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∗ Department of Control for Transportation and Vehicle Systems,
Budapest University of Technology and Economics, Stoczek u. 2,
H-1111 Budapest, Hungary. E-mail: hegedus.tamas@mail.bme.hu

∗∗ Institute for Computer Science and Control, Hungarian Academy of
Sciences, Kende u. 13-17, H-1111 Budapest, Hungary.
E-mail: [balazs.nemeth;peter.gaspar]@sztaki.mta.hu

Abstract: The paper proposes an advanced graph-based optimal solution to overtaking
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1. INTRODUCTION AND MOTIVATION

Overtaking is one of the most risky maneuvers for drivers
due to the high velocity of the participants and many
unexpected events and uncertainties of the maneuver. For
example, in 2015, 9, 055 vehicles were involved in overtak-
ing accidents in Great Britain (RoSPA [2017]), while the
total number of reported deaths was 1, 730 and the number
of seriously injured people was 22, 144, see Lloyd et al.
[2016]. Since overtaking maneuvers are a salient cause of
accidents, crucial goal of autonomous vehicle control is to
design a strategy with which emergency situations can be
avoided. It requires the motion prediction of the human-
driven vehicles, which must be incorporated in the road
and velocity design of autonomous vehicles.

In the field of overtaking control of autonomous vehicles
several different approaches have been developed. The
advantage of the Model Predictive Control (MPC)-based
approaches is that they consider the prediction about
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the surrounding vehicles in the design of the current in-
tervention. For example, in Berntorp [2017] a technique
for path planning together with collision avoidance with
the application of overtaking was found. Murgovski and
Sjöberg [2015] proposed a predictive control scheme for
overtaking problems, which was solved through a convex
optimization method. Similarly, Moser et al. [2017] pro-
posed the use of a mixed integer programming problem
in the context of MPC. The advantage of this viewpoint
was to consider the switching in the control problem.
Moreover, in the method the surrounding vehicles were
considered through stochastic approaches. Another mixed
integer programming method was proposed in Molinari
et al. [2017], with which the complexity of the computation
and the number of variables were reduced. An autonomous
overtaking problem was presented from the viewpoint of
stochastic processes in Nguyen et al. [2017]. The core of
this method was to predict the longitudinal and lateral
velocities of the surrounding vehicles, while the overtaking
was solved through a stochastic predictive control. Petrov
and Nashahibi [2014] presented a nonlinear adaptive con-
troller for a two-vehicle automated overtaking maneuver,
in which the problem was formed as a tracking task.
Although the derived method led to the implementation
of the nonlinear control with low computation efforts, only
two vehicles in the overtaking maneuver were incorpo-
rated.

Vehicle motion prediction is strongly linked to the overtak-
ing problem of autonomous vehicles, see Carvalho et al.
[2015]. Therefore, several methods were devised to es-
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timate the future intentions and motion of the human
drivers (Lefevre et al. [2014]). Probabilistic approaches
based on the Dynamic Bayesian Network and Markov
chain models were found in Gindele et al. [2010], Althoff
and Mergel [2011], Firl and Tran [2011]. Furthermore,
Okamoto et al. [2017] proposed a method which used the
past similarities in the vehicle motion between the actual
vehicle and a predefined number of test vehicles. The
factor of driver aggression and the motion of vehicles in an
unorganized traffic in the motion planning of overtaking
maneuver were considered in Kala and Warwick [2013].
Simultaneously, the overtaking behaviour of the human
driver was considered in the control design of Milanés
et al. [2012]. Thus, different trajectories were generated
depending on the characteristics of the vehicle. In this
approach the surrounding vehicles were detected through
a stereo vision system.

In this paper the proposed solution to the overtaking
problem is based on an optimization over a graph. The
advantage of the method is that it is sufficiently uni-
versal to consider multi-vehicle overtaking scenarios. The
paper proposes the prediction of the surrounding vehicles
through a probability-based approach, in which the predic-
tions of the longitudinal and lateral motions of the vehicles
are combined. A graph search algorithm is proposed using
the Dijkstra method, which is often used in autonomous
vehicle applications for navigation in urban areas, see e.g.
González et al. [2016]. As a novelty, in this paper the graph
search method is proposed for the combination of the road
and velocity selection of the overtaking maneuver.

