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Abstract: Global climate change is predicted to affect both the spatial and annual 23 

distributions of vector-borne diseases. Tick-borne diseases are particularly sensitive to 24 

the changing climatic conditions. Modeling them is, however, challenging due to the 25 

input-intensity of these models. A framework with low number of inputs (easily 26 

accessible weekly temperature data and week numbers) on modeling the seasonality of 27 

Lyme borreliosis incidences is presented. The modelling framework enables predicting 28 

the annual distribution of Ixodes ricinus tick's biting activity and Lyme borreliosis in 29 

two cascading phases, incorporating a population dynamics approach. The model is 30 

calibrated for Hungary as a case study, for the period of 1998–2008, using tick-borne 31 

encephalitis series as a proxy for biting activity. Prediction to the future period of 2081–32 

2100 is also provided. Climate change may significantly alter both the annual 33 

distribution of I. ricinus activity and that of the Lyme borreliosis incidences. The 34 

currently unimodal annual distribution of Lyme borreliosis is predicted to become 35 

bimodal with a long summer pause and a spring maximum shifted 8 weeks earlier. 36 
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1. INTRODUCTION 52 

The anthropogenic climate change, a gradual, long-term alteration of worldwide 53 

weather patterns caused by the increasing concentration of greenhouse gases (Jaha and 54 

Ekumah 2015; Zhong 2016; Aleixandre-Tudó et al. 2019), influences the complex 55 

society-biosphere-climate-economy-energy system (Akhtar et al. 2019), including 56 

diseases and their prevalence (Ofulla et al. 2016). Climate affects the human behaviors 57 

and activities, the structure of the settlements, the population of the host and reservoir 58 

mammals, the conditions of the potential tick habitats, and therefore, these mankind-59 

induced effects change the pathogen transmission and, finally, the incidence of human 60 

tick-borne diseases (Lindgren 1998). Tick-borne diseases are the products of a complex 61 

chain of environmental factors (Epstein 1999). Changing climatic and other 62 

environmental factors affect the seasonality of the acquiring of tick-borne diseases via 63 

the alteration of the daily, the inter-annual and the long-term patterns in risk of infected 64 

tick bites (Lindgren and Jaenson 2006).  65 

Ticks are small ectoparasite arachnid arthropods living by feeding on the blood 66 

of different homoiotherm and poikilotherm tetrapods. More than two dozen tick species 67 

occur in Hungary, but the sheep tick (Ixodes ricinus L. (Acari: Ixodidae)) is the most 68 

important in the aspect of environmental health. I. ricinus is the most common vector of 69 

Lyme borreliosis and also one of the most common ticks in many parts of Europe 70 

(Földvári and Farkas 2005; Rizzoli et al. 2014). The observed temporal and spatial 71 

expansion of the species in the past decades has been correlated to changes in climate of 72 

Europe (Lindgren and Jaenson 2006). It was concluded by several authors that climate 73 

change will lengthen the vegetation season and, consequently, the activity period of the 74 

different vector species (Hunter 2003; Rogers and Randolph 2006). 75 

In the aspect of the adaptation strategies of medical and personal practices (i.e. 76 

the seasonal use of tick repellents, vaccines, the behavioral avoidance strategies) the 77 

distribution (i.e. seasonality, length and the peak) of the incidence of tick-borne diseases 78 

is more important than the total yearly incidence of them. In Hungary, the questing 79 

activity of I. ricinus nymphs and adults starts in March, reaches its maximum in April, 80 

shows its summer minimum in August and its second, less expressed peak in October 81 

(Széll et al. 2006; Egyed et al. 2012; Trájer and Földvári unpublished data). Despite of 82 

the bimodal distribution of tick activity and tick-borne encephalitis the distribution of 83 

Lyme borreliosis is unimodal (Zöldi et al. 2013; Trájer et al. 2014). Gray (2008) 84 

forewarns that the annual distribution of both I. ricinus activity and Lyme borreliosis 85 

may change significantly in the future due to climate change. It is therefore required to 86 

investigate the impact of climate change on their annual distribution (Ogden et al. 87 

2005). 88 

The development and activity of I. ricinus ticks, and the number of the questing 89 

ticks are related to the seasonal variation of temperature, in addition to that of other 90 

abiotic factors (e.g. humidity and photoperiodicity) that are hard to access or 91 

incorporate in a model (Randolph 2009; Jore et al. 2014; Cat et al. 2017). The 92 

relationship between temperature and both the interstadial development rates and the 93 

daily questing rate is non-linear (Randolph 2004; Trájer et al. 2014). 94 

The aim of our study is to (1) build a framework with low number of inputs on 95 

modeling the annual distribution (seasonality) of Lyme borreliosis incidences based on 96 

week number and temperature, using human-tick interaction and I. ricinus tick activity 97 

as hidden modeling modules; to (2) calibrate this modeling framework for the period 98 

1998-2008 for Hungary as a case study; and to (3) predict annual distribution of Lyme 99 

borreliosis incidence for a selected future period (2081-2100). Since absolute incidence 100 
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depends on many factors that are not well studied (e.g. acorn production in the previous 101 

year (Ostfeld et al. 2006), rodent or mice population dynamics (Ostfeld et al. 2001; 102 

Schauber et al. 2005), and the overwintering rate of the different stages of ticks 103 

(Lindsay et al. 1995)), we aimed to model the distribution of the relative incidences (i.e. 104 

the sum of incidences per year is 100). Since absolute Lyme borreliosis incidences have 105 

nearly been doubled in the studied period in Hungary and the cause of this increase is 106 

not well understood (c.f. Trájer et al. 2013b; Zöldi et al. 2013), relativisation of 107 

incidence data is unavoidable in our study domain. Another benefit of the use of relative 108 

incidence values is the possibility of determining the notable dates of the distribution 109 

