrane of
Π at the end of the so-called division driven computations can be computed
in polynomial time in nm. In division driven computations division rules have
priority over dissolution rules and there is a certain order between the division
rules too. To specify these computations precisely we need some preparation.

Consider a halting computation C : C0 ⇒ C1 ⇒ . . . ⇒ Ct of Π. We first
assign to each occurrence of an object occurring in a working membrane a label

defined inductively as follows. The label of an object ai` (` ∈ [m]) in ω1 in C0 is
`. Now, let M be a working membrane in Ci, for some i ∈ [0, t−1], and consider
an occurrence of an object a in M with label ` (` ∈ [m]). Then we have exactly
one of the following three cases: (i) this occurrence of a is not involved in the
application of any rule, or (ii) it is involved in the application of a division rule
r : [a]1 → [b]1[c]1, or (iii) it is involved in the application of a dissolution rule
during Ci ⇒ Ci+1. In Case (i) the same occurrence of a occurs in Ci+1 too.
Then let the label of this occurrence of a in Ci+1 be `. In Case (ii) r divides M
into two new membranes in Ci+1. Then let the label of the occurrences of b and
c introduced by r in these two new membranes be `. In Case (iii) no objects are
introduced in the working membranes by the considered occurrence of a, thus
no labelling is necessary in this case. If a is an object with label `, then we will
often denote this by a(`).

Notice that the multiset content of a working membrane in C always has the

form a
(1)
j1
. . . a

(m)
jm

, for some j1, . . . , jm ∈ [n]. Using the labels of the objects we
can define now division driven computations as follows.

Definition 1. Consider a halting computation C. C is called division driven if

when a division rule is applied in a membrane M triggered by an object a
(`)
i

(i ∈ [n], ` ∈ [m]), then M contains no object a
(`′)
j with `′ < ` such that aj can

divide M .

Intuitively, in a division driven computation C of Π the computation goes as
follows. Assume that the labels of those objects in ω1 that can divide working
membranes are `1 < . . . < `k, for some k ∈ [m]. Then first objects with label
`1 are used to divide working membranes, then those objects which have label
`2, and so on until at the end those objects are used which have label `k. Then
those objects are used which can dissolve working membranes, and if no more
working membranes can be dissolved, the computation terminates. Notice that
if a non-dividing object a with label ` occurs in a working membrane, then this
object remains unchanged until the computation halts.

Example 1. Let Πex = ({a1, a2, a3, a4}, {s, 1}, [[]1]s, a
(1)
1 a

(2)
1 , ε, R), where

R = {[a1]1 → [a2]1[a3]1, [a2]1 → [a4]1[a4]1, [a4]1 → a4}.

Figure 1 shows a division driven computation of Πex. Recall that the numbers in
parentheses are the labels of the corresponding objects. Notice that each working
membrane contains two objects with labels 1 and 2, respectively. ut

Now we define a concept similar to that of object division graphs (see e.g. in
[19]). The object division tree of ai (i ∈ [n]), denoted by odtai is the smallest
binary tree satisfying the following conditions:

– the root of odtai is labelled by ai, and
– if a node N of odtai is labelled by aj (j ∈ [n]) and [aj]1 → [ak]1[al]1 ∈ R

(k, l ∈ [n]) then N has exactly two children with labels ak and al, respec-
tively.

Fig. 1. A division driven computation of Πex from Example 1. Grey areas are regions
of working membranes.

Since Π is an sdd P system, it does not have different division rules with the
same left-hand side. Thus odtai is well defined. Notice that in odtai a subtree
with a root labelled by an object aj (j ∈ [n]) is equal to odtaj . The height of
odtai , denoted by h(odtai), is defined inductively as follows. If odtai is a single
node labelled by ai, then h(odtai) = 0. Otherwise let hmax be the maximum of
the heights of subtrees of the root in odtai . Then h(odtai) = hmax + 1.

