
Polynomial inequalities with asymmetric
weights
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1 Introduction

Consider the space Pn of real algebraic polynomials of degree at most n. Let
K ⊂ R be any compact set and ∥p∥K := sup

x∈K
|p(x)| the usual supremum norm

∗Research of both authors supported by OTKA Grant No. K111742.
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onK. The classical Bernstein problem consists in estimating the derivative of
the polynomial p′(x) for a given p ∈ Pn, ∥p∥K = 1 and x ∈ IntK. Typically,
this estimate is given in terms of the degree n of the polynomials and the
distance of point x ∈ IntK to the boundary ∂K of the compact K. This
problem goes back to Bernstein [?] who showed that when K = [a, b] we have
the estimate

|p′(x)| ≤ n√
(x− a)(b− x)

∥p∥[a,b], x ∈ (a, b). (1)

This estimate is sharp, in general. It is attained at certain points by the
Chebyshev polynomial.

The classical Markov inequality provides a uniform upper bound

∥p′∥K ≤ 2n2

b− a
∥p∥[a,b], p ∈ Pn (2)

which also turns into equality for the Chebyshev polynomial.
Various extensions of the Bernstein and Markov type inequalities for more

general domains, norms and in multivariate case have been widely investi-
gated in the past decades. In this paper we will be concerned with this
question in case of weighted uniform norm on the interval. In a recent paper
[4] Mastroianni and Totik established a rather general weighted versions of
(1) and (1) for the class of so called A⋆ weights. Let A⋆ denote the set of
integrable weights w ≥ 0 satisfying the inequality

w(x) ≤ C

|E|

∫
E

w(t) dt for all x ∈ E ⊆ I := [−1, 1] . (3)

Then it is shown in [4], p. 69 that for any w ∈ A⋆ and p ∈ Pn

∥ϕwp′∥I ≤ cn∥p∥I , ∥wp′∥I ≤ cn2∥wp∥[a,b], (4)

where ϕ(x) :=
√
1− x2 and the constants above depend only on w.

The above condition A⋆ imposed on the weights is rather general, in

particular it includes all Jacobi type weights
∏
j

|x − xj|γj which allow the

weight to vanish as a power of x. In a very recent paper [?] the authors
extended (4) to a wider class of weights which may vanish exponentially.
However, all above classes of weights require that the weight has certain
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symmetry, that is it vanishes to the left and to the right of the given point
with equal speed. In this paper we initiate the study of the Bernstein-Markov
type inequalities for the so called asymmetric weights which may vanish
at a given point with different rates. A typical asymmetric weight is given
by

wα,β(x) =

{
|x|α, if − 1 ≤ x ≤ 0,

xβ, if 0 < x ≤ 1,
0 ≤ α ≤ β . (5)

First we show that this weight does not belong to A⋆ if α < β. Let 0 < h < 1

and E =
[
−h

β+1
α+1 , h

]
. Then

1

|E|

∫
E

wα,β(x) dx ≤ hβ+1 + hβ+1

h+ h
β+1
α+1

< 2hβ .

Thus if we had (3) with x = −h
β+1
α+1 , this would mean hα

β+1
α+1 ≤ 2Chβ, a

contradiction for a small h, since
β + 1

α + 1
<
β

α
.

In this paper we will give some new Bernstein type inequalities for such
asymmetric Jacoby type weights. In contrast to the estimates provided previ-
ously for the symmetric weights in the asymmetric case the resulting bounds
for the derivatives of n-th degree polynomials are typically of order nγ, γ > 1,
see Section 3 below. First in Section 2 we will derive some Remez type es-
timates for asymmetric weights needed in the sequel. Section 3 contains
our main new results on Bernstein type inequalities for asymmetric Jacoby
type weights. We will also provide some converse estimates showing that
the increase of the rate of derivatives in non symmetric case is in general
unavoidable.