(season start, peak and end), and compare them between years. The model and its 110 

predictions have weekly temporal resolution. 111 

2. MATERIALS AND METHODS 112 

2.1. Data sources and data preprocessing 113 

2.1.1. Weekly mean temperature (T) 114 

The daily mean temperature data of the reference period (1998-2008) were derived from 115 

the E-OBS 7.0 database of the European Climate Assessment & Dataset (Haylock et al 116 

2008), while data of the future prediction period (2081-2100) were derived from the 117 

MRI CGCM 2.3.2a model driven by the SRES A1B emission scenario (Yukimoto et al. 118 

2006). Since the climatic and the geographical conditions are relatively homogenous in 119 

Hungary (Trájer et al. 2013b, Trájer et al. 2014) we could handle the country as a single 120 

unit in climatic terms. Pertinence of this simplification is proven by our previous 121 

findings on the homogeneity of LB seasonality within Hungary (Trájer et al. 2013a). 122 

Average values were calculated from the 0.25° and 2.81° grids (in case of reference and 123 

prediction periods, respectively) within the domain including almost the entire area of 124 

Hungary (45.77°N–48.56°N, 16.15°E–22.85°E in WGS-84 coordinate system). Weekly 125 

mean temperature (T hereinafter) values were calculated by simple averaging of daily 126 

data. 127 

2.1.2. Human-tick interaction: holiday multiplier (HM) 128 

Socio-economic factors, such as the annual pattern of human activity and human-tick 129 

interaction, may have a great influence on the annual Lyme borreliosis incidence 130 

(Šumilo et al. 2008). For a detailed review please refer to Pfäffle et al. (2013) and the 131 

studies cited within. According to our previous findings (Trájer et al 2014), human-tick 132 

interaction can be estimated by human outdoor activity patterns related to camping 133 

guest night data. Although camping data may cover a limited part of outdoor activities, 134 

it can serve as a proxy for approximation. Holiday multiplier (HM hereinafter) is a 135 

measure of human willingness to stay in nature (and therefore a measure of the potential 136 

human-tick interaction) in the summer holiday period, calculated as the ratio of the 137 

camping guest night data (observation) and the normal distribution of temperature 138 

dependent human outdoor activity (model). HM values of the 25-36
th

 weeks (Table 1) 139 

were interpolated from the results of Trájer et al. (2014) (original temporal resolution: 140 

two weeks). HMs were set to 1 in all the other weeks. 141 
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2.1.3. Relative tick-borne encephalitis incidence (TBE) 142 

The weekly incidence data of tick-borne encephalitis for the period 1998–2008 were 143 

gained from the National Database of Epidemiological Surveillance System (OEK 144 

2013), based on serological tests. Relative incidences were calculated from absolute 145 

ones using technical years starting from the 11
th

 to the next year’s 10
th

 week (total 146 

incidences of all the technical years were 100%). Weekly relative tick-borne 147 

encephalitis incidences (TBE hereinafter) were averaged from the 11-years study period. 148 

2.1.4. Relative Lyme borreliosis incidence (LB) 149 

The weekly incidence data of Lyme borreliosis for the period 1998–2008 were gained 150 

from the National Database of Epidemiological Surveillance System (OEK 2013). Since 151 

the Hungarian mandatory system does not distinguish between the infection forms, we 152 

defined the “case” as any type of early or late infection form of Lyme borreliosis. The 153 

diagnosis in our database may be based on three main criteria: persons with typical 154 

erythema migrans (EM) symptoms (most of the recorded cases), persons with late 155 

clinical manifestations (arthritis and/or cardiac, neurological disorders, late phase EM), 156 

and persons with laboratory confirmed Lyme borreliosis due to different serological 157 

tests. Weekly relative Lyme borreliosis incidences (LB hereinafter) were calculated in 158 

similar way than TBEs were. 159 

2.1.5. Observed latency of Lyme infection 160 

To build a lag model used further in our research (please refer to Model II. A) we 161 

determined the lags between tick bites and the first manifestations sampled from the 162 

serological registration forms of the Hungarian National Reference Laboratory of 163 

Bacterial Zoonoses from the period of March 2012–August 2012. Less than the 10% of 164 

the serological registration forms contained both the data of the time of tick bites and 165 

the appearance of the EM symptoms (n=26). Since most of the cases appeared 2-3 166 

weeks after the tick bite it is plausible that these symptoms belonged to the early 167 

manifestation forms (e.g. EM, neuroborreliosis). A lag model, forming a lognormal-like 168 

shape, was built by approximating the observed lags between tick bites and onsets of the 169 

early manifestation form (Fig 1.). Model values were found to be negligible after the 170 

ninth week, therefore we used the first nine weeks later on. 171 

2.2. Modeling method 172 

2.2.1. Model overview 173 

A two-phase model was built to estimate relative Lyme borreliosis incidence (LB) as an 174 

output from two input parameters that are week number (n) (started from January) and 175 

weekly average of the daily mean temperatures (T). All the other (hidden) parameters, 176 

such as holiday multiplier (HM), tick activity (A), and biting activity (BA), are 177 

calculated by the model from these two inputs. The reason of building a two-phase 178 

model instead of a one-phase one was our aim to improve model reliability by a two-179 

phase calibration. The structure of the model and the sources of calibration are shown in 180 

Fig 2. All the parameters of the model have weekly temporal resolution. For using the 181 

model for real-time prediction one has to have the input T parameter for all the 52 182 
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weeks before the studied week. 183 

Script (function) of the model that can be run in R statistical software (R Core 184 

Team 2017) is provided (Github 2019). Although among the input T values all the 185 

internal parameters and weights can be passed to the function, calibrated values are 186 

automatically used if they are not specified. 187 

The first phase of the model (hereinafter Model I) is able to estimate tick activity 188 

and therefore the result of Model I may have relevance without the second phase 189 

