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11 ABSTRACT: We recently introduced drug profile matching
12 (DPM), a novel virtual affinity fingerprinting bioactivity pre-
13 diction method. DPM is based on the docking profiles of ca.
14 1200 FDA-approved small-molecule drugs against a set of
15 nontarget proteins and creates bioactivity predictions based on
16 this pattern. The effectiveness of this approach was previously
17 demonstrated for therapeutic effect prediction of drug mole-
18 cules. In the current work, we investigated the applicability of
19 DPM for target fishing, i.e. for the prediction of biological
20 targets for compounds. Predictions were made for 77 targets,
21 and their accuracy was measured by receiver operating char-
22 acteristic (ROC) analysis. Robustness was tested by a rigorous
23 10-fold cross-validation procedure. This procedure identified
24 targets (N = 45) with high reliability based on DPM performance. These 45 categories were used in a subsequent study which
25 aimed at predicting the off-target profiles of currently approved FDA drugs. In this data set, 79% of the known drug-target
26 interactions were correctly predicted by DPM, and additionally 1074 new drug−target interactions were suggested. We focused
27 our further investigation on the suggested interactions of antipsychotic molecules and confirmed several interactions by a review
28 of the literature.

29 ■ INTRODUCTION

30 Finding compounds for a given target is a common computa-
31 tional task in a conventional medicinal chemistry program. However,
32 by means of increasingly available bioactivity data, this
33 approach can be reversed to finding targets for compounds.
34 In silico target fishing1 is an emerging field that aims at pre-
35 dicting biological targets of molecules based on their chemical
36 structure. The rise of this area is in connection with that of
37 polypharmacology,2,3 which posits that drugs act on multiple
38 targets in contrast with the traditional one drug−one target
39 paradigm. As a consequence, it is likely to discover new targets
40 even for well-known drugs.
41 Many in silico target prediction tools have been developed,
42 and they were summarized by a recent review.4 As it is common
43 for drug development methods, target prediction tools can also
44 be divided into two main groups: ligand-based and structure-
45 based approaches.
46 Similarity search is often used among the ligand-based methods.
47 The most common question that arises in case of similarity
48 based virtual screening is the description of molecular structure.
49 No universal solution seems to exist for this problem,5 as the

50best representation used to characterize the molecules depends
51on the studied activity classes. Therefore, it is important to
52combine several methods for a given task, e.g. by applying data
53fusion techniques.6 An approach that generates off-target profiles
54of drugs based on their 3D similarity has just been reported,
55and some of its predictions were proved by a literature survey.7

56Several ligand-based methods apply data mining methods in
57order to identify unknown drug−target interactions. One of the
58first initiatives in this field was PASS developed by Poroikov et
59al.8 It can predict the biological activity profile of a compound
60based on the analysis of structure−activity relationships for
61more than 250 000 biologically active substances. Nigsch et al.
62implemented the Winnow and Naive Bayesian algorithms for
63ligand−target prediction and compared their performance on a
64data set comprising 20 activity classes with 13 000 compounds.9

65They generally produced similar performance, however,
66significant differences were observed for the individual activity
67classes. The similarity ensemble approach (SEA) uses a minimal
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68 spanning tree considering ligand chemical similarity in order to
69 clusterize 246 enzymes and receptors.10,11 On the basis of the
70 model, target prediction was performed for more than 3000
71 FDA approved drugs, and 23 suggested interactions were
72 confirmed experimentally.
73 Pharmacophore based methods also proved to be successful
74 to predict protein targets. PharmMapper employs pharmaco-
75 phore models derived from structures complexed with small mole-
76 cules to identify target candidates of query molecules.12

77 Tamoxifen was selected as a validation example, and it was
78 concluded that the method was successful in predicting its
79 targets.
80 Molecular docking is far the most often used tool among the
81 structure-based methods. While conventionally it is applied to
82 identify potential ligands for a given protein, for target pre-
83 diction the so-called inverse docking procedure needs to be applied
84 (docking one ligand against multiple targets). INVDOCK13

85 and TarFishDock14 are examples of recently presented methods
86 for predicting protein targets for small molecules based on
87 docking against a set of proteins supposedly interacting with
88 the ligand.
89 This concept has some relation to in silico affinity finger-
90 prints,15−17 which are a series of docking scores against a reference
91 panel of proteins that do not include the target protein (one
92 ligand, multiple proteins). However, this approach is not
93 designed to find possible targets among the reference proteins.
94 Instead, these reference proteins are used as a discriminator
95 surface which can differentiate a wide range of compounds. In
96 contrast to the computationally more demanding inverse
97 docking, individual interactions are not considered here, the
98 resulting pattern is characteristic for the studied molecules.
99 Affinity fingerprints were originally based on in vitro
100 measurements;18−20 however, the measured values were later
101 replaced by docking scores (virtual binding free energies). In
102 silico affinity fingerprints were successfully applied in virtual
103 screening protocols16,21 and focused library design.22

