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Abstract

The density of bivariate homogeneous polynomials is studied in the space of continuous functions on the
Lα sphere given by Kα := {(x, y) ∈ R

2 : |x|α + |y|α = 1}, α > 0. The goal is to approximate functions
f ∈ C(Kα) by sums of the form h2n + h2n+1, where h2n, h2n+1 are bivariate homogeneous polynomials of degree
2n and 2n + 1, respectively. It is known that whenever α ≥ 1, i.e. when Kα is convex, a Weierstrass-type
approximation result holds, namely for every f ∈ C(Kα) there are homogeneous polynomials h2n, h2n+1 for which
f = limn→∞(h2n +h2n+1) uniformly on Kα. In this note the problem is solved in the non-convex case 0 < α < 1.
It is verified that f(x, y) is a uniform limit on Kα of sums h2n + h2n+1 of homogeneous polynomials if and only
if f(±1, 0) = f(0,±1) = 0. The theorem is proven in an equivalent form: g ∈ C(R) is a uniform limit as n → ∞
of weighted polynomials (1 + |t|α)−n/αpn(t) (degree pn ≤ n) if and only if g(0) = g(∞) = g(−∞) = 0.

1 Introduction

In this paper we study the approximation problem by bivariate homogeneous polynomials on certain subsets of
the plane. Since homogeneous polynomials change drastically along lines passing through the origin, in general
approximation can only be expected on curves symmetric onto the origin. In the present work we shall be concerned
with the density of bivariate homogeneous polynomials in the space of continuous functions on the Lα sphere given
by

Kα := {(x, y) ∈ R
2 : |x|α + |y|α = 1}, α > 0.

Since, in general, both even an odd homogeneous polynomials are needed for approximation (unless the function itself
is even or odd), the goal is to approximate functions f ∈ C(Kα) by sums of the form h2n + h2n+1, where h2n, h2n+1

are bivariate homogeneous polynomials of degree 2n and 2n+ 1, respectively. It is known (see the references below)
that whenever K ⊂ R

2 is a 0-symmetric closed convex curve, then every f ∈ C(K) can be uniformly approximated
on K by sums of pairs of homogeneous polynomials hn + hn+1 as n → ∞. This means that a Weierstrass-type
approximation theorem holds for homogeneous polynomials on K ⊂ R

2. In particular, when α ≥ 1, i.e. when
Kα ⊂ R

2 is convex, every f ∈ C(Kα) is a uniform limit of sums of homogeneous polynomials hn + hn+1 as n → ∞.
The main goal of this paper is to solve the non-convex case 0 < α < 1. It will turn out that in this case some
additional restrictions are needed to be imposed on the function in order for a Weierstrass-type approximation
theorem to hold. Namely, we will verify that only functions vanishing at the non-smooth points (“corners”) of the
boundary can be properly approximated.

The just mentioned Weierstrass-type result for convex curves was verified independently by Benko and Kroó [1]
and Varjú [9] using methods of potential theory. Subsequently Totik [8] provided a different proof which was not
based on potential theoretical methods. The corresponding general conjecture for 0-symmetric convex surfaces in
R

d, d > 2 (resolved for boundaries of polytopes [9] and for regular convex surfaces [4]) is still open in its full generality,
see [4] and [8] for details.

It is well known (see e.g. [9]) that the above-formulated approximation problem on Kα is equivalent to ap-

proximating even functions by even homogeneous polynomials h2n(x, y) =
∑2n

k=0 akx
2n−kyk. In turn, making the
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substitution y = tx, x ≥ 0, t ∈ R, one can easily see that this is equivalent to approximating real continuous func-
tions f(t) on R which have equal finite limits at ∞ and −∞ by weighted polynomials wα(t)

2np2n(t), p2n ∈ P2n, n ∈ N,
where

wα(t) := (1 + |t|α)−1/α,

and Pn denotes the set of univariate real algebraic polynomials of degree at most n. Note that here the weight w2n
α

changes with the degree 2n of the polynomial p2n, and actually slight variations in wα are enlarged by the 2n-th
power. It is known that for certain weight functions this so-called weighted polynomial approximation with varying
weights is closely related to logarithmic potentials with external fields, see Sections VI.1-2 in the book [7]. However,
the present weight function wα is not admissible in the sense of [7], so the classical theory is not directly applicable
in the present case.