(hereinafter Model II), i.e. for estimating tick density, tick-borne encephalitis incidence 190 

or the incidence of other tick-borne diseases. Model I is a composite of two models: the 191 

first one (hereinafter season 1) is responsible for the tick activity in the first half of the 192 

year, the second one (hereinafter season 2) is responsible for that of the second half of 193 

the year. The division of the year is not strict and is done automatically by the model 194 

based on n and T values. The calculation of season 1 is more complex than that of 195 

season 2, since season 1 takes the size of the active population – those ticks that have 196 

not yet bitten – into consideration. Tick activity is calculated by summarizing season 1 197 

and season 2, since they may overlap each other (Eq. 1). 198 

 𝐴𝑛 = 𝐴𝑛
𝑠𝑒𝑎𝑠𝑜𝑛 1 + 𝐴𝑛

𝑠𝑒𝑎𝑠𝑜𝑛 2 (Eq. 1) 199 

Since I. ricinus uses ambush strategy for host finding (Sonenshine 1991), the 200 

probability of the encounter and therefore that of the disease transmission, depends not 201 

only on tick activity but on human activity as well. Hence, infection is not directly 202 

linked to tick activity but to the human-tick interaction. Biting activity is calculated 203 

from tick activity and holiday multiplier (Eq. 2). 204 

 𝐵𝐴𝑛 = 𝐴𝑛 ∗ 𝐻𝑀𝑛 (Eq. 2) 205 

Model II is able to estimate relative Lyme borreliosis incidence from biting activity. If 206 

its input is available, Model II can be calibrated and used independently form Model I. 207 

Model II has three alternative versions (model A, model B, and model C) that differ 208 

from each other in terms of the calibration method. Model I and Model II is now going 209 

to be explained in detail. After that model calibration will be discussed. 210 

2.2.2. Model I, season 1 211 

Season 1 in Model I inevitably contains the spring activity of adult ticks, but the nymph 212 

activity seems to be dominant in causing Lyme infection from spring to late summer in 213 

Hungary (Egyed et al. 2012). Tick activity in season 1 is estimated according to that 214 

hard ticks take one blood meal per life stage (Randolph 2004) and therefore not all the 215 

nymphs (and adults) are unfed in a certain week. Hence, the value of population entirety 216 

(or active population, P) has to be taken into account and continuously diminished week 217 

by week. P means the size of the active, unfed population (those ticks that ambush to 218 

bite) between 0 and 1, where P of the first week of the year is 1 (Eq. 3). 219 

 𝑃 ∈ [0,1]; 𝑃1 = 1 (Eq. 3) 220 

Tick activity is the function of the potential activity of the entire population 221 

(temperature dependent activity, TDA) and the size of the actual unfed tick population. 222 

The model calculates the active population of the current week iteratively from TDA 223 

and the active population of the previous week. The subtrahend (S) is estimated from 224 
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the tick activity and a weight parameter (δ) (Eq. 4, Eq. 5). 225 

 𝑃𝑛 = {
0, 𝑖𝑓 𝑃𝑛−1 − 𝑆𝑛−1 ≤ 0

𝑃𝑛−1 − 𝑆𝑛−1, 𝑖𝑓 𝑃𝑛−1 − 𝑆𝑛−1 > 0
 (Eq. 4) 226 

 𝑆𝑛 = 𝑇𝐷𝐴𝑛 ∗ 𝛿 (Eq. 5) 227 

TDA means potential activity of the ticks that is dependent on temperature but 228 

independent on the population size. Therefore, TDA means the tick activity that can be 229 

measured if none of the specimens have been fed yet (if P=1). TDA is calculated from 230 

the input temperature value and is based on a left-skewed lognormal distribution with 231 

axis (α) that separates the lognormal distribution in the left side and the constant 0 232 

function in the right side. The lognormal distribution has a mean (μ) and standard 233 

deviation value (σ) and is multiplied with a factor (c) and then is increased with another 234 

factor (d). The input of the lognormal distribution is the difference of T and α. TDA 235 

starts to have a non-zero value when the temperature is above 5 °C in two consecutive 236 

weeks (Eq. 6). 237 

 𝑇𝐷𝐴𝑛 = {

0, 𝑖𝑓 𝑇𝑛 ≥ 𝛼 ∨ 𝑇𝑛 ≤ 5 ∨ (𝑛 ≠ 1 ∧ 𝑇𝑛−1 ≤ 5)

𝑐 ∗
1

(𝛼−𝑇𝑛)∗√2𝜋∗𝜎
∗ 𝑒

− 
(𝑙𝑛(𝛼−𝑇𝑛)−𝜇)2

2𝜎2 + 𝑑, 𝑒𝑙𝑠𝑒
 (Eq. 6) 238 

Tick activity (A) is calculated by the multiplication of TDA with the population entirety 239 

(P) as shown in Eq. 7. 240 

 𝐴𝑛 = 𝑃𝑛 ∗ 𝑇𝐷𝐴𝑛 (Eq. 7) 241 

Although TDA is usually a positive number (except in early spring and when the 242 

temperature is greater than the axis), A is going to constantly be 0 after the week when 243 

the P starts to be 0 (since all the specimens have been fed). Since the end of season 1 244 

and the beginning of season 2 are not directly related to each other there may be a 245 

period in summer when both of them or none of them have positive value. 246 

2.2.3. Model I, season 2 247 

The model of season 2 is simpler than that of season 1 since no population is taken into 248 

account. It is thought that not the exhausted population but the cold temperature 249 

together with the change of photoperiod has impact on the finishing of season 2, and 250 

therefore there is no need to build a more complex model. Hence, TDA and A are 251 

synonyms of each other in case of season 2 and P is set to be always 1. Tick activity is 252 

calculated in a similar way to the equation shown in Eq. 6, except the conditions of the 253 

two branches. In addition to that the temperature must be lower than the axis and greater 254 

than 5 °C, A has a positive value from a certain week. This positive period begins when 255 

the temperature drops below 20 °C (after the warmest week of the year and after the 28. 256 

week) (Eq. 8). Since in case of real-time prediction the start of the period cannot be 257 

calculated from the temperature values of the studied year, one can estimate maximum 258 

temperature from the previous 52 weeks. 259 
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 𝐴𝑛 =260 