104 We recently introduced drug profile matching (DPM), a
105 novel virtual affinity fingerprinting prediction method. DPM is
106 based on the docking profiles of ca.1200 FDA-approved small-
107 molecule drugs against a panel of nontarget proteins. Individual
108 interactions are not investigated in the method; instead, a
109 docking profile serves as a pattern that is characteristic for a
110 given molecule. Our working hypothesis was that similar
111 patterns indicate similar bioactivity of the respective molecules
112 and this feature can be exploited for bioactivity prediction.
113 Relevant information of the docking profiles was extracted by
114 multidimensional statistical techniques that produced proba-
115 bilities showing the likelihood of having the investigated
116 property for each molecule. The effectiveness of this approach
117 was already demonstrated for pharmacological effect predic-
118 tion.23 Moreover, we also showed that DPM adds additional
119 predictive power to drug effect prediction as compared to
120 traditional molecular similarity based approaches.24 Candidate
121 molecules were tested in vitro for three selected categories, and
122 high hit rates were obtained which further proved the validity of
123 DPM predictions (unpublished results). The system was
124 formerly trained on pharmacological effects (medical indica-
125 tions) based on the categories listed in the DrugBank database.
126 Groups based on common targets were also included among
127 the studied categories and resulted in high classification
128 accuracy. Therefore, as a continuation of our work, we decided
129 to pursue a study on drug-target interaction data. Our current
130 approach is similar to the original application of affinity

131fingerprints presented by Kauvar et al. In their pioneer work,
132the binding potencies of several compounds were measured
133against a reference panel of proteins and the resulting affinity
134fingerprints of the compounds were applied to predict their
135binding properties to other proteins not included in the
136reference panel.18,19 In our approach, we also aim to predict
137interactions between the studied molecules and possible drug
138targets that are not represented in the reference protein set
139used to generate the interaction patterns of the compounds by
140molecular docking.
141In the present study, DPM predictions were made based on
14277 targets extracted from the DrugBank database that contain
143at least 10 registered molecules in order to provide sufficient
144amount of information about the active molecules. It should be
145noted that there is no overlap between the reference protein set
146used for creating the interaction patterns and the investigated
14777 targets. The reference protein set consists of only nontarget
148proteins. Similar to our previous work, the accuracy of DPM
149predictions was assessed by receiver operating characteristic
150(ROC) analysis, while robustness was measured via 10-fold
151cross-validation. On the basis of the calculated prediction
152properties, 45 targets possessing sufficient prediction power
153were selected for further analysis. Predicted off-target profiles
154with this reduced target set were examined in order to reveal
155new drug−target interactions. For many drug molecules,
156significantly more targets were predicted with high probability
157than it was originally registered in the database. Predicted off-
158target profiles were examined for selected molecules, and the
159validity of several suggested interactions was demonstrated by a
160review of the literature.

161■ METHODS
162Drug Profile Matching Method. DPM was described in
163detail in our recent publications.23,24 The key steps of the
164method and the analyses used to describe its accuracy and
165robustness are presented briefly in the following.
166Creation of the Interaction Pattern Matrix. Here 1177
167FDA approved small-molecule drugs were extracted from
168DrugBank database and were docked to 135 nontarget proteins
169from RCSB Protein Data Bank (PDB) (Table S1, Supporting
170Information). Docking was performed using DOVIS 2.0
171software (DOcking-based VIrtual Screening),25 AutoDock4
172docking engine,26 Lamarckian genetic algorithm, and X-
173SCORE scoring function.27 The geometrical center of the
174original ligand was used as a center of the docking box, box size
175and grid spacing were set to 22.5 and 0.375 Å, respectively.
176Twenty-five docking runs were performed for each job, and the
177best docking scores for each drug−protein complex were used
178to form the interaction pattern (IP) matrix. In this matrix, drugs
179are organized into rows while proteins are in the columns
180therefore each row represents the IP of a given drug against the
181reference protein set.
182For a more detailed description of IP generation see the
183Supporting Information.
184Creation of the Target Profile Matrix. Target informa-
185tion on 1177 FDA approved small-molecule drugs was
186extracted from DrugBank database. For 20 molecules no target
187information could be obtained; these molecules were excluded
188from further analysis. The resulting 1157 drugs were assigned
189to 1163 targets that were reviewed manually. The number of
190categories was reduced to 995 by merging cohesive target
191groups (for example, DNA topoisomerase 4 subunit A and
192subunit B were combined to produce the final DNA
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193 topoisomerase 4 category). Figure 1 shows the distribution of
194 the registered drugs for these 995 targets. Remarkably, to 628

195 targets only one drug is assigned in the database, raising dif-
196 ficulties to exploit this information for prediction with our method.
197 There are only 6 targets having more than 60 assigned drugs:
198 histamine H1 (68 drugs), muscarinic acetylcholine receptor M1
199 (67 drugs), alpha 1A adrenergic receptor (67 drugs), DNA (64
200 drugs) dopamine D2 receptor (61 drugs), and GABA receptor
201 (61 drugs). The mean of the registered drugs to the 995 targets
202 is 3.6, supporting the general view of polypharmacology that
203 drugs act on multiple targets. According to our previous
204 experience gained in therapeutical effect predictions, DPM
205 requires 10 active molecules for sufficient classification. Thus,
206 from the original 995 target groups, only 77 could be kept for
207 the analyses having at least ten registered molecules. This
208 investigated target set is independent of the reference protein
209 set used to generate the interaction patterns. A binary matrix
210 called Target Profile (TP) matrix was created based on these 77
211 groups that displays whether a drug interacts with a given target
212 according to DrugBank. (“1” marks the presence of the inter-
213 action while “0” indicates that a given drug-target interaction
214 was not documented). Targets are organized into columns
215 whereas drugs are in the rows of this matrix; therefore, one row
216 represents the DrugBank documented target profile of a given
217 drug. Since many targets were excluded due to the fact that they
218 have less than 10 active molecules, there are several drugs
219 whose target profile is empty. This issue does not raise
220 problems for DPM since the statistical analyses are performed
221 separately for each target (i.e., column by column), as it is
222 described in the following section.
223 Creation of the Target Probability Matrix. Canonical
224 correlation analysis (CCA) was performed between the IP
225 matrix and each target to generate a factor pair having as high
226 correlation as possible via linear combination of the original
227 variables. This factor pair was used as an input for linear
228 discriminant analysis (LDA) that yielded classification functions
229 which were applied to calculate the probability for each drug-
230 target pair. These probability values were used to create the
231 target probability matrix. Any row of this matrix represents the
232 predicted off-target profile of a given drug. In contrast to the
233 binary target profile matrix, the values in this matrix are