The structure of the paper is the following. The predic-
tion of the motion of the human-driven vehicles through
probability-based methods is formed in Section 2. Based
on the result of the prediction a graph-based decision
algorithm is built, as proposed in Section 3. Section 4
demonstrates the efficiency of the method through a mul-
tiple vehicle scenario in the CarSim simulation system.
Finally, the results of the paper are concluded in Section
5.

2. THE PREDICTION OF THE SURROUNDING
HUMAN-DRIVEN VEHICLE MOTION

Since there can be several overtaking interactions between
the autonomous and the human-driven vehicles, the au-
tonomous vehicle requires information about the inten-
tions of the human-driven vehicles. If Vehicle-to-Vehicle
communication technology among vehicles is available,
considerable information about the human-driven to the
autonomous vehicle can be transmitted, e.g. velocity or
acceleration signals. However, these signals do not provide
enough information about the forthcoming intentions of
the vehicle, e.g. about the starting time of the overtaking
maneuver. Moreover, the intentions depend on the habit
and the capability of the driver, which may vary in each hu-
man. Therefore, the prediction of the surrounding human-
driven vehicle motion has been built on a probability-based
approach. In the following the prediction is divided into
lateral and longitudinal examinations, which are finally
combined together.

Lateral motion prediction

The prediction method of the lateral motion considers that
the path of the vehicle can be modeled as a clothoid curve,
which is sufficiently smooth to guarantee the comfort per-
formances of the human driver. The path is divided into
four clothoid sections with similar parameters. The compu-
tation of the lateral acceleration alat during the maneuver
is proposed in Wilde [2009]. Through the formulation of
alat the trajectories of the vehicle at v0 initial velocity are
generated.

The probability of the vehicle overtaking motion is de-
scribed by a Gamma distribution (Xu et al. [2015]). The
probability density function is formed as

flat(x, α, β) =
βαxα−1e−βx

Γ(α)
, (1)

where x > 0 and α > 0 are the shape parameters and
β > 0 is the rate parameter. The gamma function Γ(α) in
the denominator is formed as

Γ(α) =

∞∫

0

xα−1e−xdx. (2)

For α ∈ N the gamma function is simplified to the
expression Γ(α) = (α− 1)!

Based on equation (1) the probability of the maneuver in
the acceleration range [alat,min, alat,max] is computed as

Plat(alat,min,alat,max) =

alat,max∫

alat,min

flat(x)dx =

= Plat(alat,max)− Plat(alat,min), (3)

where f(x) = f(x, α, β) for fixed α, β parameters. Since
there is an F relationship between the lateral accelera-
tion alat and the lateral displacement y of the vehicle
alat = F(y) (Rajamani [2005]), the probability can be also
expressed as

Plat(ymin, ymax) =

ymax∫

ymin

flat(z)dz =

= Plat(ymax)− Plat(ymin), (4)

where ymin and ymax are the bounds of the lateral dis-
placement range. Note that in the bounds it is necessary
to consider the half width of the vehicle chassis, which
increases the covered area of the vehicle on the road during
the maneuver.

Longitudinal motion prediction

Since the velocity of the vehicle can be modified through
its cruising by the driver, it must be incorporated in
the prediction of the human-driven vehicle motion. The
prediction is based on a time horizon T , which depends
on the current speed of the human-driven vehicle v0. It
is divided into n number of equidistant time segments tk,

which results in ti =
i∑

k=1

tk for i = 1 . . . n. The predicted

distance of the vehicle si is formed as

si = s0 + v0ti +
1

2
alongt

2
i , (5)
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Based on equation (1) the probability of the maneuver in
the acceleration range [alat,min, alat,max] is computed as

Plat(alat,min,alat,max) =

alat,max∫

alat,min

flat(x)dx =

= Plat(alat,max)− Plat(alat,min), (3)

where f(x) = f(x, α, β) for fixed α, β parameters. Since
there is an F relationship between the lateral accelera-
tion alat and the lateral displacement y of the vehicle
alat = F(y) (Rajamani [2005]), the probability can be also
expressed as

Plat(ymin, ymax) =

ymax∫

ymin

flat(z)dz =

= Plat(ymax)− Plat(ymin), (4)

where ymin and ymax are the bounds of the lateral dis-
placement range. Note that in the bounds it is necessary
to consider the half width of the vehicle chassis, which
increases the covered area of the vehicle on the road during
the maneuver.