2 Some auxiliary Remez type estimates for

asymmetric weights

Mastroianni and Totik [4] established a rather general weighted version of
the classic Remez inequality for trigonometric polynomials which is valid for
A⋆ weights w ≥ 0. Namely, for any trigonometric polynomial tn of degree at
most n and any w ∈ A⋆ we have

∥wtn∥[−π,π] ≤ eCn|E|∥wtn∥[−π,π]\E for all E ⊂ [−π, π], (6)
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where C > 0 is a constant depending only on w (see [4]). By a standard sub-
stitution this inequality yields a Remez inequality for algebraic polynomials
pn ∈ Pn

∥wpn∥I ≤ eCn|E|∥wpn∥I\E for all w ∈ A⋆, E ⊂ [−1/2, 1/2]. (7)

We will need in the sequel a certain Remez type inequality for asymmetric
Jacobi type weights. For any n ∈ N and γ ≥ 1 let

In = [an, bn], where an = − 1

4nγ
, bn =

1

4n
.

Theorem 1. For any 0 ≤ α ≤ β, 1 ≤ γ ≤ β + 1

α + 1
and pn ∈ Pn we have

∥wα,βpn∥I ≤ (2 + 4β−α)nβ+1−γ(α+1)∥wα,βpn∥I\In .

Proof of Theorem 1. Introducing the notations

An = ∥wα,βpn∥In and Bn = ∥wα,βpn∥I\In ,

the statement of the theorem will follow from the inequality

An ≤ (2 + 4β−α)nβ+1−γ(α+1)Bn . (8)

Without loss of generality we may assume that ∥pn∥I = 1. Let dn ∈ I be

a point such that |pn(dn)| = 1. By γ ≤ β + 1

α + 1
≤ β

α
we have

An ≤ max(wα,β(an), wα,β(bn)) = max((4nγ)−1, (4n)−1) = wα,β(an) . (9)

According to the position of dn, we distinguish three cases.

Case 1: dn ∈ In. By the mean value theorem and the Bernstein inequality

|pn(dn)− pn(an)|
dn − an

= |p′n(ξn)| ≤
n√

1− ξ2n
≤ 4

3
n, ξn ∈ In ,

whence

|pn(an)| ≥ 1− 4

3
n(dn − an) ≥

1

3
.
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But then by (9),

Bn ≥ wα,β(an)|pn(an)| ≥
1

3
wα,β(an) ≥

1

3
An .

Case 2: dn ∈ [−1, an]. Then again by (9),

Bn ≥ wα,β(dn)|pn(dn)| = wα,β(dn) ≥ wα,β(an) ≥
1

3
An .

Case 3a: dn ∈ [bn, 1] and λn ∈ [0, bn] where An = wα,β(λn)|pn(λn)|. Then

Bn ≥ wα,β(dn)|pn(dn)| = wα,β(dn) ≥ wα,β(bn) ≥ wα,β(λn) ≥ An .

Case 3b: dn ∈ [bn, 1] and λn ∈ [an, 0]. Then by the mean value theorem
and Bernstein inequality

|pn(λn)− pn(an)| ≤ (λn − an)|p′n(ξn)| ≤ 4n|an| ≤ n1−γ, ξn ∈ (an, λn) ,

whence

An = wα,β(λn)|pn(λn)| ≤ wα,β(an)|pn(an)|+wα,β(an)n1−γ ≤ Bn+4−αn1−γ(1+α) .

On the other hand,

Bn ≥ wα,β(dn)|pn(dn)| = wα,β(dn) ≥ wα,β(bn) =
1

(4n)β
,

and thus

An ≤ Bn + 4−αn1−γ(1+α)Bn(4n)
β ≤ (1 + 4β−αnβ+1−γ(α+1))Bn

which completes the proof. �
Remarks. 1. In the special case α = β (i.e., γ = 1) Theorem 1 yields for

In =

[
− 1

4n
,
1

4n

]
,

∥wα,αpn∥I ≤ 3∥wα,αpn∥I\In for all pn ∈ Pn .

which is of course consistent with (7) and wα,α ∈ A⋆.
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Similarly, if γ =
α + 1

β + 1
Theorem 1 yields

∥wα,βpn∥I ≤ (2 + 4β−α)∥wα,βpn∥I\In for all pn ∈ Pn , 0 ≤ α ≤ β .

The last two estimates correspond to the cases when deleting a proper
set can change the norm of the polynomial only by a constant factor. In
contrast to this when γ = 1 Theorem 1 yields with In = [−1/(4n), 1/(4n)]

∥wα,βpn∥I ≤ (2 + 4β−α)nβ−α∥wα,βpn∥I\In .

Here the asymmetry of the weight causes and increase of the norm estimate
by a factor nβ−α. We will show now that apart from a log-factor, this upper
bound is sharp.