234continuous, and therefore assignment of a given target to a
235particular drug also depends on the used probability threshold.
236An example on a small data set that illustrates the different
237steps of the DPM method resulting in the final probability
238values is presented in the Supporting Information.
239Receiver Operating Characteristic Analysis. Receiver
240operating characteristic (ROC) analysis was used for assessing
241the accuracy of the classification functions. To create a ROC
242curve for each target group, the true positive rate (TPR) was
243plotted as a function of the false positive rate (FPR) using a
244sliding cutoff parameter from 0 to 1 for the probabilities.
245Molecules are reclassified at each cutoff value, labeling
246compounds as “positive” if they have a greater probability for
247a given target than the applied cutoff point and “negative” in
248the opposite case. TPR (also called sensitivity) is the portion of
249positives classified correctly, while FPR (1-sensitivity) is the
250rate of negatives which were wrongly classified as positive. To
251produce a quantitative summary measure of the ROC curve, the
252area under the curve (AUC) was calculated. Perfect classifica-
253tion results in an AUC of 1, because in that case there exists a
254cutoff value above that all positive molecules but no negative
255molecules are classified as positive and thus the curve runs
256through the (0,1) point. Therefore, the closer the calculated
257AUC value is to 1, the better the classification. A random
258classification would result in a diagonal ROC curve (AUC of 0.5),
259representing a method with no ability to distinguish active
260and inactive molecules. New measures have been introduced
261recently such as BEDROC that also take into account the
262shape of the ROC curves,28 resulting in higher values for
263those curves that rise steeply along the x axis, meaning that
264known actives are indentified at the top of the list.
265Calculation of the BEDROC metric was performed in our
266earlier work,23 but it did not result in different conclusions
267than the use of the AUCs. Therefore, we decided to use AUC
268values in the current work.
26910-fold Cross-validation. In order to evaluate the
270robustness of the results and control for possible overfitting,
27110-fold cross-validation was performed. The data was divided
272into 10 complementary subsets. Each subset was used as a test
273set for validation while the residual subsets were combined to
274produce the training set. In each round of the validation, CCA
275and LDA was performed on the training set and probabilities
276were predicted for the test set that show the likelihood of
277interacting with a given target for each test molecule.
278Accordingly, the classification function was created without
279considering the test set, ensuring that the test set was
280completely independent of the training set. Variable selection
281was not performed in the cross-validation loop as the same set
282of the predefined 135 nontarget proteins was used in each
283round of the validation. This process was repeated for each of
284the 10 subsets, and the probability values for each of the
285originally registered drugs to a given target were averaged to
286produce a single measure (mean probability value, MPV) that
287indicates the robustness of the studied target. This process was
288repeated 100 times for each target group to eliminate the
289impact of the distribution of molecules on the results. The
290outcomes of the 100 runs were combined to create the
291investigated mean MPVs that describe the robustness of a given
292target, i.e. to what extent the classification can be generalized on
293external data. The closer the MPV to 1, the better is the
294performance of the method on the external data for the studied
295target group.

Figure 1. Distribution of the registered drugs for the original 995
targets. Number of targets with a given number of approved drugs is
displayed. Note that for more than 60% of the targets only one
molecule is assigned.
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296 A validation based on ChEMBL data for a subset of the
297 investigated interactions is presented in the Supporting
298 Information.
299 Target Selectivity Analysis. In order to assess the target
300 selectivity of the studied drugs, the number of predicted targets
301 above a certain probability limit (>0.8) was counted. To ensure
302 nonbiased analysis, from the 77 original targets only the 45
303 highly reliable targets with the best robustness values (mean
304 MPV > 0.5) were used. The predicted interactions of anti-
305 psychotics was investigated in more detail by a literature survey.
306 Tanimoto Diversity Calculation. Two-dimensional
307 hashed chemical fingerprints, that encode topological proper-
308 ties of the chemical graph up to six bonds, were generated using
309 ChemAxon’s JChem based software for each drug molecule.
310 The process resulted in a 4096-bit-long binary fingerprint for
311 each drug. Then, ChemAxon Similarity plugin was used to
312 calculate the Tanimoto similarity for each possible drug pair on
313 the basis of these fingerprints:

=
+ +

c
a b c

SIM(A, B)

314 where a is the number of bits on in molecule A, b is the number
315 of bits on in molecule B, and c is the number of bits in common
316 in both structures.
317 Comparing identical molecules results in a similarity value of
318 1, while the calculated similarity is 0 when two molecules have
319 no bits in common. The average Tanimoto similarity (referred
320 to as Tanimoto diversity) was calculated for each of the studied
321 targets to quantify the structural distribution of the registered
322 molecules. Considerable structural similarity exists among the
323 ligands of a given target if the Tanimoto diversity exceeds 0.6.
324 If this value is less than 0.4, a target group is considered struc-
325 turally heterogeneous.
326 The Statistical Analysis System for Windows (version 9.2;
327 SAS Institute, Cary, NC) was used for the implementation of
328 all analyses.