Longitudinal motion prediction

Since the velocity of the vehicle can be modified through
its cruising by the driver, it must be incorporated in
the prediction of the human-driven vehicle motion. The
prediction is based on a time horizon T , which depends
on the current speed of the human-driven vehicle v0. It
is divided into n number of equidistant time segments tk,

which results in ti =
i∑

k=1

tk for i = 1 . . . n. The predicted

distance of the vehicle si is formed as

si = s0 + v0ti +
1

2
alongt

2
i , (5)

2019 IFAC AAC
Orléans, France, June 23-27, 2019

373



374 Támas Hegedüs  et al. / IFAC PapersOnLine 52-5 (2019) 372–377

where s0, v0 are the current position and velocity of
the vehicle and the acceleration along is considered
to be constant. However, the driver is able to select
a ∈ [along,min, along,max], where |along,min| = |along,max|,
which has a normal distribution. The probability density
function is defined as

flong(x) =
1

σ
√
2π

e−
(x−µ)2

2σ2 , (6)

where σ and µ are the deviation and the mean of the pro-
cess. Thus, the probability of the acceleration maneuver
with a given along ∈ [along,min, along,max] is

Plong(si(ti), sj(tj)) =

sj(tj)∫

si(ti)

flong(x)dx. (7)

Combined prediction

Since the lateral and the longitudinal motions of the
human-driven vehicle can be performed simultaneously,
the probability of the combined maneuver must be pre-
dicted. However, it must be characterized by probabil-
ity, whether the driver selects the overtaking or the ap-
proaching to a leading vehicle. Its probability is expressed
through a sigmoid function, see Wissing et al. [2017]

Pdec(λ) =
1

1 + e−mλ
, (8)

where m represents the steepness of the curve and λ is
defined as

λ =
vprec − v0

d
, (9)

where d is the distance between the vehicles, vprec is the
velocity of the leading vehicle and v0 is the current velocity
of the examined vehicle. The sigmoid function represents
that if λ = 0 then the probability of the beginning of the
overtaking maneuver is 50%. If λ < 0 then the willingness
for overtaking is reduced, while at λ > 0 the overtaking is
more probable. Farah et al. [2009] provided the support for
the selection of m. It proposes that the drivers generally
start the overtaking maneuver when the distance of the
following vehicle from the leading vehicle is 1.5s, which
results in d = 1.5|vprec − v0|.
Since the driver has the possibility to decide about the
overtaking maneuver, the probability of the combined
longitudinal-lateral motion has two components. Both of
them are expressed as geometric probabilities, as illus-
trated in Figure 1. First, the leading vehicle can be driven
straightforward, whose probability is 1 − Pdec(λ). In this
way the vehicle covers the road in the longitudinal straight
direction with probability Plong(si(ti), sj(tj)). In the lat-
eral direction the probability is determined by the width
of the vehicle, which is 1. Thus, the combined probability
is

(1− Pdec(λ))Plong(si(ti), sj(tj)). (10)

Second, the driver can decide about the start of the
overtaking maneuver, which is represented by Pdec(λ). In
this case the probability of the lateral motion is expressed
through Plat(ymin, ymax), which results in the combined
probability

Pdec(λ)Plong(si(ti), sj(tj))Plat(ymin, ymax). (11)

Finally, it is necessary to sum up the probability values of
the two components, such as

P (λ, si(ti), sj(tj), ymin, ymax) =

= (1− Pdec(λ))Plong(si(ti), sj(tj))+

+ Pdec(λ)Plong(si(ti), sj(tj))Plat(ymin, ymax). (12)

The probability can be computed to all time segments
between ti, tj . It ensures that the vehicle is positioned
between si, sj , its longitudinal position has a normal dis-
tribution, the lateral position has a Gamma distribution,
considering the probability of the beginning of the over-
taking maneuver. It results in a map for the examined
human-driven vehicle, which provides information about
the probability of the forthcoming positioning.

(1 − Pdec)Plong

PdecPlongPlat

x

y

Fig. 1. Illustration of the probability computation for P

3. GRAPH-BASED ROUTE SELECTION
ALGORITHM

The goal of this section is to find the route of the au-
tonomous vehicle which results in the minimum proba-
bility of a collision. During the design it is necessary to
consider all of the human-driven vehicles, which are in
the environment of the controlled vehicle. Moreover, it is
necessary to define the probability of a collision, whose
minimization along the route of the vehicle is the objective.