Proposition 1. Let 0 ≤ α ≤ β and In = [−9β log n/n, 0]. Then there exist
polynomials pn ∈ Pn such that

∥wα,βpn∥In ≥ c

(
n√
log n

)β−α
∥wα,βpn∥I\In

where c > 0 is a constant depending only on α and β.

(Here and in what follows, c > 0 will denote unspecified constants inde-
pendent of n, not necessary the same at each occurrences.)

Proof. We will make use of the so-called ”needle” polynomials

qn,h(x) :=
T 2
n(1 + h2 − x2)

T 2
n(1 + h2)

∈ P4n, 0 < h ≤ 1 ,

where Tn(x) = cos(n arccosx) is the Chebyshev polynomial (see [3]). It
satisfies the following lower and upper estimates:

1

4
exp

(
−8nx2

h

)
≤ qn,h(x) ≤ 4 exp

(
−nx

2

9h

)
, |x| ≤ h ≤ 1

4
. (10)

To show these inequalities, we use the formula

Tn(x) =
1

2
[(x+

√
(x2 − 1)2 − 1)n + (x−

√
(x2 − 1)2 − 1)n] . (11)
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We obtain

qn,h(x) ≤ 4

(
1 + h2 − x2 +

√
(1 + h2 − x2)2 − 1

1 + h2 +
√

(1 + h2)2 − 1

)2n

= 4

(
1−

x2 + h
√
2 + h2 −

√
(1 + h2 − x2)2 − 1

1 + h2 + h
√
2 + h2

)2n

≤ 4

(
1−

x2 + h
√
2 + h2 −

√
(1 + h2 − x2)2 − 1

2 +
√
3

)2n

≤ 4

(
1− 2x2

(2 +
√
3)(1 + 2

√
3)h

)2n

≤ 4

(
1− x2

18h

)2n

≤ 4 exp

(
−nx

2

9h

)
(|x| ≤ h ≤ 1) .

The lower estimate of qn,h(x) in (10) can be shown similarly. The mono-
tonicities of qn,h(x) in the intervals h ≤ |x| ≤ 1 also imply

1

4
exp(−8nh) ≤ qn,h(x) ≤ 4 exp(−nh/9), h ≤ |x| ≤ 1 . (12)

After these preliminaries let

pn(x) := qn,h(x) with h =
9β log n

n
.

Using the lower estimate in (10) we obtain with x0 = −
√
β log n

n
∈ In,

∥wα,βpn∥In ≥ wα,β(x0)pn(x0) ≥
1

4

(√
β log n

n

)α
.

On the other hand, using the upper estimate in (12),

∥wα,βpn∥{h≤|x|≤1} ≤ 4e−β logn = 4n−β ,

and

∥wα,βpn∥[0,h] =
∥∥∥∥xβ exp(− n2x2

9β log n

)∥∥∥∥
[0,h]

≤
(
3
√
β log n

n

)β
.

Comparint the last three inequalities, we obtain the statement. �
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3 Bernstein-type inequalities for asymmetric

weights

In order to state our Bernstein type inequality, we need the following Schur
type result. Denote

µ(E) :=

∫
E

dx√
1− x2

the Chebyshev measure of a set E ⊂ I. Let ϕ(x) ≤ 1 be a bounded, a.e. pos-
itive function on I, and for any δ > 0 denote

ψ(δ) := sup{c > 0 : µ(x ∈ I : ϕ(x) ≤ c) ≤ δ} .

Lemma (Kroó [2], Lemma 1). For any weight w ∈ A⋆ and pn ∈ Pn we have

∥wpn∥I ≤
c

ψ(1/n)
∥wϕpn∥I . (13)

With the functions ϕ and ψ defined above, we now state a Bernstein type
inequality.

Theorem 2. Let W (x) = w(x)ϕ(x), where w ∈ A⋆ and 0 < ϕ(x) ≤ 1 a.e. on
I. Then we have

∥φWp′n∥I ≤
cn

ψ(1/n)
∥Wpn∥I for all pn ∈ Pn

where φ(x) =
√
1− x2.

Remark. Since ϕ need not be symmetric, W can be asymmetric, too.