329 ■ RESULTS AND DISCUSSION
330 Figure 2 displays a graphical summary of the drug profile
331 matching method applied for target fishing. Virtual binding
332 affinity values obtained by docking 1157 FDA-approved drugs
333 to 135 nontarget proteins were entered into a matrix, where
334 each row displays the interaction pattern (IP) of a given drug
335 against this protein set. On the basis of the target information
336 extracted from DrugBank for the studied molecules, a binary
337 matrix called target profile (TP) matrix was created which
338 shows whether a given drug-target interaction is documented in
339 the DrugBank database. A two-step multidimensional method
340 (CCA and LDA) was applied on these matrices to yield
341 probabilities for each drug that indicates the likelihood of
342 interacting with a given target. These probabilities were entered
343 into the target probability matrix where each row shows the
344 predicted off-target profile of a given drug. It should be noted
345 that these values do not yield any information about the
346 strength of the suggested drug-target interaction that requires
347 in vitro measurements in order to be determined.
348 Receiver Operating Characteristic Analysis. Overall
349 classification accuracy of DPM was measured by receiver
350 operating characteristic (ROC) analysis which is based on the
351 list of drugs sorted by descending probability for a selected
352 target (a column in the target probability matrix). Table 1 lists
353 the obtained AUC values while Figure 3 shows their distribu-
354 tion for the 77 studied target groups. All AUC values were

355above 0.92, meaning that excellent classification was obtained
356by DPM for target prediction. Perfect classification (i.e., AUC
357of 1) occurred for three categories, registered ligands of both
358target groups share high degree of structural similarity (fluoro-
359quinolone antibiotics targeting DNA topoisomerase 4, sulphanil-
360amides targeting dihydropteroate synthase, and steroid
361molecules targeting progesterone receptor; Tanimoto diver-
362sities of 0.766, 0.505, and 0.545, respectively; see Table 1 for
363the complete list of the Tanimoto diversities). Structural similarity
364of registered ligands can be observed for several other target
365groups among the best categories (glucocorticoid receptor,
366peptidoglycan synthetase ftsl, penicillin binding protein 2A).
367However, target groups comprising of structurally diverse
368compounds also obtained high AUC values (0.998 for
369cholinesterase and 0.997 for monoamine oxidase A; Tanimoto
370diversities of their registered ligands are 0.241 and 0.380,
371respectively). This is in an agreement with our previous finding
372that DPM can effectively handle classes comprising of
373structurally diverse molecules.24 These are the cases where
374DPM has additional prediction power compared to traditional
375similarity based approaches. The worst but still excellent AUC
376of 0.922 was obtained for neuronal acetylcholine receptor,
377target of mainly barbiturate molecules (Tanimoto diversity of
3780.358).
379Cross-validation. To check the validity of the obtained
380classifications, an independent 10-fold cross-validation was
381performed. The MPVs of the 100 runs were averaged to

Figure 2. Graphical summary of the drug profile matching method
applied for target fishing. The interaction pattern (IP) matrix contains
the calculated binding free energies for the studied 1157 drugs on the
reference panel of 135 nontarget proteins. The target profile (TP)
matrix shows the known drug-target interactions in a binary coded
form (purple cells mark the presence of the interaction while white
cells indicate that a given drug−target interaction was not documented
in DrugBank). These matrices were subjected to a two-step
multidimensional analysis (canonical correlation analysis, CCA, and
linear discriminant analysis, LDA) that resulted in the target
probability matrix that consists of the predicted probabilities for
each drug−target pair.
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382 produce the further investigated mean MPVs for each target.
383 Table 1 and Figure 4 display the mean MPVs with standard
384 deviation for the 77 targets. This value is used to counter

385overfitting, which is a known phenomena of multidimensional
386statistical techniques, and shows whether the classification
387functions could capture relevant features for the studied targets.

Table 1. Prediction and Validation Properties of the Studied 77 Target Groupsa

10-fold cross-
validation

target n AUC mean std
Tanimoto
diversity

acetylcholinesterase 18 0.991 0.322 0.047 0.271
alpha-1A adrenergic receptor 67 0.951 0.622 0.016 0.382
alpha-1B adrenergic receptor 39 0.946 0.467 0.021 0.399
alpha-1D adrenergic receptor 23 0.965 0.321 0.038 0.398
alpha-2A adrenergic receptor 51 0.945 0.492 0.020 0.378
alpha-2B adrenergic receptor 30 0.976 0.436 0.024 0.394
alpha-2C adrenergic receptor 26 0.982 0.386 0.027 0.395
androgen receptor 14 0.993 0.656 0.048 0.429
angiotensin-converting
enzyme

13 0.997 0.503 0.037 0.618

arachidonate 5-lipoxygenase 13 0.988 0.112 0.038 0.336
ATP-binding cassette
transporter subfamily C
member 8

13 0.997 0.494 0.068 0.495

Beta-1 adrenergic receptor 37 0.982 0.722 0.020 0.508
Beta-2 adrenergic receptor 41 0.987 0.734 0.017 0.515
calmodulin 15 0.982 0.227 0.036 0.409
cAMP-specific 3′,5′-cyclic
phosphodiesterase 4