The determination method of the collision probability
from the prediction of the vehicles is illustrated in Figure 2.
The predicted position sh from (5) of the leading human-
driven vehicle is illustrated in the coloured rectangle, in
which red represents the high probability of the vehicle
position, while green is related to the low probability.
In the example the prediction is computed for three
time segments with tj − ti = 0.5s length, as shown
the upper three blocks in Figure 2. The probabilities
P (λ, si(ti), sj(tj), ymin, ymax) in the areas are computed
through (12).

Moreover, the probability of the collision depends on
the motion of the autonomous vehicle. In the case of
the controlled vehicle it is necessary to determine the
longitudinal position of the vehicle between ti and tj . In
Figure 2 these areas are represented by the rectangles with
black edges in the upper three blocks. The longitudinal
positions of the vehicle in ti, tj are computed as

sa = sa,0 + va,0tz +
1

2
aat

2
z z = {i, j}, (13)

where sa,0, va,0 are the current position and velocity of the
autonomous vehicle and aa is the longitudinal acceleration
command. Note that the prediction of the lateral position
of the autonomous vehicle is unnecessary, because it results
from the graph-based route selection algorithm, together
with the acceleration command aa.
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The map about the probability of a collision is generated
through the intersection areas of the human-driven predic-
tion and the autonomous vehicle motion in the different
ti, tj times. The set-up of the map about the probability
of a collision is illustrated in the last block of Figure 2.

t = 2.5 . . . 3s

t = 3 . . . 3.5s

t = 3.5 . . . 4s

t = 2.5 . . . 4s

sh(t = 2.5s) sh(t = 3s)

sa(t = 2.5s) . . . sa(t = 3s)

sh(t = 3.5s)sh(t = 3s)

sh(t = 3.5s) sh(t = 4s)

sa(t = 3s) . . . sa(t = 3.5s)

sa(t = 3.5s) . . . sa(t = 4s)

sa(t = 2.5s) . . . sa(t = 4s)

Fig. 2. Illustration of the computation of collision proba-
bility

In multiple vehicle scenarios it is necessary to determine
the areas of P (λ, si(ti), sj(tj), ymin, ymax) for all human-
driven vehicles. Since the probability of a collision Pc

increases with the number of human-driven vehicles, each
probability from the prediction must be summed up, such
as

Pc(ti, tj) =

N∑
l=1

P (λ, si(ti), sj(tj), ymin, ymax)

N
, (14)

where N is the number of human-driven vehicles in the
region of interest. The division with N guarantees that
the value of Pc(ti, tj) is between 0 and 1.

The following examples in Figure 3 presents the results
of the Pc(ti, tj) for a 300 m long horizon. In the figures
the pale green colour represents the low risk of a collision,
while the red colour is related to the high risk of a collision.
In the first scenario of the example the longitudinal veloc-
ity of the leading vehicle is 26m/s, while the velocity of the
following autonomous vehicle is 28 m/s, see Figure 3(a).
The current distance between the vehicles is 15 m, and the
leading human-driven vehicle will perform an overtaking
maneuver with the probability Pdec = 80%. Although
the autonomous vehicle is faster than the human-driven
vehicle, the distance between the vehicles is large enough
to reach low collision values during the 300 m long horizon.
Since the probability of the overtaking maneuver of the
leading vehicle is high, the largest value of the collision
probability is on the left-hand side of the road, see Figure
3(b). In the second scenario the distance between the
vehicles is reduced to 5 m and Pdec for the leading ve-
hicle is 60%. Due to the reduced distance and overtaking

probability the risk of a collision in the right-hand-side
lane is high, see the red areas in Figure 3(b). Thus, in
the first scenario it is recommended for the autonomous
vehicle to stay in the original right lane, while in the second
scenario the overtaking and the velocity reduction are
highly recommended. In the rest of this section a graph-
based algorithm is proposed which is able to calculate the
optimal routes in the various scenarios.
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Fig. 3. Examples on the computation of Pc

Graph-based optimization algorithm

The purpose of the route selection algorithm is to guar-
antee the minimum probability of a collision for the con-
trolled vehicle. The route selection is based on the motion
prediction of the surrounding vehicles. It is assumed that
the autonomous vehicle is able to move along the series of
predefined waypoints, which are constrained by the limits
of the road. The possible routes on predicted road section
are divided equidistantly. Moreover, the autonomous vehi-
cle can select its velocity along the selected route between
lower and upper limits in the variation from its current
velocity.