Proof. Since w ∈ A⋆, we have

∥φwp′n∥I ≤ cn∥wpn∥I

(see Mastroianni-Totik [4], (7.28)). Using this and the Lemma we obtain

∥φWp′n∥I ≤ ∥ϕ∥I · ∥φwp′n∥I ≤ cn∥wpn∥I

≤ cn

ψ(1/n)
∥ϕwpn∥I =

cn

ψ((1/n)
∥Wpn∥I .

�
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Theorem 3. We have

∥φwα,βp′n∥I ≤ cnγ∥wα,βpn∥I

for all pn ∈ Pn, where c > 0 is a constant depending only on α, β, and

γ =


1 + β − α if 0 ≤ α ≤ β ≤ α +

α + 1

2α + 1
,

1 +
β + 1

2(α + 1)
if α +

α+ 1

2α + 1
≤ β ≤ 2α+ 1,

2, if β ≥ 2α + 1 .

Proof. First estimate. Choose

w(x) = wα,α(x) ∈ A⋆ and ϕ(x) = w0,β−α(x) ,

then clearly W (x) = wα,β(x) and ψ(δ) = δβ−α, 0 < δ < 1. Thus Theorem 3
yields

∥φwα,βp′n∥I ≤ cn1+β−α∥wα,βpn∥I .
Second estimate. Using the classic Bernstein inequality on the interval

[−1.− 1/2] we get

∥φwα,βp′n∥[−1,−3/4] ≤ 8∥(1 + x)|1/2 + x|p′n∥[−1,−3/4]

≤ 8∥(1 + x)|1/2 + x|p′n∥[−1,−1/2] ≤ cn∥wα,βpn∥[−1,−1/2] ≤ cn∥wα,βpn∥I .
Similarly,

∥φwα,βp′n∥[3/4,1] ≤ cn∥wα,βpn∥I .
It remains to estimate ∥φwα,βp′n∥[−1/2,1/2]. Using Theorem 1 on the interval

J = [−1/2, 1/2] (with Jn =
1

2
In) we obtain

∥φwα,βp′n∥[−1/2,1/2] ≤ ∥wα,βp′n∥J ≤ c∥wα,βp′n∥J\Jn

≤ c√
|an|

∥
√
|x|(1 + x)wα,βp

′
n∥[−1,0] +

c√
bn
∥
√
x(1− x)wα,βp

′
n∥[0,1] .

Since wα,β(x) is an A
⋆ weight on the intervals [−1, 0] and [0, 1], we can apply

the Bernstein inequality from [4] (see (7.28) there) to get

∥φwα,βp′n∥[−1/2,1/2] ≤ cn1+ β+1
2(α+1)∥wα,βpn∥I .
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Third estimate. When β ≥ 2α+1, the Bernstein factor becomes n2 which
can be seen by applying (7.30) in [4] separately for [−1, 0] and [0, 1]. �

Next we give an example which shows that the Bernstein factor indeed
can be of higher order than O(n) in some cases.

Example 2. Let the weight w(x) ≥ 0 (x ∈ I) satisfy

µ := sup
−1/2≤x<0

logw(x)

log log 1
|x|
<

1

3
and inf

0<x≤1/2

logw(x)

log x
> 0 . (14)

Then for any λ ∈ (µ, 1/3) there exists a polynomial pn ∈ Pn such that

∥φwp′n∥I ≥ cn logλ−µ n∥wpn∥I . (15)

Remark. For example, the weight in [−1, 0] can be chosen as log−µ
2

|x|
, and

in [0, 1] as xα logβ
2

x
(α, β > 0), or exp(−1/x).

Proof. In constructing our polynomial, we use two well-known polynomials.
The first is the needle polynomial introduced in the proof of Example 1. The
other tool we use is a so-called fast decreasing polynomial rn ∈ Pn which is
even and has the properties

rn(0) = 1, and 0 ≤ rn(x) ≤ C exp(−nf(x)) (|x| ≤ 1) (16)

if and only if

∫ 1

0

f(x)

x2
dx <∞ (cf. Ivanov and Totik [1]). Here we choose

f(x) =
|x|

log
3
2
(1−λ) 2

|x|

, (µ < λ < 1/3;

then the above integral condition is obviously satisfied.
After these preparations our polynomial is defined as

pn(x) := qn,h(x)rn(x)Tm(2x+ 1) > 0 (|x| ≤ 1 ,m = [δ
√
n logλ/2 n]),

where

h =
log3−2λ n

n
,
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and the constant δ > 0 will be determined later.
Let x0 = −1/n2 and Qn(x) = rn(x)qn,h(x), then ∥Qn∥I ≤ c. Then by