Example 2. Consider again Πex from Example 1. The tree odta1 can be seen in
Figure 2. Notice that odta2 and odta3 are equal to the first and second subtrees
of odta1 , respectively, and odta4 is equal, for example, to the first subtree of
odta2 . ut

Fig. 2. The tree odta1 from Example 2.

Next we show a useful property of object division trees.

Lemma 1. Consider Π and i ∈ [n] such that ai occurs in ω1. Then h(odtai) <
n.

Proof. We give an indirect proof. Assume that h(odtai) ≥ n. Then there exists
a path P in odtai with length at least n. Due to the pigeonhole principle, there
exists j ∈ [n] such that aj occurs at least twice in P . Let N1 and N2 be the
first two nodes of P (counted from the root) labelled by aj. Let t1 and t2 be
the subtrees of odtai with roots N1 and N2, respectively. Clearly, t2 is a proper
subtree of t1. Moreover, by our above note t1 = t2 = odtaj . This implies that
odtai is infinite, which further implies that a division driven computation will
never halt. However, this contradicts to the fact that Π is a halting sdd P system,
proving our statement. ut

Notice that, for every division driven halting computation C : C0 ⇒ C1 ⇒ . . .⇒
Ct of Π, t ≤

∑
ai∈ω1

h(odtai) + 1.

Every object division tree defines an object division polynomial as follows.

Definition 2. Consider Π and let V = {xi | i ∈ [n]}∪{x} be a set of variables.
Let moreover i ∈ [n] and l = h(odti). The object division polynomial of ai
(odpai for short) is a polynomial with variables in V defined as follows:

odpai =
∑

j∈[0,l],k∈[n]

mjk · xk · xj ,

where mjk is the number of leaves in odtai at depth j labelled by ak.

Example 3. Consider Πex from Example 1 and the object division trees consid-
ered in Example 2. The corresponding object division polynomials are as follows:

– odpa1 = 2x4x
2 + x3x,

– odpa2 = 2x4x,
– odpa3 = x3,
– odpa4 = x4.

ut

Next we show that object division polynomials can be calculated efficiently.

Lemma 2. Consider Π and let i ∈ [n]. Then odpai can be computed in polyno-
mial time in n.

Proof. Let l = h(odtai) and, for every j ∈ [0, l], let vj be an n-vector such that
(vj)k (k ∈ [n]) is the number of nodes labelled by ak on the jth level of odtai .
Let ndiv = {j ∈ [n] | aj is a non-divider}. As the set of labels of leaves in odtai
is included in the set {aj | j ∈ ndiv}, we get that

odpai =
∑

j∈[0,l],k∈[n]

vjekxkx
j ,

where ek (k ∈ [n]) is an n-vector defined as follows:

(ek)s =

{
1 if s = k and k ∈ ndiv
0 otherwise.

To compute vj (j ∈ [0, l]) let us define, for every k ∈ [n], the n-vector mk as
follows: for every s ∈ [n], if there is a rule r with as on the left- and ak on the
right-hand side, then let (mk)s be the number of occurrences of ak on the right-
hand side of r. If there is no such rule in R, then let (mk)s be 0. It can be clearly
seen that if we multiply vTj (j ∈ [0, l− 1]) with mk (k ∈ [n]), we get the number
of occurrences of ak on the (j + 1)th level of odtai . Thus, for every j ∈ [0, l− 1],
vTj+1 = vTj M, where M is the n× n matrix whose kth column (k ∈ [n]) is mk.

Since matrix multiplication is associative, we get that vTj = vT0 Mj (j ∈ [l]). This
implies that

odpai =
∑

j∈[0,l],k∈[n]

vT0 Mjekxkx
j .