12 0.989 0.353 0.039 0.456

carbonic anhydrase 1 20 0.993 0.459 0.019 0.417
carbonic anhydrase 2 20 0.997 0.512 0.021 0.429
carbonic anhydrase 4 16 0.996 0.578 0.027 0.448
cholinesterase 12 0.998 0.227 0.044 0.241
cytochrome P450 51 12 0.999 0.317 0.053 0.569
D(1) dopamine receptor 43 0.958 0.668 0.013 0.423
D(2) dopamine receptor 61 0.965 0.656 0.011 0.410
D(3) dopamine receptor 25 0.992 0.422 0.030 0.420
D(4) dopamine receptor 21 0.988 0.357 0.034 0.409
delta-type opioid receptor 22 0.974 0.587 0.017 0.564
dihydropteroate synthase 10 1.000 0.800 0.042 0.505
DNA 64 0.965 0.575 0.016 0.330
DNA gyrase 15 0.996 0.737 0.024 0.705
DNA topoisomerase 2 21 0.994 0.691 0.034 0.512
DNA topoisomerase 4 13 1.000 0.820 0.028 0.766
estrogen receptor 27 0.972 0.694 0.031 0.418
gamma-aminobutyric acid
receptor

61 0.985 0.674 0.013 0.337

glucocorticoid receptor 37 0.999 0.901 0.010 0.636
glutamate receptor NOS 34 0.957 0.563 0.013 0.333
histamine H1 receptor 68 0.957 0.695 0.010 0.383
kappa-type opioid receptor 23 0.977 0.488 0.017 0.502
monoamine oxidase A 10 0.997 0.488 0.061 0.380
Mu-type opioid receptor 28 0.982 0.553 0.013 0.552
muscarinic acetylcholine
receptor M1

67 0.953 0.656 0.009 0.396

muscarinic acetylcholine
receptor M2

49 0.944 0.536 0.015 0.373

muscarinic acetylcholine
receptor M3

45 0.954 0.566 0.016 0.403

muscarinic acetylcholine
receptor M4

30 0.961 0.557 0.020 0.396

muscarinic acetylcholine
receptor M5

26 0.965 0.535 0.018 0.391

10-fold cross-
validation

target n AUC mean std
Tanimoto
diversity

neuronal acetylcholine
receptor

35 0.922 0.519 0.014 0.358

penicillin-binding protein 1A 24 0.991 0.589 0.034 0.698
penicillin-binding protein 1b 22 0.990 0.597 0.041 0.699
penicillin-binding protein 2 12 0.997 0.406 0.065 0.751
penicillin-binding protein 2B 15 0.995 0.452 0.053 0.720
penicillin-binding protein 2a 15 0.998 0.610 0.045 0.708
penicillin-binding protein 3 24 0.994 0.670 0.037 0.681
penicillin-binding proteins
1A/1B

18 0.997 0.724 0.055 0.690

peptidoglycan synthetase ftsI 12 0.999 0.528 0.060 0.793
peroxisome proliferator-
activated receptor

18 0.987 0.413 0.034 0.399

potassium voltage-gated
channel subfamily H
member 2

20 0.976 0.381 0.038 0.431

progesterone receptor 14 1.000 0.717 0.039 0.545
prostaglandin G/H synthase
1

38 0.970 0.612 0.020 0.345

prostaglandin G/H synthase
2

42 0.976 0.649 0.020 0.356

reverse transcriptase 10 0.996 0.392 0.086 0.530
sodium channel protein type
10

14 0.991 0.463 0.041 0.505

sodium channel protein type
5

27 0.959 0.345 0.025 0.396

sodium-dependent
dopamine transporter

26 0.967 0.432 0.028 0.422

sodium-dependent
noradrenaline transporter

39 0.971 0.650 0.016 0.402

sodium-dependent serotonin
transporter

35 0.962 0.594 0.026 0.410

translocator protein 12 0.992 0.705 0.031 0.558
tubulin 11 0.998 0.434 0.059 0.554
voltage-dependent L-type
calcium channel