Let us denote by C(R) the space of real continuous functions f(x) on R which have equal finite limits at ∞ and
−∞ (denoted by f(∞) and f(−∞), respectively), i.e., f(∞) = f(−∞). In addition, we set

C0(R) := {f ∈ C(R) : f(0) = f(∞) = f(−∞) = 0}.

The main result of this paper is the following.

Theorem 1 Let 0 < α < 1. Then there exist weighted polynomials wn
αpn, pn ∈ Pn, n ∈ N, converging to f(x)

uniformly on R if and only if f ∈ C0(R).

The statement is also true if n ∈ N is replaced in it by n ∈ 2N (the necessity will be proven in that form), and it
as indicated above this has then an immediate implication for homogeneous approximation on Kα.

Corollary 2 Let 0 < α < 1. In order that f(x, y) ∈ C(Kα) be a uniform limit on Kα of sums of homogeneous
polynomials hn + hn+1 of degree n and n+ 1, it is necessary and sufficient that f(±1, 0) = f(0,±1) = 0.

It should be noted that the necessity part in the above corollary immediately extends to the case of d > 2
variables since the restriction of a homogeneous polynomial to any 2-dimensional coordinate plane is clearly a
bivariate homogeneous polynomial of the same degree.

The paper is organized as follows. First we verify the necessity part in Theorem 1 which will be based on a
Markov-type result for weighted polynomials (see Lemma 3 below). Then we will proceed by proving the sufficiency
using the theory of logarithmic potential theory with external fields. Finally, in the last section we shall present a
concrete construction that proves the sufficiency – without the use of potential theory – in the case when 0 < α < 1
is rational.

2 Proof of Theorem 1

Necessity

The proof of the necessity is based on the next lemma providing a Markov-type estimate for the derivatives of
weighted polynomials wn

αpn, 0 < α < 1, which is of independent interest. We also mention that the estimate is sharp,
see the very end of the paper.

Lemma 3 Let 0 < α < 1, and assume that pn ∈ Pn, n ∈ N, satisfy

wn
α(x)|pn(x)| ≤ M, x ∈ R. (1)

Then
wn

α(x)|p
′
n(x)| ≤ cαMn

1

α , x ∈ R. (2)

Proof. First we verify that (2) holds at the origin. Without the loss of generality we may assume that M = 1. By
[2, p. 92.] we have with z = u+ iv

log |pn(z)| ≤
|v|

π

∫

R

log |pn(t)|

(t− u)2 + v2
dt ≤

|v|n

πα

∫

R

log(1 + |t|α)

(t− u)2 + v2
dt =

2



n

πα

∫

R

log(1 + |u+ vt|α)

t2 + 1
dt ≤

n|z|α

πα

∫

R

1 + |t|α

t2 + 1
dt = cαn|z|

α,

where we used that, because of 0 < α < 1,

log(1 + |u+ vt|α) ≤ |u+ vt|α ≤ |u|α + |v|α|t|α ≤ |z|α(1 + |t|α).

Hence, |pn(z)| ≤ ecα in the disc |z| ≤ n− 1

α . Therefore, by the Cauchy integral formula,

|p′n(0)| ≤ ecαn
1

α

which is the required estimate for x = 0.
Now let x = a ∈ R. For the given pn ∈ Pn satisfying (1) set gn(x) := pn(x+ a). Then

|gn(x)|

(1 + |x|α)n/α
≤

|pn(x+ a)|

(1 + |x+ a|α)n/α

(

1 + |x+ a|α

1 + |x|α

)n/α

≤

(

1 + |x+ a|α

1 + |x|α

)n/α

≤ (1 + |a|α)n/α.

Using now the just established estimate for the derivative at x = 0 for gn with M := (1 + |a|α)n/α, we obtain

|p′n(a)| = |g′n(0)| ≤ ecαn
1

α (1 + |a|α)n/α, a ∈ R,

which completes the proof.

Iterating Lemma 3 easily yields a Markov-type result for higher order derivatives.

Corollary 4 Under the conditions of Lemma 3 we have

wn
α(x)|p

(k)
n (x)| ≤ ckαMn

k
α , x ∈ R, k ∈ N.