{
0, 𝑖𝑓 𝑇𝑛 ≥ 𝛼 ∨ 𝑇𝑛 ≤ 5 ∨ max𝑖=1..52 𝑇𝑖 ∉ ⋃ 𝑇𝑖𝑖=1..𝑛 ∨ n ≤ 28 ∨ ∀𝑖 ∈ [29, 𝑛]: 𝑇𝑖 ≥ 20

𝑐 ∗
1

(𝛼−𝑇𝑛)∗√2𝜋∗𝜎
∗ 𝑒

− 
(ln(𝛼−𝑇𝑛)−𝜇)2

2𝜎2 + 𝑑, 𝑒𝑙𝑠𝑒
261 

 (Eq. 8) 262 

2.2.4. Model II 263 

Model II has the capability to estimate the LB based on the sum of the product of BA 264 

and the weight factor (ω) of some of the previous weeks. The three versions of Model II 265 

use different number of weeks. While model A uses exactly 9 weeks, model B and C 266 

are able to use much more data and the exact number of the important weeks is gained 267 

during the model calibration. The difference is detailed in the next chapter. To be 268 

consistent in mathematical terms ω=0 weights are used when a model cannot calculate 269 

with that certain week. Hence, all the three models have the similar equation (Eq. 9). 270 

 𝐿𝐵𝑛 = ∑ (𝐵𝐴𝑛−53+𝑖 ∗ 𝜔𝑖)𝑖=1..52  (Eq. 9) 271 

2.3. Model calibration 272 

The model was calibrated with input data averaged in the 11 years long period of 1998–273 

2008. Therefore, future prediction needs input data from a similarly long period. In case 274 

of prediction with input data available from a shorter period (especially in case of real-275 

time prediction) the model has to be recalibrated. 276 

The advantage of the two-phase model is that it has the possibility to calibrate 277 

the model in two independent phases. In addition to the model inputs and the expected 278 

output, we estimated BA that is a hidden parameter of the model. BA was approximated 279 

by TBE data as proxy using a one-week shift (Eq. 10), since, in contrast to TBE, the 280 

distribution of I. ricinus biting activity in weekly resolution is not known. Prodromal 281 

symptoms of TBE appears about one week after tick bite and in general persist to the 282 

second week before the neurological symptoms appear in the third week. Thus, shifting 283 

TBE by one week may provide a well-established estimation of BA. In contrast to TBE, 284 

using LB for calibration of BA would be less straightforward due to the complex and 285 

multiphase nature of the manifestations of Lyme borreliosis infection.  286 

 𝐵𝐴𝑛 = 𝑇𝐵𝐸𝑛+1 (Eq. 10) 287 

In case of Model II the so called model A was calibrated by using the observed latency 288 

according to the serological application forms (in detail see Chapter 2.1.5). For 289 

calibrating Model I, and Model II versions called B and C Solver add-in of Microsoft 290 

Excel 2010 was used. Solver can find optimal solution (reduce the error of the model) 291 

by adjusting parameters, subject to constraints. We used Generalized Reduced Gradient 292 

nonlinear optimization from the several alternative optimization methods that Solver 293 

provides. In case of Model I Solver calibrated 11 parameters simultaneously that are the 294 

weight parameter (δ), and axis (α), mean (μ), standard deviation (σ), multiplier (c) and 295 

difference (d) in case of season 1 and season 2. The set objective of the calibration was 296 

to reduce the sum of squared errors of prediction (SSE) of tick activity (A). It should be 297 

noted that calibration with such a high number of parameters has difficulties in case of 298 

any automatic calibration processes. Therefore, iteratively more and more parameters 299 

had been included in the calibration before the final calibration was done to ensure that 300 
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Solver finds the best solution not a local extreme value of SSE. 301 

In case of Model II the set objective was to reduce the sum of squared errors of 302 

prediction (SSE) of LB while changing the values of the weight factors (ω). In case of 303 

model B all the 52 ω values were adjusted and in case of model C only 20 values were 304 

adjusted (ω33 .. ω52). Both of the models were calibrated from the start stage that was 305 

similar to model A. Thus, Solver could find optimal solution in spite of the fact that 306 

52/20 parameters are not few to work with simultaneously. Model B is logically 307 

incorrect since it is able to give non-zero values to ωi, where i is near to zero. This 308 

means that the model uses the BA data from almost a year before the studied week 309 

which is done because those data from the far past are statistically correlated to the data 310 

of the near future (the next weeks) in all likelihood. Hence we suggest preferring model 311 

C to model B since the former one uses only the real past for estimating LB. 312 

3. RESULTS 313 

3.1. Model calibration results 314 

Weight parameter (δ) of Model I was calibrated to be 0.0078, while the other calibrated 315 

parameters can be found in Table 2. Equations of the lognormal distribution of season 1 316 

and season 2 (Eq. 6, Eq. 8) are now updated with the calibrated parameters (Eq. 11, Eq. 317 

12). 318 

 𝑇𝐷𝐴𝑛 = {

0, 𝑖𝑓 𝑇𝑛 ≥ 26.3302 ∨ 𝑇𝑛 ≤ 5 ∨ (𝑛 ≠ 1 ∧ 𝑇𝑛−1 ≤ 5)