In the following a directed graph G = (V, Ē) is built on
the predicted road section, whose vertices V represent the
possible route points and velocity profile of the vehicle.
The edges Ē connect the vertices together, which represent
the route and the acceleration of the vehicle. Through the
directions of the edges the constraints of the route and the
vehicle motion are considered.

The graph is combined with the probabilities of a collision
at different velocities of the autonomous vehicle. Since the
purpose of the route selection is to guarantee the minimum
probability of a collision for the autonomous vehicle, the
edges of the graph are weighted. The weight of the edge
between vertices Vi, Vj ∈ E(Vi, Vj), j > i is formed as
follows

S(i, j) = Pc(ti, tj) + Sc(i, j) + Sv(i, j), (15)

where Pc(ti, tj) is computed from (14). Sc is a weight which
represents the difference from the center of the lane, while
Sv is a weight which represents the difference from the
velocity.

The idea of the motion priorization in the centerline is
based on the potential field method in the lateral control
design, see e.g. Switkes et al. [2004]. It means that the
vehicle should be driven close to the centerline, by which
the safety of the vehicle is guaranteed. The weight Sc(i, j)
is based on the difference in the lateral position from the
center of the lane, such as
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The map about the probability of a collision is generated
through the intersection areas of the human-driven predic-
tion and the autonomous vehicle motion in the different
ti, tj times. The set-up of the map about the probability
of a collision is illustrated in the last block of Figure 2.

t = 2.5 . . . 3s

t = 3 . . . 3.5s

t = 3.5 . . . 4s

t = 2.5 . . . 4s

sh(t = 2.5s) sh(t = 3s)

sa(t = 2.5s) . . . sa(t = 3s)

sh(t = 3.5s)sh(t = 3s)

sh(t = 3.5s) sh(t = 4s)

sa(t = 3s) . . . sa(t = 3.5s)

sa(t = 3.5s) . . . sa(t = 4s)

sa(t = 2.5s) . . . sa(t = 4s)

Fig. 2. Illustration of the computation of collision proba-
bility

In multiple vehicle scenarios it is necessary to determine
the areas of P (λ, si(ti), sj(tj), ymin, ymax) for all human-
driven vehicles. Since the probability of a collision Pc

increases with the number of human-driven vehicles, each
probability from the prediction must be summed up, such
as

Pc(ti, tj) =

N∑
l=1

P (λ, si(ti), sj(tj), ymin, ymax)

N
, (14)

where N is the number of human-driven vehicles in the
region of interest. The division with N guarantees that
the value of Pc(ti, tj) is between 0 and 1.

The following examples in Figure 3 presents the results
of the Pc(ti, tj) for a 300 m long horizon. In the figures
the pale green colour represents the low risk of a collision,
while the red colour is related to the high risk of a collision.
In the first scenario of the example the longitudinal veloc-
ity of the leading vehicle is 26m/s, while the velocity of the
following autonomous vehicle is 28 m/s, see Figure 3(a).
The current distance between the vehicles is 15 m, and the
leading human-driven vehicle will perform an overtaking
maneuver with the probability Pdec = 80%. Although
the autonomous vehicle is faster than the human-driven
vehicle, the distance between the vehicles is large enough
to reach low collision values during the 300 m long horizon.
Since the probability of the overtaking maneuver of the
leading vehicle is high, the largest value of the collision
probability is on the left-hand side of the road, see Figure
3(b). In the second scenario the distance between the
vehicles is reduced to 5 m and Pdec for the leading ve-
hicle is 60%. Due to the reduced distance and overtaking

probability the risk of a collision in the right-hand-side
lane is high, see the red areas in Figure 3(b). Thus, in
the first scenario it is recommended for the autonomous
vehicle to stay in the original right lane, while in the second
scenario the overtaking and the velocity reduction are
highly recommended. In the rest of this section a graph-
based algorithm is proposed which is able to calculate the
optimal routes in the various scenarios.
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Fig. 3. Examples on the computation of Pc

Graph-based optimization algorithm

The purpose of the route selection algorithm is to guar-
antee the minimum probability of a collision for the con-
trolled vehicle. The route selection is based on the motion
prediction of the surrounding vehicles. It is assumed that
the autonomous vehicle is able to move along the series of
predefined waypoints, which are constrained by the limits
of the road. The possible routes on predicted road section
are divided equidistantly. Moreover, the autonomous vehi-
cle can select its velocity along the selected route between
lower and upper limits in the variation from its current
velocity.