Notice that since the 0th level of odtai contains only the root of odtai , (v0)k = 1
if k = i, and (v0)k = 0 otherwise. Therefore, the coefficient of a factor xkx

j in
odpai is (Mj)ik. Thus, we only have to compute Mj for every j ∈ [0, l]. Since
every row in M contains at most two non-zero elements and the sum of these
elements is two, it is easy to see that the largest value in Mj is at most 2j. So
these values can be stored using n bits and thus computing one entry of Mj+1 can
be done in O(n) steps. Since M is an n× n matrix, computing every necessary
value can be done in polynomial time in n. ut

Example 4. Consider odpa1 and odpa2 given in Example 3. According to the
proof of Lemma 2, we can compute these polynomials as follows. We will use ei
(i ∈ [4]) and Mj (j ∈ [0, 2]) in the computation of each polynomial. These have
the following values: eT1 = eT2 =

[
0 0 0 0

]
, eT3 =

[
0 0 1 0

]
, eT4 =

[
0 0 0 1

]
, and

M0 =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,M1 =

0 1 1 0
0 0 0 2
0 0 0 0
0 0 0 0

 ,M2 =

0 0 0 2
0 0 0 0
0 0 0 0
0 0 0 0

 .
Moreover, in the case of odpa1 vT0 = [1 0 0 0] and l = 2. Clearly,

∑
j∈[0,2],k∈[4]

vT0 Mjekxkx
j =

∑
k∈[4]

vT0 M0ekxk +
∑
k∈[4]

vT0 M1ekxkx+
∑
k∈[4]

vT0 M2ekxkx
2.

Thus, in the case of odpa1 we get that∑
j∈[0,2],k∈[4]

vT0 Mjekxkx
j =

∑
k∈[4]

[1 0 0 0]ekxk +
∑
k∈[4]

[0 1 1 0]ekxkx+

∑
k∈[4]

[0 0 0 2]ekxkx
2 = (0x1 + 0x2 + 0x3 + 0x4)+

(0x1x+ 0x2x+ 1x3x+ 0x4x) + (0x1x
2 + 0x2x

2 + 0x3x
2 + 2x4x

2) =

2x4x
2 + x3x = odpa1 .

On the other hand, in the case of odpa2 vT0 = [0 1 0 0] and l = 1. Thus we get
the following calculation.∑

j∈[0,1],k∈[4]

vT0 Mjekxkx
j =

∑
k∈[4]

[0 1 0 0]ekxk +
∑
k∈[4]

[0 0 0 2]ekxkx =

(0x1 + 0x2 + 0x3 + 0x4) + (0x1x+ 0x2x+ 0x3x+ 2x4x) =

2x4x = odpa2 .

ut

Object division polynomials can be used to calculate the multiset contents
of certain working membranes occurring in a division driven computation of Π.
To see this we need some preparation. First we extend the definition of object
division polynomials to objects having labels.

Definition 3. Consider Π and let odpai =
∑

j∈[0,l],k∈[n]
mjkxkx

j. Let moreover

` ∈ [m]. The labelled object division polynomial of a
(`)
i (lodp

a
(`)
i

for short) is

the polynomial
∑

j∈[0,l],k∈[n]
mjkx`kx

j (that is, we add ` to the indices of variables

of odpai , referring this way to the label of the corresponding object).
Consider a division driven computation C : C0 ⇒ C1 ⇒ . . . ⇒ Ct of Π. Let

M be a working membrane in C and ` ∈ [m]. If M contains no dividers with label
`′ ≤ `, then M is called `-divider-stable. Moreover, m-divider-stable working
membranes are called non-dividing. Consider an `-divider-stable membrane M
in Ci (` ∈ [m], i ∈ [t]). M is called primary if either i = 0 or the following
holds. Let N be that membrane in Ci−1 from which Π derives M . Then N is
not `-divider-stable.

Example 5. Let Πex be the P system given in Example 1 and consider the work-

ing membrane M containing a
(1)
3 a

(2)
2 in C2. Then M is 1-divider-stable, as the

only object in M having label 1 or less is a3 which is a non-divider. However,
this M is not 2-divider-stable, since it contains a2 having label 2 and a2 is a
divider. M is neither primary, as M is derived from the working membrane N

in C1 containing a
(1)
3 a

(2)
1 but N is 1-divider-stable, too. However, N is primary,

since it is derived from the working membrane in C0 containing a
(1)
1 a

(2)
2 , which

is not 1-divider-stable.
The only working membrane in C5 is non-dividing, as it is 2-divider-stable,

and 2 is the greatest label in this example. Notice that non-dividing working
membranes are those which do not contain dividers. ut

Next we define a product of labelled object division polynomials of Π which
we will use frequently in what follows.