82.7165 ∗
1

(26.3302−𝑇𝑛)∗√2𝜋∗0.4804
∗ 𝑒

− 
(ln(26.3302−𝑇𝑛)−2.0337)2

2∗0.48042 , 𝑒𝑙𝑠𝑒
 (Eq. 319 

11) 320 

 𝐴𝑛 =321 

{
0, 𝑖𝑓 𝑇𝑛 ≥ 123.8382 ∨ 𝑇𝑛 ≤ 5 ∨ max𝑖=1..52 𝑇𝑖 ∉ ⋃ 𝑇𝑖𝑖=1..𝑛 ∨ n ≤ 28 ∨ ∀𝑖 ∈ [29, 𝑛]: 𝑇𝑖 ≥ 20

6.8409 ∗
1

(123.8382−𝑇𝑛)∗√2𝜋∗0.0145
∗ 𝑒

− 
(ln(123.8382−𝑇𝑛)−4.7124)2

2∗0.01452 + 0.4931, 𝑒𝑙𝑠𝑒
322 

 (Eq. 12) 323 

Calibration results of Model II can be seen in Table 3. The zero values that were not 324 

calibrated but fixed are marked. Sums of the weights should be near 1. Sums of squared 325 

errors of prediction (SSE) of relative Lyme borreliosis incidence can be found in Table 326 

3 for making a comparison between the three models. Note that the set objective of 327 

Solver was to minimize SSE in case of model B and model C. Model A seems to be 328 

worse than model B and C in one order of magnitude. Model C is found to be the best 329 

of the three model version, although model B (with 52 adjustable parameters instead of 330 

20) had the ability to take precedence over model C. This result shows that Solver found 331 

local extreme during calibration of model B. The authors suggest using model C instead 332 

of the other ones. The provided R function (Github 2019) uses automatically model C 333 

and the calibrated parameters and weights if they are not passed to the function. 334 

3.2. Prediction of relative biting activity 335 

The modeled distribution of relative tick biting activity (BA; Fig 3) in the reference 336 

period is bimodal with a major peak in the second part of May and a clear but minor 337 
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peak in late September. According to the similar run of the tick activity curves of the 338 

model and the calibration data, the model was calibrated well. The prediction to the 339 

period of 2081–2100 shows that the two parts of the biting activity curve will be 340 

separated more markedly. This finding is consistent with the expectations. Maximum of 341 

the activity is predicted to be shifted 8 weeks earlier, while the tick season may start 6-7 342 

weeks earlier than in the reference period. Significant prolongation of the fall season is 343 

not predicted, therefore the whole tick season seems to become 6-7 weeks longer in the 344 

future. However, if summer diapause is taken into account, the length of the period 345 

when ticks are effectively active will not be changed. The fall local maximum may shift 346 

from the 40
th

 to the 33
rd

–34
th

 weeks and become more pronounced according to the 347 

prediction. In terms of its scale, the fall maximum may almost reach the spring one 348 

causing bimodality of relative tick activity become more explicit. 349 

3.3. Prediction of relative lyme borreliosis incidence 350 

The three predictions to the reference period (Fig 4, black lines) prove the findings of 351 

the calibration about model errors. Model B and model C, those that were trained 352 

algorithmically, fit better to the observed Lyme borreliosis curve than model A does. 353 

While prediction of model B and that of model C are largely similar to each other, 354 

advantage of model C over the other one can be seen in the weeks 24–29. Unimodal 355 

annual distribution of the Lyme borreliosis incidences are obviously shown by all the 356 

three predictions. 357 

Future predictions (Fig 4, gray lines) demonstrate the bimodalization of the 358 

annual incidence distribution by the end of the 21
st
 century. The bimodal distribution 359 

shows similar characteristics to that of the predicted future relative tick biting activity, 360 

especially in case of model A. All the three models predict the elongation of the total 361 

Lyme borreliosis season by about 8 weeks. However, the effective length of the season 362 

seems to be shortened in the future by some weeks, due to the narrowing of the main 363 

curve. Although predictions to the future and the reference period are somewhat similar 364 

to each other after the 38
th

 week, they are largely different before. From 26
th

 to 34
th

 365 

weeks LBs are close to zero, while the period of the weeks no. 13–24 may be highly 366 

endangered by Lyme borreliosis. The maximum relative incidence will shift from the 367 

currently observed 27
th

 week to the 18
th

–19
th

 weeks, according to the predictions. The 368 

three models agree that fall local maximum will occur in the 36
th

 week but the LB is 369 

predicted to be one and a half time higher by model A than by model B and C. With 370 

reference to the previously written calibration results, we may conclude that model A is 371 

performing poorly for the future period too and overestimates maxima of LB. 372 

4. DISCUSSION 373 

4.1. Model advantages and improvements 374 

Although a lot of model parameters had been calibrated by Solver simultaneously in 375 

case of Model I. and Model II., calibration found optimal solution in both cases and the 376 

calibrated model predicted the annual distribution of Lyme borreliosis incidences with 377 

low error values. Hence, the complexity of the model is thought to be not too high but 378 

not too low either, since the model can estimate the expected output parameter (i.e. the 379 

relative Lyme borreliosis incidence of a certain week) well. An important advantage of 380 

our model is that it needs temperature data only as input parameter in addition to the 381 
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week numbers (c.f. Wu et al.'s (2010) model on I. scapularis population). Observed or 382 

predicted daily/weekly temperatures are easily available data with high horizontal and 383 

temporal resolution for a great part of the world and for a wide range of past and future 384 

time periods. Therefore, our modeling framework is thought to be a not input-intensive, 385 

easy-to-use estimator of Lyme borreliosis infection. 386 

Our framework contains several innovations in modeling the annual distribution 387 

of Lyme borreliosis incidence: (1) the model is calibrated in two phases, where the first 388 

phase describes the biting activity of ticks; (2) human-tick interaction is taken into 389 

account and estimated using camping guest night data (c.f. Šumilo et al. 2008; Pfäffle et 390 

al. 2013); (3) the spring and fall seasons are modeled separately due to their different 391 

activity patterns and their different dependence on climate; (4) a simple and 392 

straightforward population dynamics module is implemented in Model I, season 1. 393 