In the following a directed graph G = (V, Ē) is built on
the predicted road section, whose vertices V represent the
possible route points and velocity profile of the vehicle.
The edges Ē connect the vertices together, which represent
the route and the acceleration of the vehicle. Through the
directions of the edges the constraints of the route and the
vehicle motion are considered.

The graph is combined with the probabilities of a collision
at different velocities of the autonomous vehicle. Since the
purpose of the route selection is to guarantee the minimum
probability of a collision for the autonomous vehicle, the
edges of the graph are weighted. The weight of the edge
between vertices Vi, Vj ∈ E(Vi, Vj), j > i is formed as
follows

S(i, j) = Pc(ti, tj) + Sc(i, j) + Sv(i, j), (15)

where Pc(ti, tj) is computed from (14). Sc is a weight which
represents the difference from the center of the lane, while
Sv is a weight which represents the difference from the
velocity.

The idea of the motion priorization in the centerline is
based on the potential field method in the lateral control
design, see e.g. Switkes et al. [2004]. It means that the
vehicle should be driven close to the centerline, by which
the safety of the vehicle is guaranteed. The weight Sc(i, j)
is based on the difference in the lateral position from the
center of the lane, such as
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Sc(i, j) = Sc · ((y(Vj)− yc(Vj))
2 − (y(Vi)− yc(Vi))

2)
(16)

where Sc(i, j) is a design parameter for the scaling of the
weight, which guarantees that Sc(i, j) is between 0 and 1.
y(Vj) is the lateral position of Vj and yc(Vj) is the lateral
position of the centerline, which is related to the lane of
Vj . For example, if Vj is farther from the centerline as Vi

then Sc(i, j) > 0, thus S(i, j) is increased.

Generally, the weight Sv(i, j) in (15) represents the differ-
ence of the velocity in Vj from the velocity in Vi. In the
route selection strategy the constant velocity cruising has
priority, if it is possible without the significant increased
risk of a collision. Thus, the velocity change is penalized
as follows

Sv(i, j) = Sv · |v(Vj)− v(Vi)|, (17)

where Sv(i, j) is a design parameter for the scaling of the
weight, which guarantees that Sv(i, j) is between 0 and
1. Moreover, v(Vj), v(Vi) are the selected velocities in the
vertices Vi, Vj .

The weights S(i, j) on the edges with the directed graph
G = (V, Ē) results in a map for the autonomous vehicle,
which incorporates the probability of a collision with the
surrounding vehicles. Thus, it is necessary to find the route
which guarantees the minimum probability of a collision
on the graph. It has been aided by the Dijkstra algorithm,
see Tsitsiklis [1995], whose role is to find the shortest
path from the initial vertex to the target vertex. At the
beginning of the algorithm all of the vertices are called
unvisited, which form the unvisited set. Moreover, the
distances of all unvisited vertices from the initial vertex
are considered to be infinite, except the initial vertex,
which is related to the current position and velocity of
the autonomous vehicle, and it has 0 distance. During
the algorithm each neighbour j of the current i vertex is
examined. It means that the weights on each edge between
i and j vertices is added to the current route between i and
the initial vertex. If the target vertex is marked as visited,
or if all of the vertices from the unvisited set are removed,
the algorithm is stopped. The algorithm yields the shortest
path with the minimum distance between the initial and
the target vertices, where the distance D is defined as

D =
M−1∑
d=1

S(d, d+ 1), (18)

where M is the number of vertices in the route.

4. SIMULATION RESULTS

The efficiency of the proposed prediction, the route and
velocity selection algorithm is illustrated through a multi
vehicle simulation example using the CarMaker vehicle
dynamic simulation software. The results of the graph
search are the selected route and the velocity profile.
The tracking problem of these reference signals is solved
through longitudinal and lateral MPC controllers, see e.g.
the methods of Murgovski and Sjöberg [2015], Berntorp
[2017].