Definition 4. Consider again Π and its initial membrane content ω1. The ω1-
product of Π is Pω1

=
∏

`∈[m]

lodp
a
(`)
i`

.

It is easy to see that all monomials in Pω1
have the form αx1j1 . . . xmjmx

j , for
some α, j ∈ N and j1, . . . , jm ∈ [n]. In the next lemma we show that there is a
strong relationship between the monomials in Pω1 and the primary non-dividing
working membranes of a division driven halting computation of Π.

Lemma 3. Consider Π, its ω1-product Pω1 , and a division driven halting com-
putation C : C0 ⇒ C1 ⇒ . . . ⇒ Ct of Π. Let moreover j1, . . . , jm ∈ [n] and
j ∈ [0, t]. Then the coefficient of x1j1 . . . xmjmx

j in Pω1
equals to the num-

ber of those primary m-divider-stable working membranes in Cj which contain

a
(1)
j1
. . . a

(m)
jm

.

Proof. We show the statement by induction on m. If m = 0, then Pω1
is the

empty product, that is, Pω1
= 1. In this case Pω1

can be considered as the
monomial x0, where the coefficient is one. On the other hand, C consists of
C0 only. C0 has exactly one working membrane, which is empty and primary
m-divider-stable. This proves the statement in this case.

Now assume that the statement holds if m = m′, for some m′ ≥ 0. We show
it for m = m′ + 1. Let α be the coefficient of a monomial x1j1 . . . xmjmx

j in
Pω1

. Let moreover α̂ be the number of those primary m-divider-stable working

membranes in Cj which contain a
(1)
j1
. . . a

(m)
jm

. We show that α = α̂.
Let ω′1 = ai1 . . . aim′ and Pω′

1
=

∏
`∈[m′]

lodp
a
(`)
i`

. Clearly, Pω1
= Pω′

1
lodp

a
(m)
im

.

Let us denote by αj′ and βj′′ (j′, j′′ ∈ [t]) the coefficients of x1j1 . . . xm′jm′x
j′ in

Pω′
1

and xmjmx
j′′ in lodp

a
(m)
im

, respectively. One can see that α can be calculated

by summing up the products αj′βj′′ , for every j′, j′′ ∈ [t] with j′ + j′′ = j.
On the other hand, let j′, j′′ ∈ [t] and denote α̂j′ the number of those pri-

mary m′-divider-stable working membranes in Cj′ which contain a
(1)
j1
. . . a

(m′)
jm′ .

Denote, moreover, β̂j′′ the number of leaves labelled by ajm in odtaim at depth

j′′. Consider now a membrane M in Cj containing a
(1)
j1
. . . a

(m)
jm

. One can see that

the only way for Π to create M is the following. First Π creates a membrane

N containing a
(1)
j1
. . . a

(m′)
jm′ a

(m)
im

in j′ steps (j′ ∈ [t]) using only dividers having

labels m′ or less. Then, using dividers with label m, Π creates M in j′′ = j − j′
steps. Thus α̂ can be calculated by summing up the products α̂j′ β̂j′′ , for every
j′, j′′ ∈ [t] with j′ + j′′ = j.

By induction hypothesis, αj′ = α̂j′ , for every j′ ∈ [t]. Moreover, by the

definition of object division polynomials, βj′′ = β̂j′′ , for every j′′ ∈ [t]. Thus we
have that

α =
∑

j′,j′′∈[t],
j′+j′′=j

αj′βj′′ =
∑

j′,j′′∈[t],
j′+j′′=j

α̂j′ β̂j′′ = α̂,

which finishes the proof of the lemma. ut

We show now through an example how to use Pω1 to calculate multiset contents
of certain membranes.