Although it is clear that activity patterns of the two modeled seasons differ from each 394 

other in the region of our study, it is not yet known if they are related only with the 395 

different seasonal activity of the nymph and adult ticks. Although findings of Hornok 396 

and Farkas (2009) and Egyed et al. (2012) for Hungary, and also Randolph et al. (2002), 397 

Takken et al. (2016) and Cayol et al. (2017) for other regions cannot strengthen our 398 

supposition, there is evidence on the dominance of nymphs in spring and that of the 399 

adults in fall (Trájer and Földvári unpublished data). Since adults are active in spring as 400 

well (Randolph et al. 2002; Hornok and Farkas 2009; Egyed et al. 2012), Model I, 401 

season 1 was built to deal with nymphs and adults jointly. However, the higher infection 402 

rate of the nymphs (Olsén et al. 1995) and their more efficient Borrelia transmission 403 

due to their less perceptibility support that the population dynamics module based on 404 

the questing behavior of nymphs was implemented in Season 1. This module can 405 

describe the abundance-meditated probability of questing, similarly to the model of 406 

Dobson et al. (2011). 407 

Even if Model I cannot substitute for tick flagging, the indirect biting activity 408 

data derived from tick-borne encephalitis used in the our study may be more suitable for 409 

analyzing temperature-related seasonal tick activity patterns than field surveys due to 410 

their high temporal resolution, accessibility, and higher sample size. Although from an 411 

unconventional aspect (i.e. backward conclusion from incidence data), our model 412 

highlights the significance of the nosocomial surveillance systems. Determination of the 413 

exact time of tick bite based on the notification system of Lyme infection is biased, 414 

since (1) erythema migrans begins after a delay of 3 to 30 days after tick bite (in 415 

average 2 weeks latency); (2) the time of the human-tick encounter that enable tick bite 416 

is often not known exactly; (3) the reported Lyme borreliosis cases contain the mixture 417 

of different stages that have different latencies; (4) the notification probability of the 418 

different stages is different. Our modeling framework provides a simple workaround 419 

that eliminates these uncertainties. Biting activity is calculated from temperature, week 420 

number and the probability of human-tick interaction (i.e. holiday multiplier), and is 421 

calibrated by the much more consistent, reliable and predictable tick-borne encephalitis 422 

(Gray et al. 2009) instead of Lyme borreliosis data (c.f. the suggestion of Bózsik (2004) 423 

on the use of tick-borne encephalitis series to predict Lyme borreliosis series). The 424 

modeling framework needs another calibration method in countries without tick-borne 425 

encephalitis incidence. Three different latency models are then used to convert biting 426 

activity series to LB series, among them two models are calibrated automatically. These 427 

enhancements ensure that biting activity is highly independent from Lyme borreliosis 428 

incidences and is calibrated with low uncertainty. The predicted annual distribution of 429 

biting activity in the reference period is highly similar to the results of field studies 430 

(Széll et al. 2006; Egyed et al. 2012; Trájer and Földvári unpublished data). 431 
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4.2. Interpretation of predictions 432 

According to our results, start of the tick biting activity and Lyme borreliosis season, 433 

length of the season, and other seasonal characteristics of the annual distribution are 434 

highly sensitive to temperature, and hence, to climate change. Our findings underpin 435 

those of previous researches on the impact of climate on the vector (e.g. Lindgren et al. 436 

2000; Gray et al. 2009; Jaenson and Lindgren 2011; Trájer et al. 2013a; Li et al. 2016), 437 

the disease (Jaenson and Lindgren 2011; Li et al. 2016), and the bacteria Borrelia 438 

burgdorferi (Estrada-Peña et al. 2011). Hornok and Farkas (2009) found, however, that 439 

the spring timing of the peak activity of I. ricinus was unaffected by the warm weather 440 

of 2007 in the Hungary. It has been observed that the increasing length of the vegetation 441 

period elongated the Lyme borreliosis season in the 2000's in Hungary (Trájer et al. 442 

2013b), which trend is predicted by our model to continue in the future. 443 

Although our model might be biased and its future prediction might be 444 

inaccurate, the significant change of the annual distribution is clear and inevitable. Such 445 

change of the climatic patterns may also cause future shift in the geographical 446 

distribution of I. ricinus (Lindgren et al. 2000; Jore et al. 2014; Sormunen et al. 2016; Li 447 

et al. 2016) and its close relative, the blacklegged tick, Ixodes scapularis (Estrada-Peña 448 

2002; Brownstein et al. 2003; Ogden et al. 2008), which has already been observed in 449 

the last decades (Daniel 1993; Daniel and Dusbabek 1994; Lindgren et al. 2000). Please 450 

refer to Estrada-Peña (2008) for a critical review of these findings. It is an open 451 

question how climate change will trigger the northward move of Mediterranean tick 452 

species, however, the European range and distribution of the population of such 453 