11 0.992 0.664 0.045 0.581

voltage-dependent T-type
calcium channel

14 0.987 0.344 0.064 0.356

voltage-dependent calcium
channel

15 0.940 0.493 0.027 0.493

16S rRNA 15 0.999 0.632 0.042 0.589
5-hydroxytryptamine 1A
receptor

37 0.969 0.560 0.026 0.406

5-hydroxytryptamine 1B
receptor

25 0.992 0.483 0.031 0.467

5-hydroxytryptamine 1D
receptor

24 0.994 0.545 0.035 0.495

5-hydroxytryptamine 2A
receptor

57 0.949 0.640 0.013 0.411

5-hydroxytryptamine 2B
receptor

15 0.984 0.248 0.038 0.441

5-hydroxytryptamine 2C
receptor

32 0.981 0.512 0.023 0.413

5-hydroxytryptamine 3
receptor

17 0.983 0.293 0.044 0.379

5-hydroxytryptamine 7
receptor

11 0.997 0.216 0.055 0.478

aFor each studied target, the number of active molecules (n), the AUC values, and the results of the 10-fold cross-validation (mean and standard
deviation of MPV) are listed. To quantify the chemical diversity of the molecules registered to a given target, the average Tanimoto similarity
(Tanimoto diversity, see Methods) was calculated for each target group.
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388 According to our former analyses,24 we consider groups having
389 mean MPV > 0.5 reliably predictable, since it indicates that
390 DPM can classify the majority of the registered molecules into
391 the respective target class. In this work, 45 of the studied 77
392 categories met this criterion, including important pharmaceut-
393 ical targets such as angiotensin-converting enzyme and carbonic
394 anhydrases, whose inhibitors are widely used antihypertensive
395 agents and diuretics. D(2) dopamine receptor and histamine
396 H1 receptor also exceeded the threshold, their antagonists are
397 known as antipsychotics and antiallergic agents. High mean
398 MPV is obtained for prostaglandin G/H synthase 1 and 2
399 (often referred to as cyclooxygenase 1 and 2, mean MPVs of
400 0.612 and 0.649), key enzymes in the mechanism of action of
401 nonsteroidal anti-inflammatory agents. Thirty-one target groups
402 possess medium mean MPV (0.2 < mean MPV < 0.5) such as
403 acetylcholinesterase or reverse transcriptase (mean MPV of
404 0.322 and 0.392, respectively). These categories are not entirely

405cohesive based on their IPs, and the redistribution of molecules
406might improve the reliability of predictions. Only one target,
407arachidonate 5-lipoxygenase, produced low mean MPV (mean
408MPV < 0.2), indicating that DPM fails to recognize the
409originally registered molecules of this target group in external
410data. Remarkably, this worst obtained mean MPV of 0.112 is
411considerably higher than the lowest value for effect prediction
412(0.0028 for antioxidant).23 This is in agreement with our
413expectations that the use of targets improves the prediction
414power of DPM compared to the more diverse medical effect
415categories.
416Target Selectivity Analysis. On the basis of the validation
417results, 45 targets were selected for further analysis on the
418previously defined drug set comprising of 1157 FDA-approved
419drugs. The predicted off-target profiles of the investigated drugs
420for these targets were sorted by descending probability and
421were plotted to produce a so-called target selectivity plot for
422each drug. Figure 5 displays typical selectivity plots for four
423drug molecules. In the case of the antiasthmatic agent
424cinalukast, no targets were predicted among the applied target
425set therefore its selectivity plot consists of only low probability
426values. For the antihypertensive agent benazepril, its well-
427known target the angiotensin-converting enzyme was assigned
428with a probability of 1.00. The second highest target probability
429value is only 0.29 therefore benazepril is a good example of a
430selective drug concerning our studied targets. Olanzapine, a
431second generation antipsychotic shows a nonselective predicted
432target profile with high probability for several targets, mainly
433dopamine, serotonin, and muscarinic receptor subtypes in
434agreement with the literature. It is a well-known issue that in
435case of CNS drugs, the selectively nonselective (sic) drugs offer
436higher efficacy than the single-target acting drugs.29 Thus, their
437polypharmacology, i.e. affecting multiple targets rather than
438acting on one single target is essential for a therapeutic effect.
439For the antiparkinson drug apomorphine, several targets were
440predicted with high and medium probability, among them
441unknown interactions can also be found that need further
442investigation in order to be proved.
443Predicted Drug−Target Interactions. Investigating the
444subset of the selected 45 targets in the binary target profile
445matrix revealed that 1435 drug−target interactions were
446originally registered in DrugBank for this data (value of 1).
447Comparison with the target probability matrix resulted in 79%
448precision as DPM could correctly predict (>0.8 probability
449value) 1138 drug−target interactions of them. Applying this
450probability threshold for the unregistered compounds (value of
4510 in the target profile matrix), 1074 new drug−target
452interactions were predicted. These predictions can originate
453from classification errors; however, considering the known
454incompleteness of bioactivity databases, part of the predictions
455may be correct.
456Predicted Interactions of Antipsychotics. We examined
457some of the top drug−target predictions among the 1074
458suggested interactions, and this review revealed that several
459predictions can be proved by the literature. We focused our
460investigation on the predicted interactions of antipsychotic
461molecules. According to our medical effect database presented
462in our former study,23 the studied drug set contains 45 known
463antipsychotics for which all of the predicted targets above 0.8
464probability threshold were collected. The resulting list
465comprises of 21 antipsychotics for which 84 drug−target
466interactions were suggested that were not documented in the
467DrugBank database. An extensive literature survey revealed that

Figure 3. Distribution of AUC values for the studied 77 target groups.
ROC analyses were performed to describe classification accuracy. All
of the calculated AUC values were greater than 0.92, indicating that a
near perfect classification was obtained for the studied targets.

Figure 4. Means of mean probability values (mean MPVs) with
standard deviations obtained from 10-fold cross-validation. Mean
MPVs calculated from 10-fold cross-validation were used to assess to
robustness of the predictive models. The higher an obtained mean
MPV, the greater the resistance of the system to the information
removal.
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468 38 of the suggested interactions are already reported. Results of
469 the survey are summarized in Table 2 for each antipsychotic.
470 For six molecules, no drug-target interactions could be
471 confirmed; however for the remaining drugs, potentially
472 valuable drug−target interactions were predicted.
473 Fluphenazine is a first generation antipsychotic used for the
474 treatment of schizophrenia and other psychotic disorders. In
475 our prediction it gained high prediction value for alpha 1
476 adrenergic and 5-HT1A and 5-HT2A serotonergic receptors.
477 While investigating the well-known weight gain inducing side
478 effect of first and second generation antipsychotics, the research
479 by Kroeze and co-workers also measured the binding affinity of
480 fluphenazine to alpha adrenergic and serotonergic receptors.30