Example 6. Consider Πex from Example 1 and the computation C given in Fig-
ure 1. From Example 3 we know that odpa1 = 2x4x

2 + x3x. Thus lodp
a
(1)
1

=

2x14x
2 + x13x and lodp

a
(2)
1

= 2x24x
2 + x23x. As P

a
(1)
1 a

(2)
1

= lodp
a
(1)
1

lodp
a
(2)
1

we

get that

P
a
(1)
1 a

(2)
1

= (2x14x
2 + x13x)(2x24x

2 + x23x) =

4x14x24x
4 + 2x14x23x

3 + 2x13x24x
3 + x13x23x

2.

Figure 3 shows the correspondence between the monomials of P
a
(1)
1 a

(2)
1

and the

primary non-dividing working membranes of C. Notice that the variables xij (i ∈
[2], j ∈ [4]) correspond to objects a

(i)
j , the coefficient of a monomial corresponds

to the number of the corresponding membranes, and the power of x shows the
index of the corresponding configuration. ut

Consider again Π and a division driven halting computation C of Π. As we
have seen, the multiset content of the primary non-dividing working membranes
of C can be calculated by determining the monomials of Pω1

. Clearly, if we know
these multisets, then we can tell which and how many objects are sent to the skin
(by applying membrane dissolution rules) in each step of C. However, the size
of Pω1 can be exponential in nm, which means that we cannot use Pω1 directly
to calculate the number of these objects efficiently. Instead, we will use another
polynomial given by using the following definition.

Definition 5. Consider Π and let P be a polynomial over the variables V =
({x`k | ` ∈ [m], k ∈ [n]}∪ {x}). Let moreover i ∈ [n] and y be a new variable not
occurring in V . The i-reduction of P is the polynomial P 〈i〉 which we get from
P by performing the following operations. First, for every ` ∈ [m], k ∈ [n] with

Fig. 3. The representation of non-dividing working membranes of Πex by monomials.

k 6= i, let us substitute x`k in P with z, where

z =

{
y, if a

(`)
k can dissolve working membranes, and

1, otherwise.

Let the given new polynomial be P ′. Then let P 〈i〉 be the polynomial created from
P ′ by substituting x`i with xi, for every ` ∈ [m].

Example 7. The i-reductions (i ∈ [4]) of P
a
(1)
1 a

(2)
1

given in Example 6 are as

follows:

P
〈1〉
a
(1)
1 a

(2)
1

= 4yyx4 + 2y1x3 + 2 · 1yx3 + 1 · 1x2 = 4y2x4 + 4yx3 + x2

P
〈2〉
a
(1)
1 a

(2)
1

= 4yyx4 + 2y1x3 + 2 · 1yx3 + 1 · 1x2 = 4y2x4 + 4yx3 + x2

P
〈3〉
a
(1)
1 a

(2)
1

= 4yyx4 + 2yx3x
3 + 2x3yx

3 + x3x3x
2 = 4y2x4 + 4yx3x

3 + x23x
2

P
〈4〉
a
(1)
1 a

(2)
1

= 4x4x4x
4 + 2x41x3 + 2 · 1x4x3 + 1 · 1x2 = 4x24x

4 + 4x4x
3 + x2.

Lemma 4. Consider Π, its initial multiset ω1, and its ω1-product Pω1 . Let
moreover i ∈ [n]. Then the i-reduction of Pω1 can be calculated in polynomial
time in nm.

Proof. One can see using basic properties of polynomials that

P 〈i〉ω1
=
∏
`∈[m]

odp〈i〉ai`
,

where P
〈i〉
ω1 and odp〈i〉ai`

denote the i-reductions of Pω1
and lodp

a
(`)
i`

, respectively.

By Lemma 2, we can compute odpai`
, and in turn odp〈i〉ai`

as well, in polynomial

time in n. Moreover, odp〈i〉ai`
contains only at most three variables, xi, x, and y,

for every ` ∈ [m]. Thus, multiplying these polynomials can be done in polynomial
time in nm. ut

Using the i-reduction of Pω1
we can compute which and how many objects

are sent to the skin during a division driven computation of Π as follows.