Mediterranean tick species like of Dermacentor reticulatus shows a stable increasing 454 

trend in Europe and the Carpathian Basin (Földvári et al. 2016). 455 

Since spring is predicted to be warmer, and the summer will be drier and hotter 456 

in Hungary according to the climate models (Pieczka et al. 2018), the forecasted 457 

bimodal distribution of tick biting activity and Lyme borreliosis incidence is consistent 458 

with our expectations. Our findings underpinned that the apparent contradiction 459 

between the unimodal distribution of Lyme borreliosis and bimodal distribution of tick-460 

borne encephalitis might be the result of the different incubation periods of the organic 461 

manifestations rather than the consequence of the different seasonal infection rate or the 462 

difference of the vector species. 463 

Extreme events (e.g. heat) might become more intensive and frequent in the 464 

future (Bai et al. 2016), which trend is attributed to global climate change by 465 

researchers (Göndöcs et al. 2018) and stakeholders (Malatinszky et al. 2013) as well. 466 

Their increasing frequency creates an uncertain basis for environmental predictions 467 

(Şen 2018). Therefore, understanding and, if necessary, reducing their impact is an 468 

important topic of climate change studies (Birkmann and Welle 2015). Our framework 469 

can predict the tick biting activity in the periods of extreme heat more reliably than the 470 

models that are prone to overestimate it (e.g. Cat et al. 2017). Previous findings on the 471 

accelerated phenology of ticks in the warming future climate (Süss et al. 2008; Levi et 472 

al. 2015; Li et al. 2016) is strengthen by our results. 473 

4.3. Usability of the model and limitations of the result interpretation 474 

Model I is suggested to be used to calculate tick biting activity (and indirectly tick 475 

activity, tick density, and more indirectly relative incidence of tick-borne encephalitis), 476 

while the authors recommend using Model II to estimate relative Lyme borreliosis 477 

incidence (and indirectly absolute Lyme borreliosis incidence). The provided R script 478 
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(Github 2019) is thought to enhance the usability of our model since it need only 479 

weekly temperature series and returns the result of both modeling phases (relative biting 480 

activity, relative Lyme borreliosis incidence). It provides an effective tool for those who 481 

need quick prediction (by using default, calibrated parameters) and for those, as well, 482 

who have recalibrated the model and could pass the recalculated parameters to the 483 

function. 484 

Despite that some other environmental factors (e.g. precipitation, humidity) 485 

might have role on determining the distribution of Lyme borreliosis incidence 486 

(Randolph 2009; Jore et al. 2014; Cat et al. 2017), we presented a highly input-487 

extensive, simple modeling framework that uses, among the calibration data, only 488 

temperature and week number as input parameters. Since humidity is highly affected by 489 

vegetation, nearness of water bodies, and urbanization level, fine resolution humidity 490 

data that are free from these biases is hardly accessible. Since both the present (i.e. 491 

reference period) and future predictions of our model meet our previous expectations, 492 

we conclude that the observed summer decrease of the Lyme borreliosis incidence is not 493 

necessarily or solely the consequence of the low summer precipitation or reduced 494 

humidity as many author claimed (e.g. Schauber et al. 2005; Ostfeld et al. 2006). Tick 495 

population dynamics, which was applied in Model I, season 1, can be an alternative 496 

explanation of the observed patterns of the summer distribution, at least in Hungary. 497 

Although the decreasing numbers of questing ticks might be the consequence of several 498 

factors, such as increased mortality due to changing meteorological conditions, our 499 

model confirmed that one and major determinant of the decrease is the loss of hungry 500 

tick population due to their previous bite. 501 

Climate is not the only one important environmental factor which can have 502 

impact on tick-borne diseases in Hungary. It was also found that inexperienced farmers 503 

who have a lower rate of preventive actions are likely to experience greater exposure to 504 

tick bites in Hungary (Li et al. 2018). It cannot be excluded that the reduced use of 505 

pesticides in tick control in the urban environment also influenced the abundance of the 506 

urban tick populations in the last decades in Hungary. 507 

Since the main objectives of model building includes simplification of reality by 508 

making assumptions and generalizations, its tradeoffs are amplified when reduction of 509 

model complexity and the number of input parameters is aimed. Therefore, we should 510 

list the weaknesses and limitations of the model: 511 

1) camping guest night data can serve only as a proxy of human outdoor 512 

activities: its annual distribution may differ from that of all the outdoor activities and 513 

cannot cover people of occupational risk groups, e.g. foresters; 514 

2) complex ecology of I. ricinus can approximated but not fully described if no 515 

other environmental factors than temperature are considered. Although temperature is 516 

correlated to photoperiodicity, relative humidity and saturation deficit, it cannot replace 517 

the other abiotic factors. For simplicity, we must accept the improper assumption that 518 

temperature can describe the tick's annual distribution; 519 

3) the tick-borne encephalitis data used for calibration is limited to part of the 520 

geographic range of I. ricinus. Hence, other data source is required for calibration in 521 

such territories. Surveillance data is prone to several type of biases, including 522 

geographical bias, reporting bias and inaccurate diagnosis etc.; 523 

4) both Lyme borreliosis and tick-borne encephalitis data may suffer from the 524 

difficulties in case definition criteria, latency of infection, great variability of human 525 

response and that of the pathogenicity of the agents; 526 
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5) instead of a reasonable but more complex birth-rate distribution, all 527 

individuals enter the population at the beginning of the year in our model, which cannot 528 

describe the real nature of population dynamics of the species; 529 

6) the used population dynamics approach (Model I, season 1) can only partly 530 

explain the observed abundance changes, since, beyond the disappearing of active 531 

individuals due to successful feeding, natural mortality and diapause are not taken into 532 

account. 533 

Predicted annual distributions of both tick biting activity and relative Lyme 534 

borreliosis incidence to the reference and future periods are in agreement with literature 535 