481 Other publications also confirm an existing receptor−ligand
482 binding both with the use of human31,32 and rodent33,34

483 5-HT2A receptors. Also high prediction values were measured for
484 alpha 1 adrenergic, 5-HT1A, 5-HT2A serotonergic, and M1
485 muscarinic acethylcholine receptors in the case of the pheno-
486 thiazine derivative perphenazine which is structurally very
487 similar to the above-mentioned fluphenazine. Literature search
488 also confirmed an existing receptor binding for the serotonergic
489 and adrenergic receptors.30,32

490 Sertindole is a second generation antipsychotic with well-
491 known dopaminergic and serotonergic effects. Our results show
492 a high prediction value for DRD 1, 5-HT1D, M1, and M2
493 muscarinic receptors. All four predictions were confirmed by the
494 literature search including human and animal samples as well.35−39

495 A high prediction value was gained for different kinds of
496 muscarinic acethylcholine receptors (in some cases all five

497subtypes, in other cases only a few of the existing subtypes) in
498the case of several compounds. A literature survey confirmed a
499positive receptor−ligand interaction in the case of chlorpro-
500mazine,40−43 mesoridazine,40 loxapine,40,44 and sertindole39 but
501failed to prove direct receptorial interaction for example in the
502case of prochlorpromazine or triflupromazine although these
503compounds have well-known adverse effects in clinical practice
504associated with the cholinergic autonomous nervous system
505(e.g., dry mouth, constipation, urinary retention, blurred vision, etc.).
506A high probability of possible interaction with alpha 1 adrenergic
507and type 1 histaminergic receptors was also predicted several
508times (as mentioned above and also for prochlorperazine,
509mesoridazine, thiotixen and triflupromazine, pimozide, and
510prochlorperazine, respectively). These receptors are also
511associated with adverse effects typical for the antipsychotic
512drug class, such as orthostatic hypotension, rhinitis in the case
513of alpha 1 adrenergic and sedation, and weight gain for H1
514receptor. And again, as with muscarinic receptors, the literature
515search confirmed a direct receptor−compound interaction only
516in some part of the cases (Table 2).
517A possible interpretation of the large number of false positive
518targets can be the incompleteness of the target database. To
519investigate this issue, a validation study for a small fraction of
520the false positive interactions was performed by using the
521ChEMBL database. We could confirm that 10% of the
522predicted false positives are in fact true positives according to
523the ChEMBL database (see the Supporting Information). Thus,
524ChEMBL provided additional information on drug−target
525interactions compared to DrugBank but could not validate the

Figure 5. Examples of the selectivity plots. In a selectivity plot, predicted probability values are plotted as a function of the particular targets which
are ordered by descending probability values. Hollow circles mark those targets that were already assigned to the studied molecule.
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Table 2. Results of the Literature Survey Performed for Antipsychoticsa

name target predicted probability result ref

acepromazine 5-hydroxytryptamine 2C receptor 0.986 no data
muscarinic acetylcholine receptor M1 0.949 yes b
muscarinic acetylcholine receptor M2 0.976 yes b
muscarinic acetylcholine receptor M3 0.839 no data
muscarinic acetylcholine receptor M4 0.971 no data
muscarinic acetylcholine receptor M5 0.979 no data

aceprometazine 5-hydroxytryptamine 2A receptor 0.996 no data
5-hydroxytryptamine 2C receptor 0.926 no data
alpha-1A adrenergic receptor 0.963 no data
D(1) dopamine receptor 0.999 no data
D(2) dopamine receptor 0.997 no data
muscarinic acetylcholine receptor M1 0.930 no data
muscarinic acetylcholine receptor M2 0.958 no data
muscarinic acetylcholine receptor M4 0.915 no data
muscarinic acetylcholine receptor M5 0.975 no data

carphenazine 5-hydroxytryptamine 2A receptor 0.949 no data
alpha-1A adrenergic receptor 0.912 no data

chlorpromazine muscarinic acetylcholine receptor M1 0.923 yes 40,41,43
muscarinic acetylcholine receptor M2 0.955 yes 40−43
muscarinic acetylcholine receptor M3 0.911 yes 30,40,41,43
muscarinic acetylcholine receptor M5 0.936 yes 40,41,43

chlorprothixene 5-hydroxytryptamine 1A receptor 0.962 no data
alpha-1A adrenergic receptor 0.977 no data
sodium-dependent noradrenaline transporter 0.984 yes 45
sodium-dependent serotonin transporter 0.993 yes 45

droperidol 5-hydroxytryptamine 1A receptor 0.873 yes 46
5-hydroxytryptamine 1D receptor 0.938 no data

fencamfamine sodium-dependent noradrenaline transporter 0.914 no data
flupenthixol 5-hydroxytryptamine 1A receptor 0.814 yes 47

muscarinic acetylcholine receptor M2 0.926 no data
muscarinic acetylcholine receptor M3 0.855 no data
muscarinic acetylcholine receptor M4 0.974 no data
muscarinic acetylcholine receptor M5 0.980 no data

fluphenazine 5-hydroxytryptamine 1A receptor 0.869 yes 30,47
5-hydroxytryptamine 2A receptor 0.991 yes 30,31,33,47,48
Alpha-1A adrenergic receptor 0.936 yes 30,32,49

loxapine DNA 0.856 no data
histamine H1 receptor 0.925 yes 30,32,44,49
muscarinic acetylcholine receptor M1 0.942 yes 40,44
muscarinic acetylcholine receptor M4 0.865 yes 40

mesoridazine alpha-1A adrenergic receptor 0.860 yes 32,49,50
D(1) dopamine receptor 0.996 yes 51,52
muscarinic acetylcholine receptor M1 0.900 yes 40
muscarinic acetylcholine receptor M2 0.948 yes 40
muscarinic acetylcholine receptor M3 0.949 yes 40
muscarinic acetylcholine receptor M4 0.943 yes 40
muscarinic acetylcholine receptor M5 0.906 yes 40

methotrimeprazine 5-hydroxytryptamine 1A receptor 0.862 no data
perphenazine 5-hydroxytryptamine 1A receptor 0.950 yes 30