In particular,

|p(k)n (0)| ≤ ckαMn
k
α , k ∈ N.

Now the necessity in Theorem 1 is an immediate consequence of the next proposition.

Proposition 5 Assume that 0 < α < 1 and weighted polynomials w2n
α p2n, p2n ∈ P2n, n ∈ N, converge to f uniformly

on R. Then
f(0) = lim

x→∞
f(x) = lim

x→−∞
f(x) = 0.

Proof. Obviously we must have f ∈ C(R). Assume first that f(0) = a 6= 0. Set

fn(x) := f(n− 1

αx), gn(x) := p2n(n
− 1

αx) ∈ P2n, n ∈ N.

By the continuity of f we have

ǫn := max
|x|≤1

|fn(x)− a| = max
|x|≤1

|f(n− 1

αx)− f(0)| → 0, n → ∞. (3)

Furthermore, the convergent sequence of weighted polynomials w2n
α p2n is uniformly bounded on the real line, i.e.,

with some M > 0 we have
w2n

α (x)|p2n(x)| ≤ M, x ∈ R, n ∈ N.

Hence, by Corollary 4,

|g(k)n (0)| = |n− k
α p

(k)
2n (0)| ≤ Mkckα, k, n ∈ N.

Note that the right hand side is independent of n.

3



Setting gn(x) :=
∑n

k=0 bk,nx
k it follows that

|bk,n| =
|g

(k)
n (0)|

k!
≤

Mkckα
k!

≤

(

4Mcα
k

)k

.

Therefore, with any fixed integer m > 8Mcα, we have that whenever |x| ≤ 1 and n ∈ N

gn(x) :=

n
∑

k=0

bk,nx
k =

m
∑

k=0

bk,nx
k +

n
∑

k=m+1

bk,nx
k = gm,n(x) +O(2−m), (4)

where gm,n ∈ Pm, |gm,n(x)| ≤ cα,M .
Set

δn := max
x∈R

∣

∣

∣

∣

p2n(x)

(1 + |x|α)2n/α
− f(x)

∣

∣

∣

∣

→ 0, n → ∞.

Then the above estimate together with (3) and (4) yields

δn ≥ max
x∈R

∣

∣

∣

∣

∣

p2n(n
− 1

αx)

(1 + |x|α

n )2n/α
− f(n− 1

αx)

∣

∣

∣

∣

∣

≥ max
|x|≤1

∣

∣

∣

∣

∣

gn(x)

(1 + |x|α

n )2n/α
− fn(x)

∣

∣

∣

∣

∣

≥ max
|x|≤1

∣

∣

∣

∣

∣

gm,n(x)

(1 + |x|α

n )2n/α
− a

∣

∣

∣

∣

∣

− ǫn − c2−m.

Now letting n → ∞ in the last estimate and using that gm,n ∈ Pm, |gm,n(x)| ≤ cα,M , n ∈ N, hence {gm,n}
∞
n=1

contains a locally convergent subsequence, we obtain that for some gm ∈ Pm

max
|x|≤1

|gm(x)− ae2|x|
α/α| = O(2−m), m > 8Mcα.

Now we need to recall that, in view of a classical result of Bernstein (see e.g. [3, Theorem 7.8.1]), such an exponential
rate of approximation is possible only for analytic functions but not for e2|x|

α/α. Hence, we must have a = 0, i.e.
f(0) = 0.

Furthermore, since f is a uniform limit of weighted polynomials w2n
α p2n and each of them has equal limits at ∞

and −∞ it follows that f has a limit at ±∞, and limx→∞ f(x) = limx→−∞ f(x). Then the function g(x) := f(1/x)
is also continuous on the real line, and it is the uniform limit of the weighted polynomials w2n

α (x)x2np2n(1/x) :=
w2n

α (x)p∗2n(x), p
∗
2n ∈ P2n. Hence, by what we have proven above, we must have g(0) = 0, i.e.,

lim
x→∞

f(x) = lim
x→−∞

f(x) = 0 = f(0).

Sufficiency

In the proof of the sufficiency we shall need the basics of logarithmic potential theory, see e.g. the books [6] and [7]
for them.