In the following a three-vehicle scenario is presented, see its
illustration in Figure 4. In t = 0 the autonomous vehicle,
whose reference velocity is set at 20 m/s, stops 150 m

behind the leading vehicle. Moreover, there is another
vehicle coming behind with 15 m/s velocity overtakes
the autonomous vehicle. Since the velocity differences
the autonomous vehicle accelerates and approaches the
vehicles ahead. However, it is necessary to guarantee a
safe overtaking maneuver, in which the motions of both
vehicles are considered. Figure 5 illustrates the different
stages of the overtaking maneuver of the autonomous
vehicle.

150 m

vlong(0) = 0m/s vlong(0) = 10m/s

vlong(0) = 15m/s

Fig. 4. Simulation example

(a) Before overtaking
(t = 28s)

(b) Start of the overtaking
(t = 32.5s)

(c) Overtaking the vehicle
(t = 35.6s)

(d) Final section of the ma-
neuver (t = 38.8s)

Fig. 5. Stages of the overtaking maneuver

In Figure 5(a) the motions of the vehicles in t = 28
s are illustrated. In this stage the autonomous vehicle
catches up with the leading vehicle but there is the other
vehicle to the left-hand-side lane, thus the velocity of
the autonomous vehicle must be reduced, see the velocity
profile in Figure 7(a). At t = 32.5 s the vehicle decides
to start the overtaking maneuver. Thus, the autonomous
vehicle is moving to the left-hand-side lane (Figure 5(b))
and the velocity is increased to perform the overtaking
maneuver (Figure 6(b)).

Figure 5(c) illustrates that the autonomous vehicle is to
the left of the leading vehicle. However, due to the small
distance from the other vehicle traveling in the same lane
it is necessary to decelerate in preparation to returning
to the right-hand-side lane, see the result of the decision
algorithm in Figure 6(c). Finally, when a safe distance from
the vehicle in the right lane is reached, the autonomous
vehicle moves back to the right-hand-side lane and the
reference velocity 20 m/s can also be tracked, see Figure
5(d) and Figure 6(d).
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(a) Before overtaking (t = 28s) (b) Start of the overtaking (t =
32.5s)

(c) Overtaking the vehicle (t =
35.6s)

(d) Final section of the maneuver
(t = 38.8s)

Fig. 6. The result of the graph-based optimization

Some signals of the autonomous vehicle are found in Figure
7. It can be seen that the results of the MPC controls are
vlong (Figure 7(a)) and δ (Figure 7(c)), with which the safe
motion of the vehicle can be guaranteed.
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(b) Steering angle δ

Fig. 7. Signals of the vehicle

5. CONCLUSIONS

The paper has proposed a control strategy for the design
of overtaking maneuvers in multiple vehicle scenarios.
The method is built on a probability-based approach,
in which the lateral and longitudinal motions of the
surrounding human-driven vehicles are predicted. The
results of the prediction are incorporated in a graph-based
optimal route and velocity selection algorithm. Through
the algorithm the motions of the surrounding vehicles
can be incorporated in the safe design of autonomous
vehicle motion. The efficiency of the method has been
illustrated through an overtaking simulation example with
two surrounding vehicles.
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(a) Before overtaking (t = 28s) (b) Start of the overtaking (t =
32.5s)

(c) Overtaking the vehicle (t =
35.6s)

(d) Final section of the maneuver
(t = 38.8s)

Fig. 6. The result of the graph-based optimization

Some signals of the autonomous vehicle are found in Figure
7. It can be seen that the results of the MPC controls are
vlong (Figure 7(a)) and δ (Figure 7(c)), with which the safe
motion of the vehicle can be guaranteed.
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(b) Steering angle δ

Fig. 7. Signals of the vehicle

5. CONCLUSIONS

The paper has proposed a control strategy for the design
of overtaking maneuvers in multiple vehicle scenarios.
The method is built on a probability-based approach,
in which the lateral and longitudinal motions of the
surrounding human-driven vehicles are predicted. The
results of the prediction are incorporated in a graph-based
optimal route and velocity selection algorithm. Through
the algorithm the motions of the surrounding vehicles
can be incorporated in the safe design of autonomous
vehicle motion. The efficiency of the method has been
illustrated through an overtaking simulation example with
two surrounding vehicles.
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