5-hydroxytryptamine 2A receptor 0.982 yes 30
alpha-1A adrenergic receptor 0.906 yes 30,32,49
muscarinic acetylcholine receptor M1 0.917 no data

pimozide histamine H1 receptor 0.932 yes 30,37
prochlorperazine 5-hydroxytryptamine 1A receptor 0.930 no data

5-hydroxytryptamine 2A receptor 0.965 no data
5-hydroxytryptamine 2C receptor 0.900 yes 33,53
alpha-1A adrenergic receptor 0.986 yes 32,49
D(1) dopamine receptor 0.976 no data
histamine H1 receptor 0.905 yes 32,49
muscarinic acetylcholine receptor M1 0.944 no data
muscarinic acetylcholine receptor M2 0.899 no data
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526 false positive interactions so widely. The reason might be that
527 targets which are important in the clinical effect are in the focus
528 of the majority of the databases and receptors which mediate
529 adverse effects are not so well documented. Another inter-
530 pretation can be that these, usually general and not easily
531 quantifiable side effects such as dry mouth and constipation for
532 example, are traditionally considered as anticholinergic, but in
533 some cases, these might be at least partially mediated by other
534 transmitter systems as well in line with the model of
535 polypharmacology.
536 Those predictions for which no literature evidence exists
537 might be demonstrated experimentally since it is also possible
538 that a given drug was not tested against the predicted off-
539 targets. On the basis of our previous DPM analysis using
540 medical effects instead of targets, we already obtained valuable
541 predictions which were validated by in vitro experiments with a
542 high hit rate of 47−84% (unpublished results).

543 ■ CONCLUSIONS

544 In this paper, the applicability of DPM for in silico target fishing
545 was investigated using 77 target classes, each containing at least
546 10 active molecules. High classification accuracies were
547 obtained in all cases. The robustness of the prediction results
548 was checked by 10-fold cross-validation which revealed those
549 targets for that the performance of DPM is highly reliable.
550 These 45 categories were used in a subsequent analysis which
551 aimed at predicting the off-target profiles (limited to the
552 studied categories) of currently approved FDA drugs. 79% of
553 the known drug−target interactions in this data set were
554 correctly predicted by DPM. Additionally 1074 new drug−
555 target interactions were suggested. A pilot study was presented
556 that aimed at confirming part of the suggested drug−target
557 interactions for antipsychotic molecules by a literature survey.

55845% of the 84 suggested interactions were demonstrated and
559references were provided.
560Our study supports the theory of polypharmacology by
561pointing out that drugs usually act on several targets and have a
562characteristic off-target profile that contains valuable informa-
563tion for future drug development. DPM is able to find
564previously unknown pharmaceutical targets of the studied
565compounds; therefore, the method may serve as a good starting
566point for drug repositioning that aims at finding new medical
567applications of well-known drug molecules.
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Table 2. continued

name target predicted probability result ref

muscarinic acetylcholine receptor M3 0.947 no data
muscarinic acetylcholine receptor M5 0.860 no data

propericiazine 5-hydroxytryptamine 1A receptor 0.907 no data
5-hydroxytryptamine 2A receptor 0.985 no data
D(2) dopamine receptor 0.984 no data
muscarinic acetylcholine receptor M1 0.906 no data

sertindole 5-hydroxytryptamine 1D receptor 0.878 yes 30,37,38
D(1) dopamine receptor 0.875 yes 35
muscarinic acetylcholine receptor M1 0.945 yes 39
muscarinic acetylcholine receptor M2 0.826 yes 39

thiothixene alpha-1A adrenergic receptor 0.851 yes 30
trifluperazine 5-hydroxytryptamine 1A receptor 0.908 yes 30,54

5-hydroxytryptamine 2A receptor 0.995 yes 30,31,48,54−56
D(1) dopamine receptor 1.000 yes 57,58

triflupromazine 5-hydroxytryptamine 1A receptor 0.872 no data
5-hydroxytryptamine 2A receptor 0.987 no data
alpha-1A adrenergic receptor 0.962 no data
histamine H1 receptor 0.976 yes 59
muscarinic acetylcholine receptor M4 0.831 no data
muscarinic acetylcholine receptor M5 0.935 no data

zuclopenthixol 5-hydroxytryptamine 1A receptor 0.894 no data
5-hydroxytryptamine 2C receptor 0.914 no data
muscarinic acetylcholine receptor M1 0.808 no data

aFor each studied antipsychotic, the predicted drug−target interactions (probability > 0.8) are displayed. An extensive literature survey revealed
those interactions for that evidence already exists and the corresponding reference is provided. bNot listed in DrugBank table “Targets” but
mentioned in the “Pharmacology” section.
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592 AUC, area under the curve; CCA, canonical correlation
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