For a 0 < γ < α/2 consider the weight W0(x) = 1/(1 + xα/2)1/γ on [0,∞). This W0 is admissible in the sense of
[7]. Let SW0

be the compact support of the associated equilibrium measure µW0
(see [7, Ch. I]). Since W0(0) > W0(x)

for all x > 0, we have 0 ∈ SW0
([7, Theorem IV.1.3]). Setting W0(x) = e−Q0(x), with Q0(x) := (1/γ) log(1 + xα/2)

we have that

xQ′
0(x) =

α

2γ

xα/2

1 + xα/2

is increasing in (0,∞). Therefore, by [7, Theorem IV.1.10(c)], the support SW0
is a certain interval [0, bγ ], where the

endpoint bγ := b satisfies the equation

1

π

∫ b

0

α

2γ

xα/2−1

1 + xα/2

√

x

b− x
dx = 1,
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see [7, Theorem IV.1.11(i)]. Using the substitution x = bt the above equation can be written in the form

1

π

∫ 1

0

bα/2tα/2

1 + bα/2tα/2
1

√

t(1− t)
dt =

2γ

α
. (5)

Since
1

π

∫ 1

0

1
√

t(1− t)
dt = 1,

and the integrand in (5) is strictly less than 1/
√

t(1− t) and monotonically tends to that function as b → ∞, it
follows from the monotone convergence theorem that bγ → ∞ as γ → α/2. It also follows that bγ is an increasing
and continuous function of γ.

If µW0
is the equilibrium measure, then it is locally absolutely continuous on SW0

and its density v0 is continuous
on (0, bγ), i.e. on the (one dimensional) interior of SW0

(see [7, Theorem IV.2.5]). Furthermore, v0 is strictly positive
on (0, bγ). Indeed, let λ > 1 and consider the weight W0(x)

λ = 1/(1 + xα/2)λ/γ . This Wλ
0 is a weight similar to W0

but with the parameter γ/λ replacing γ. Therefore the above observations extend to the weight Wλ
0 , as well. Thus

it follows from what we have done above that SWλ
0

= [0, bγ/λ] ⊂ [0, bγ ] = SW0
. In view of [7, Theorem IV.4.9] we

have on SWλ
0

the inequality

µW0
≥

1

λ
µWλ

0

+

(

1−
1

λ

)

ωSW0
,

where ωI denotes the equilibrium measure of the set I. Since (see e.g. [7, (I.1.7)])

dωSW0
(t) = dω[0,bγ ](t) =

1

π
√

t(bγ − t)
dt,

the positivity of v0 on the interior of SWλ
0

, i.e. on (0, bγ/λ) follows. But here bγ/λ → bγ if λ ց 1, so the positivity of

v0 on the whole interval (0, bγ) follows, as well.
Consider now for a 0 < β ≤ α the weight functions Wβ(x) = 1/(1 + |x|α)1/β on R. When β = α we have

Wα = wα, which is the weight function in Theorem 1. This is no longer admissible in the sense of [7] since |x|wα(x)
does not tend to 0 as |x| → ∞. Nevertheless, the claim in the theorem is that even with this weight every f ∈ C0(R)
is the uniform limit on R of weighted polynomials pnw

n
α, pn ∈ Pn as n → ∞.

To prove that note that for β < α the weight function Wβ is admissible, and symmetric with respect to the
origin, hence if we set γ = β/2 above, then, in view of [7, Theorem IV.1.10(f)], SWβ

= [−
√

bβ/2,
√

bβ/2] and
dµWβ

(t) = dµW0
(t2)/2. Thus, if vβ is the density of µWβ

, then vβ is continuous and strictly positive on Dβ :=

(−
√

bβ/2, 0) ∪ (0,
√

bβ/2). But then we get from [7, Theorem VI.1.5] that every function g ∈ C(R) which vanishes
outside Dβ is the uniform limit of weighted polynomials Wm

β pm, pm ∈ Pm, m = 1, 2, . . .. If we apply this to m =

[n(β/α)] for a given n = 1, 2, . . ., then it follows that for n = 1, 2, . . . there are weighted polynomials W
[n(β/α)]
β p[n(β/α)]

that converge to g uniformly on R. Here p[n(β/α)] is of degree ≤ n and

Wβ(x)
[n(β/α)] =

1

(1 + |x|α)[n(β/α)]/β
= Wα(x)

n 1

(1 + |x|α)τn
(6)

where

τn :=
1

β
([nβ/α]− nβ/α), −1/β ≤ τn ≤ 0. (7)