(e.g. Gray 2008; Gray et al. 2009; Jaenson and Lindgren 2011; Zöldi et al. 2013; Li et 536 

al. 2016). The forecasted remarkable summer decrease of tick biting activity and Lyme 537 

incidence in the future underpins the findings of Burtis et al. (2016) on I. scapularis 538 

activity. From the predicted changes in the annual distribution of relative Lyme 539 

incidence the absolute annual incidence cannot be estimated directly. Note that 540 

according to some researchers (e.g. Shope 1991) absolute number of incidences might 541 

decrease in the future. Our framework, similarly to other climate-based modeling 542 

approaches, is sensitive to the selection of the emission scenario and regional climate 543 

model (c.f. Cat et al. 2017). However, compared with the less complex models that are 544 

based on additive warming terms, there is a need for such regional climate model driven 545 

approaches to better understand the future of the disease (Li et al. 2016). 546 

Our predictions are extrapolations in terms of the climatic space. Since tick 547 

biting activity in such climatic conditions that are predicted to occur in Hungary in 548 

2081–2100 is not well studied yet, our future predictions should be interpreted with 549 

caution and need further evaluation. More research on the future seasonality of Lyme 550 

incidence and I. ricinus activity is needed for the regions where hot summers may limit 551 

tick abundance and activity (i.e. Southern Europe). 552 

5. CONCLUSION 553 

The presented framework with low number of inputs on modeling the seasonality of 554 

Lyme borreliosis incidences enables predicting the annual distribution of Ixodes ricinus 555 

tick's biting activity and Lyme borreliosis in two cascading phases, using only the easily 556 

accessible weekly temperature data and week numbers as input parameters. Based on 557 

the implemented innovations incorporated in our model (i.e. two phases; population 558 

dynamics model of the spring season; tick-borne encephalitis series as a proxy for tick 559 

biting activity during the calibration; human-tick interaction approximated by camping 560 

data), it provides a simple workaround for several known issues of modeling Lyme 561 

seasonality, including the hardly available data on tick activity. According to the 562 

prediction to the future period of 2081–2100 based on MRI CGCM regional climate 563 

model and A1B emission scenario, climate change may significantly alter both the 564 

annual distribution of I. ricinus activity and that of the Lyme borreliosis incidences. 565 

While the currently unimodal annual distribution of Lyme borreliosis is predicted to 566 

become bimodal with a long summer pause and a spring maximum shifted 8 weeks 567 

earlier, the bimodality of I. ricinus activity may also become more expressed. 568 
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TABLES 798 

Table 1. Weekly values of holiday multiplier (HM) other than 1 799 

number of week holiday multiplier (HM) 

25 1.29 

26 1.59 

27 1.91 

28 2.24 

29 2.36 

30 2.49 

31 2.74 

32 2.99 

33 2.61 

34 2.22 

35 1.65 

36 1.08 

 800 
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Table 2. Calibrated model parameters of Model I. in case of season 1 and season 2 801 

season 1. 2. 

α (axis) 26.3302 123.8382 

μ (mean) 2.0337 4.7124 

σ (standard deviation) 0.4804 0.0145 

c (multiplier) 82.7165 6.8409 

d (difference) 0.0000 0.4931 

 802 

Table 3. Calibrated weight factors (ωi) of Model II, where i is the ordinal number of the 803 

weeks of the previous one year period, the sum of the weights, and the sum of squared 804 

errors of prediction (SSE) of relative Lyme borreliosis incidence in case of the three 805 

model versions. *: the zero value was fixed instead of estimated by calibration. **: 806 

weights that seem to refer to the near future instead of the far past (see Chapter 2.3 for 807 

details). 808 

i model A model B model C 

1 0* 0.0263** 0* 

2 0* 0 0* 

3 0* 0,0121** 0* 

4 0* 0.0163** 0* 

5 0* 0.0035** 0* 

6 0* 0.0039** 0* 

7 0* 0.0036** 0* 

8–14 0* 0 0* 

15 0* 0.0029 0* 

16 0* 0.0008 0* 

17 0* 0.0003 0* 

18 0* 0.0088 0* 

19 0* 0.0007 0* 

20 0* 0.0012 0* 

21 0* 0.0005 0* 

22 0* 0.0001 0* 

23–32 0* 0 0* 

33–37 0* 0 0 

38 0* 0.0194 0 

39 0* 0.0035 0.0025 

40 0* 0.0017 0.0029 

41 0* 0.0188 0 

42 0* 0.0076 0 

43 0* 0.0022 0.0991 

44 0.0062 0.0224 0 

45 0.0150 0.0502 0.0001 

46 0.0182 0.1106 0.1328 

47 0.0328 0.0674 0.0403 

48 0.0607 0.1067 0.1130 
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49 0.1152 0.0656 0.0514 

50 0.2162 0.1308 0.1476 

51 0.3463 0.1866 0.1813 

52 0.1947 0.1470 0.2213 

sum of ω 1.0053 1.0216 0.9923 

SSE 12.2184 1.9732 1.8191 

FIGURES 809 

Figure 1. Relative frequency (%) of observed (gray columns) and modeled (black line) 810 

lags between tick bites and onsets of the early manifestation form 811 

 812 

Figure 2. The model and its calibration. Input and output parameters are filled with gray 813 

color. Although Model I and Model II follow each other sequentially, they form two 814 

parts of the framework that can be used independently from each other. 'Model A', 815 

'model B' and 'model C' are the three alternative versions of Model II. 816 

 817 
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Figure 3. Annual distribution of relative tick biting activity (BA; %) calculated from the 818 

calibration dataset (black continuous line), predicted for the reference period (1998–819 

2008, black dashed line), and predicted for the future period (2081–2100, gray dashed 820 

line) 821 

 822 

Figure 4. Observed (continuous line) and predicted (non-continuous lines) annual 823 

distribution of relative Lyme borreliosis incidence (LB; %) in the reference period 824 

(1998–2008, black lines) and in the future period (2081–2100, gray lines), according to 825 

model A (dash-dot lines), model B (dashed lines), and model C (dotted lines) 826 