Theorem 1. Consider Π and a division driven halting computation C : C0 ⇒
C1 ⇒ . . . ⇒ Ct of Π. Let i ∈ [n], j ∈ [0, t − 1] and denote Nij the number of
copies of ai produced in the skin by dissolutions of elementary membranes during
the step Cj ⇒ Cj+1. Then Nij can be computed in polynomial time in nm.

Proof. Let P
〈i〉
ω1 be the i-reduction of Pω1

. Clearly, P
〈i〉
ω1 can be written in the

form P
〈i〉
ω1 =

∑
µ,ν∈[0,m],µ+ν≤m

j∈[0,mn]

mµνjx
µ
i y

νxj . Using Lemma 3 and the definition of

i-reductions, we get the following. A monomial mµνjx
µ
i y

νxj in P
〈i〉
ω1 represents

that there are mµνj primary m-divider-stable membranes in Cj containing µ
copies of ai and ν copies of such objects different from ai which can dissolve the
membrane. Distinguishing between the cases whether ai is a dissolver or not, we
get the following equations.

Nij =
∑

µ,ν∈[0,m],ν≥1
µ+ν≤m

mµνjµ, (1)

if ai is a non-dissolver, and

Nij =
∑

µ,ν∈[0,m]
µ+ν≤m

mµνjµ (2)

otherwise. As we have seen in Lemma 4, P
〈i〉
ω1 can be computed in polynomial

time in nm. Thus, the corresponding (polynomial number of) coefficients of the
monomials in the sums (1) and (2) can be calculated in polynomial time in nm
as well. ut

Example 8. Consider Example 1 and the computation shown in Figure 1. Let,
for every i ∈ [4], j ∈ [0, 4], Nij be the value defined in Theorem 1. Then Nij = 0,
for i ∈ [2], j ∈ [0, 4] and i ∈ [3, 4], j ∈ [0, 2]. Moreover, N33 = N43 = 4, N34 = 0,
and N44 = 8.

We show that these values can be calculated using the i-reductions given in
Example 7 and the equations (1) and (2) given in the proof of Theorem 1. If
i ∈ [2], then ai is a non-dissolver, thus we have to use Equation (1) in this case.

However, the monomials in P
〈i〉
a
(1)
1 a

(2)
1

do not contain xi, hence in this case µ is 0,

for each monomial. Therefore the sum equals to 0, for every j ∈ [0, 4]. Now let
i = 3. Since a3 is a non-dissolver, we should use again Equation (1) in this case.
Now the only monomial which contains both x3 and y is 4yx3x

3, which means
that N33 = 4 ·1 = 4 and N3j = 0, for every j ∈ {0, 1, 2, 4}. Lastly, let i = 4. Since
a4 is a dissolver, we should use Equation (2) in this case. Now the monomials
that contain x4 are 4x24x

4 and 4x4x
3. Therefore N44 = 4 · 2 = 8, N43 = 4 · 1 = 4,

and N4j = 0, for every j ∈ [0, 2]. ut

From Theorem 1 we immediately get the following result.

Corollary 1. Consider Π and a division driven halting computation C : C0 ⇒
C1 ⇒ . . .⇒ Ct of Π. Then the multiset content of the skin in Ct can be computed
in polynomial time in nm.

Proof. Let i ∈ [n]. It can be clearly seen that the number Ni of occurrences of
ai in the skin membrane in Ct is

∑
j∈[0,t−1]

Nij , where Nij is the number defined

in Theorem 1. Since t is at most nm, using Theorem 1 we get that Ni can be
computed in polynomial time in nm. ut

4 Conclusions

In this paper we proposed an efficient method for calculating the number of
each object occurring in the skin membrane at the end of a division driven
computation of a halting sdd P system Π. To calculate these numbers we used
multiplications of certain polynomials which were created from the object divi-
sion polynomials of the objects initially contained in the working membrane of
Π.