If we choose here β < α so that β
α = p

q is rational, then using (7) it follows that for any n ≡ s (mod q), i.e. for any
n = kq + s, k ∈ N, 0 ≤ s ≤ q − 1, we have

τn =
1

β
([nβ/α]− nβ/α) =

1

β
([sβ/α]− sβ/α) := τs,

i.e., τn = τs is independent of n whenever n = kq + s with any k ∈ N and a fixed 0 ≤ s ≤ q − 1.
Hence, by (6), for every function g0 ∈ C(R) which vanishes outside Dβ and every n ≡ s (mod q), there exist

polynomials pn of degree at most n such that Wα(x)
npn(x)(1 + |x|α)−τs → g0 uniformly on R. Since τs ≤ 0 and

Wα = wα, this implies that wα(x)
npn(x) → (1 + |x|α)τsg0(x) uniformly on R for any g0 which is zero outside Dβ .
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Setting now g := g0(1 + |x|α)τs we get the required approximation statement for every function g ∈ C(R) which
vanishes outside Dβ and for every n ≡ s (mod q) with any fixed 0 ≤ s ≤ q − 1 (i.e. for all such n there are weighted
polynomials wn

αpn that converge uniformly on R to g). Evidently, this yields the required statement for every n ∈ N,
as well, i.e., we are done in the case when g ∈ C(R) vanishes outside Dβ .

Finally, it remains to note that bβ/2 can be made as large as we wish by letting β ր α (besides the requirement

that β
α is a rational number). In addition, every f ∈ C0(R) is the uniform limit on R of functions g ∈ C(R) which

vanish outside some Dβ , β < α. Now a standard diagonalization process yields that every f ∈ C0(R) is the uniform
limit on R of weighted polynomials pnw

n
α.

3 A concrete construction

Approximating by weighted polynomials wnpn with varying weights is a rather non-trivial subject, and it is quite rare
that in that theory concrete approximating polynomials can be given. Therefore, it is instructive to give such concrete
polynomials in the present case at least when α is rational. In this section we present this explicit construction.

Lemma 6 Let α = p
q , p, q ∈ N and tk := e

πki
q , 1 ≤ k ≤ 2q, be the 2q-th roots of unity. Then for any n ∈ N

gpn(x) := |x|α
2q
∑

k=1

tk(1 + tk|x|
α)qn ∈ Ppn. (8)

Proof. We use the relation
2q
∑

k=1

tlk = 0,

which holds for any integer l 6= 2rq, r ∈ N. To verify that, it suffices to note that, by the periodicity of roots of
unity,

∑2q
k=1 t

l
k = tl1

∑2q
k=1 t

l
k. Hence if tl1 6= 1, then the above relation must hold. In addition, we evidently have

∑2q
k=1 t

l
k = 2q whenever l = 2rq, r ∈ N.

Using these relations and the binomial formula we have for any y ∈ R

2q
∑

k=1

tk(1 + tky)
nq =

2q
∑

k=1

nq
∑

j=0

(

nq

j

)

tj+1
k yj =

nq
∑

j=0

(

nq

j

)

yj
2q
∑

k=1

tj+1
k =

∑

2r≤n

ar,ny
2rq−1,

where ar,n := 2q
(

nq
2rq−1

)

.

Hence setting y := |x|α = |x|
p
q we obtain

|x|α
2q
∑

k=1

tk(1 + tk|x|
α)qn = |x|p/q

∑

2r≤n

ar,n|x|
p
q
(2rq−1) =

∑

2r≤n

ar,nx
2rp ∈ Ppn, (9)

which completes the proof of the lemma.

Lemma 7 Let α = p
q , p, q ∈ N and gpn ∈ Ppn be the polynomial given by (8). Then with any s ≥ 2α we have

∣

∣

∣

∣

gpn(x)

(1 + |x|α)(pn+s)/α
−

|x|α

(1 + |x|α)s/α

∣

∣

∣

∣

≤
8q

n
, x ∈ R, n ∈ N. (10)

Proof. We will apply below the following identity which holds for any given a > 0 and tk = e
πki
q :

|1 + tka|
2 = (1 + aℜtk)

2 + a2(ℑtk)
2 = (1 + a)2 + 2aℜtk − 2a = (1 + a)2 − 4a sin2

πk

2q
, 1 ≤ k ≤ 2q. (11)
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We have by (8)

gpn(x)

(1 + |x|α)(pn+s)/α
=

|x|α

(1 + |x|α)s/α
+

|x|α

(1 + |x|α)s/α

2q−1
∑

k=1

tk

(

1 + tk|x|
α

1 + |x|α

)qn

=
|x|α

(1 + |x|α)s/α
+R.

Now in order to verify the claim of the lemma we estimate the remainder term R using (11) with a := |x|α:

|R| ≤
|x|α

(1 + |x|α)s/α

2q−1
∑

k=1

∣

∣

∣

∣

1 + tk|x|
α

1 + |x|α

∣

∣

∣

∣

qn

≤
|x|α

(1 + |x|α)2

2q−1
∑

k=1

(

1−
4|x|α

(1 + |x|α)2
sin2

πk

2q

)qn/2

≤ u

2q−1
∑

k=1

(

1− u sin2
πk

2q

)qn/2

, u :=
4|x|α

(1 + |x|α)2
.

Here 0 ≤ u ≤ 1, and u(1− cu)qn/2 ≤ 2
cqn for any such u and 0 < c ≤ 1. Using this upper bound with c := sin2 πk

2q
we obtain

|R| ≤
2

qn

2q−1
∑

k=1

sin−2 πk

2q
≤

4

qn

q
∑

k=1

sin−2 πk

2q
.

Now we can use that sin πk
2q ≥ k

q , 1 ≤ k ≤ q, which implies

|R| ≤
4

qn

q
∑

k=1

q2

k2
=

4q

n

q
∑

k=1

1

k2
≤

8q

n
.

As an easy corollary of Lemma 7 we get both even and odd test functions which can be approximated by weighted
polynomials.

Corollary 8 Let α = p
q , p, q ∈ N and gpn ∈ Ppn be the polynomial given by (8). Then with any m ≥ 0 and s ≥ 2α+m

we have
∣

∣

∣

∣

xmgpn(x)

(1 + |x|α)(pn+s)/α
−

xm|x|α

(1 + |x|α)s/α

∣

∣

∣

∣

≤
8q

n
, x ∈ R, n ∈ N. (12)

Now the proof of the sufficiency in Theorem 1 can be finalized by using a Stone-Weierstrass-type argument. For
any closed subalgebra of functions A ⊂ C(K) denote by ZA := {x ∈ K : g(x) = 0, for all g ∈ A} the zero set
of A. Then the Stone-Weierstrass theorem (see e.g., [3, p. 13]) states that if A separates points in K \ ZA, then
any f ∈ C(K) which vanishes on ZA belongs to A, i.e., A = {f ∈ C(K) : f = 0 on ZA}. The idea of applying
the Stone-Weierstrass theorem in weighted polynomial approximation goes back to Kuijlaars [5]. We will adopt it
in the proof of the next proposition, which provides the promised sufficiency part in Theorem 1 in case of rational
0 < α < 1.

Proposition 9 Let α be rational. Then given any f ∈ C0(R), there exist polynomials gn ∈ Pn, n = 1, 2, . . ., such
that wn

αgn → f, n → ∞ uniformly on R.

Proof. Let α = p
q , p, q ∈ N, 0 < α < 1. The proof will be accomplished in two steps. First we will verify the

statement of the proposition for the subsequence Np := {pn : n ∈ N}.
Set

Ap := {f ∈ C(R) : f = lim
n→∞

wpn
α gpn, gpn ∈ Ppn}.