Although our method considers only division driven computations of halt-
ing sdd P systems, we can use it to simulate recognizer P systems too. Recog-
nizer P systems [17] are common tools in membrane computing to solve decision
problems with P systems. They have only halting computations and they are
confluent, which means that all of their computations yield the same result.
That is, a division driven computation gives the same result as that of the other
computations.

By definition, sdd P systems have no different rules with the same left-hand
side. In fact, we can safely assume that a recognizer P system having only disso-
lution and division rules possesses this property, too. To see this consider such
a recognizer P system Π. If Π has two different rules r1 and r2 with the same
left-hand side, then there is a computation of Π where in each situation when
r2 is applicable, Π applies r1 instead (clearly, if r2 is applicable, then r1 should
be applicable, too). That is, if we remove r2 from Π, then the remaining part of
Π will still compute the same result as before.

Concerning the future work, we would like to extend our method to P systems
having other types of rules or different initial membrane structure. The method
can easily be extended to the case when the dissolution rules can have arbitrary
objects in their right-hand sides. Indeed, in this case we only need to change the
calculation of the value Nij in the proof of Theorem 1 accordingly.

To extend the method to send-out communication rules we need to modify

first the definition of z in Definition 5 so that it involves also the case when a
(k)
l

triggers a send-out communication rule. After this we need to incorporate this
new case into the calculation of Nij in the proof of Theorem 1.

Moreover, our method seems to be suitable for generalisation to such P sys-
tems which initially have more than one working membrane (possibly with dif-
ferent labels). On the other hand, to extend it to such P systems where the initial

membrane structure is deeper than one is not so trivial. Consider for example a
P system Π having an initial membrane structure of the form [. . . [[]1]2 . . .]n,
where n ≥ 3 and n is the skin. Assume also that the other properties of Π
correspond to those of the sdd P systems. Since membranes with label i > 1
cannot be divided until membranes with label 1 are present, we could use our
method to calculate the number of objects in the regions of Π until the last
membrane with label 1 is dissolved. Assume that at this point the elementary
membrane has label i, for some i ∈ [2, n]. We can use again our method to
calculate the number of objects in the regions of Π until the last membrane
with label i is dissolved. Continuing this way the application of our method, we
can calculate the number of objects occurring in the skin membrane when the
computation of Π halts. However, we cannot assume that the above described
computation is efficient because of the following reasons. Consider that point of
the computation when the last membrane with label 1 is dissolved and the new
elementary membrane is the one with label i. Then this membrane can contain
exponentially many objects, which means that to apply our method we should
multiply exponentially many polynomials. Nevertheless, it is more or less clear
that if Π works in polynomial time, then only a polynomially large number of
these objects are used by Π during the computation. This means that we can
apply our method taking into consideration only a polynomially large number
of objects.

References

1. Alhazov, A., Mart́ın-Vide, C., Pan, L.: Solving a PSPACE-complete problem by
P systems with restricted active membranes. Fundamenta Informaticae 58 (2003)
67–77

2. Alhazov, A., Pan, L., Păun, Gh.: Trading polarizations for labels in P systems with
active membranes. Acta Informatica 41(2-3) (2004) 111–144

3. Alhazov, A., Pérez-Jiménez, M.J.: Uniform solution of QSAT using polarization-
less active membranes. International Conference on Machines, Computations and
Universality (2007) 122-133

4. Cordón-Franco, A., Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Riscos-Núñez,
A.: Exploring computation trees associated with P systems. In: Mauri, G., Paun,
Gh., Pérez-Jiménez, M.J., Rozenberg, G., Salomaa, A. (eds.) Membrane Comput-
ing, 5th International Workshop, WMC 2004, LNCS vol. 3365 (2005) 278-–286

5. Gazdag, Z.: Solving SAT by P systems with active membranes in linear time in
the number of variables. In: Alhazov, A., Cojocaru, S., Gheorghe, M., Rogozhin,
Y., Rozenberg, G., Salomaa, A. (eds.) Membrane Computing: 14th International
Conference, LNCS vol. 8340 (2014) 189–205

6. Gazdag, Z., Kolonits, G.: A new approach for solving SAT by P systems with
active membranes. In: Csuhaj-Varjú, E., Gheorghe, M., Rozenberg, G., Salomaa,
A., Vaszil, G. (eds.) Membrane Computing: 13th International Conference, LNCS
vol. 7762 (2013) 195–207

7. Gutierrez-Naranjo, M.A., Perez-Jimenez, M.J., Riscos-Núñez, A., Romero-
Campero, F.J.: On the power of dissolution in P systems with active membranes.
In: Freund, R., Păun, Gh., Rozenberg, G., Salomaa, A. (eds.) Membrane Comput-
ing: 6th International Workshop, LNCS vol. 3850 (2006) 224–240

8. Krishna, S.N., Rama, R.: A variant of P systems with active membranes: Solving
NP-complete problems. Romanian Journal of Information Science and Technology,
2, 4 (1999) 357–367

9. Leporati, A., Manzoni, L., Mauri, G., Porreca, A.E., Zandron, C.: Solving a special
case of the P conjecture using dependency graphs with dissolution. In: Gheorghe,
M., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) Membrane Computing: 18th
International Conference, LNCS vol. 10725 (2017) 196-213

10. Leporati, A., Zandron, C., Ferretti, C., Mauri, G.: Solving PSPACE-complete prob-
lems by polarizationless recognizer P systems with strong division and dissolution.
Emerging Paradigms in Informatics, Systems and Communication (2009) 93-98

11. Murphy, N., Woods, D.: Active membrane systems without charges and using only
symmetric elementary division characterise P. In: Eleftherakis, G., Kefalas, P.,
Păun, Gh., Rozenberg, G., Salomaa, A. (eds.) Membrane Computing: 8th Inter-
national Workshop, LNCS vol. 4860 (2007) 367–384

12. Pan, L., Alhazov, A., Ishdorj, T.-O.: Further remarks on P systems with active
membranes, separation, merging, and release rules. Soft Computing 9(9) (2004)
686–690

13. Păun, Gh.: P systems with active membranes: attacking NP-complete problems.
Journal of Automata, Languages and Combinatorics 6(1) (2001) 75–90

14. Păun, Gh.: Further twenty six open problems in membrane computing. In: Third
Brainstorming Week on Membrane Computing. Fénix Editora, Sevilla (2005) 249–
262

15. Păun, Gh., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane
Computing. Oxford University Press, Oxford, England (2010)

16. Pérez-Jiménez, M.J., Romero-Campero, F.J.: Trading polarization for bi-stable
catalysts in P systems with active membranes. In: Mauri, G., Păun, Gh., Pérez-
Jiménez, M.J., Rozenberg, G., Salomaa, A. (eds.) Membrane Computing: 5th In-
ternational Workshop, LNCS vol. 3365 (2005) 373–388

17. Pérez-Jiménez, M.J., Romero-Jiménez, Á., Sancho-Caparrini, F.: Complexity
classes in models of cellular computing with membranes. Natural Computing 2(3)
(2003) 265–285

18. Sośık, P.: The computational power of cell division in P systems. Natural Comput-
ing 2(3) (2003) 287–298

19. Woods, D., Murphy, N., Pérez-Jiménez, M.J., Riscos-Núñez, A.: Membrane dis-
solution and division in P. In: Calude, C.S., da Costa, J.F.G., Dershowitz, N.,
Freire, E., Rozenberg, G. (eds.) Unconventional Computation: 8th International
Conference, LNCS vol. 5715 (2009) 262–276

20. Zandron, C., Ferretti, C., Mauri, G.: Solving NP-complete problems using P
systems with active membranes. In: Unconventional Models of Computation,
UMC’2K: Proceedings of the Second International Conference on Unconventional
Models of Computation. Springer London, London (2001) 289–301