Obviously, Ap is a closed subalgebra of C(R), where, by Proposition 5, we have 0,∞ ∈ ZAp
. Moreover, using (12)

with any s := pr > m+ 2, r ∈ N it follows that

fm,s(x) := xm|x|αwα(x)
s ∈ Ap, m ≥ 0.
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Since these test functions vanish only at 0 and ∞, we have ZAp
= {0,∞}. Now it remains to show that elements of Ap

separate points in R\{0,∞}. Obviously, for any distinct points x, y > 0 either f0,p(x) 6= f0,p(y) or f0,2p(x) 6= f0,2p(y),
where f0,p, f0,2p ∈ Ap are even test functions. Clearly, the same holds for the odd test functions f1,p, f1,2p ∈ Ap.
Thus elements of Ap separate points in R \ {0,∞}. Hence, by the Stone-Weierstrass theorem, we obtain that any
continuous function on R which vanishes at 0,∞ is in Ap, i.e., Ap = C0(R). Therefore, for any 0 ≤ j ≤ p− 1, k ≥ 0
and s > p+ k there exist gj,n ∈ Ppn such that

wα(x)
pngj,n(x) → xk|x|αwα(x)

s−j ∈ C0(R), n → ∞.

Of course, this implies

wα(x)
pn+jgj,n(x) → xk|x|αwα(x)

s ∈ C0(R), 0 ≤ j ≤ p− 1, n → ∞.

Now for an m ∈ N, m ≡ j (mod p), say for m = pn+ j with some n ∈ N and 0 ≤ j ≤ p− 1, set

gm := gj,n ∈ Ppn ⊂ Pm.

Then the last relation means that for any k ≥ 0 and s > p + k we found polynomials gm ∈ Pm, m = 1, 2, . . ., such
that

wα(x)
mgm(x) → xk|x|αwα(x)

s ∈ C0(R), m → ∞.

Therefore, if we define
A := {f ∈ C(R) : f = lim

m→∞
wm

α gm, gm ∈ Pm},

then it follows that xk|x|αwα(x)
s ∈ A whenever k ≥ 0, s > p+k. Just as above this means that ZA = {0,∞} and we

have suitable test functions in the closed subalgebra A ⊂ C0(R) which separate points in R \ {0,∞}. Hence, another
application of the Stone-Weierstrass theorem implies that A = C0(R).

Remark. The construction in this section allows us to show that the estimate in Lemma 3 is sharp. Indeed, let

Mn(wα) := sup{‖wn
αp

′
n‖R : pn ∈ Pn, ‖wn

αpn‖R ≤ 1}

be the n-th order weighted Markov factor. Lemma 3 claims that this is ≤ c1n
1/α. Now we show that if 0 < α < 1 is

rational, then Mn(wα) ≥ c2n
1/α, n = 1, 2, . . ., with some c2 > 0.

Indeed, let α = p/q, and for n = 4, 5, . . . set

hpn(x) :=
1

2q

2q
∑

k=1

(1 + tk|x|
α)qn =

∑

2r≤n

br,nx
2rp, (13)

where tk, 1 ≤ k ≤ 2q, are the 2q-th roots of unity and br,n :=
(

qn
2rq

)

. This formula and the fact that hpn is a

polynomial of degree at most pn can be verified similarly to (9). Obviously, wpn
α (x)|hpn(x)| ≤ 1 on the whole real

line, so we have

b1,n =
h
(2p)
pn (0)

(2p)!
≤

Mpn(wp/q)
2p

(2p)!
, (14)

which, in view of b1,n ≥ n2q/(2q)!, yields

Mpn(wα) ≥ c′2n
q/p = c′2n

1/α,

and this implies Mn(wα) ≥ c2n
1/α.

For irrational 0 < α < 1 the just given argument implies that for every ǫ > 0 we have Mn(wα) ≥ cǫn
1

α
−ǫ. Indeed,

let α < p/q < 1, where p, q are positive integers, and consider the polynomial hpn from (13). If β > 1, then the
fraction (1 + tβ)/(1 + t)β is decreasing on (0, 1) and increasing on (1,∞), furthermore at t = 0 and t = ∞ it is 1, so
it is always at most 1. This implies (set t = |x|α and β = p/qα) that

wα(x)

wp/q(x)
=

(

1 + (|x|α)p/qα

(1 + |x|α)p/qα

)q/p

≤ 1
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for all x. Therefore, together with wn
p/q(x)|hpn(x)| ≤ 1, we also have wn

α(x)|hpn(x)| ≤ 1. Now (14) yields as before

Mpn(wα) ≥ c2,p,qn
q/p

for all n, which implies
Mn(wα) ≥ cp,qn

q/p.

Since here q/p < 1/α can be arbitrarily close to 1/α, Mn(wα) ≥ cǫn
1

α
−ǫ follows.
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