(14) w(x0) ≥
1

logµ 2
|x0|

and we obtain

∥φwp′n∥I ≥ cw(x0)p
′
n(x0) ≥

c

logµ n
[T ′
m(2x0 + 1)Qn(x0)−Q′

n(x0)] . (17)

Since the argument 2x0 + 1 is at a distance O(m−3) from the endpoint 1,
evidently T ′

m(2x0 + 1) ≥ cm2 ≥ cn logλ n. By the mean value theorem and
using that ∥Qn∥I ≤ c implies ∥Q′

n∥I/2 ≤ cn,

1−Qn(x0) = Qn(0)−Qn(x0) ≤ cn−2|Q′
n(ξn)| ≤ c/n (ξn ∈ (x0, 0)) ,

whence Qn(x0) ≥ c > 0. On the other hand, since ∥Q′′
n∥I/4 ≤ cn2, we obtain

Q′
n(x0) = Q′

n(x0)−Q′
n(0) ≤ |Q′′

n(ηn)|n−2 ≤ c (ηn ∈ (x0, 0)) .

Thus we get from (17),

∥φwp′n∥I ≥ cn logλ−µ n− c

logµ n
≥ cn logλ−µ n .

In order to show (15) we have to prove that ∥wpn∥I ≤ c. Obviously,
∥wpn∥{−1≤x≤0} ≤ c. For the case 0 < x ≤ 1 we distinguish three cases.

Case 1: 0 < x ≤ log2−λ n

n
. Then, using the estimate 0 < Tm(2x + 1) ≤

exp(cm
√
x) (which follows from (11)), as well as the inequality w(x) ≤ xε

with some ε > 0 (which follows from (14)),

w(x)pn(x) ≤ xεTm(2x+ 1) ≤ xεecm
√
x ≤ logε(2−λ) n

nε
· ecδ logn ≤ 1

provided δ < ε/c.

Case 2:
log2−λ n

n
< x ≤ h =

log3−2λ n

n
. Then, instead of the weight, we

use the needle polynomial and its upper estimate (10):

w(x)pn(x) ≤ qn,h(x)Tm(2x+ 1) ≤ 4 exp

(
−nx

2

9h
+ cm

√
x

)
.
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Here the exponent is negative if

x >

(
9chm

n

)2/3

≥ (9cδ)2/3
log2−λ n

n
,

which holds in the interval in question if δ < 1/(9c). Thus w(x)pn(x) ≤ 1 in
this interval.

Case 3: h =
log3−2λ n

n
< x ≤ 1. Then we use the fast decreasing polyno-

mial and its property (10):

w(x)pn(x) ≤ rn(x)Tm(2x+ 1) ≤ exp

(
−c nx

log
3
2
(1−λ) n

+ cm
√
x

)
.

Here the exponent is negative if

x >
(cm
n

)2
log3(1−λ) n = (cδ)2

log3−2λ n

n
,

which holds in the interval in question if δ ≤ 1/c. Thus w(x)pn(x) ≤ 1 in
this interval as well. �

The next theorem shows that with a proper weight the Bernstein factor
can be arbitrarily close to O(n2).

Theorem 4. Let {Ψn}∞n=1 be an arbitrary sequence of positive numbers mono-
tone increasing to ∞ as n → ∞. Then there exist a weight w ∈ C(I),
w(0) = 0, 0 < w(x) ≤ 1, 0 < |x| ≤ 1, and polynomials pn ∈ Pn, n ∈ N, such
that

∥φwp′n∥I ≥
cn2

Ψn

∥wpn∥I , n ∈ N.

Proof. We may assume that Ψn = o(n2), otherwise the statement is triv-
ial. We shall again apply Chebyshev polynomials Tm(2x + 1) and needle
polynomials qn−m,h(x) with

m :=

[
n

ψn

]
, h :=

a

ψn

where ψn := 3
√
Ψn and the constant a > 0 will be specified below. We have

that with certain positive absolute constants c2 < 1 < c1

Tm(2x+ 1) ≤ ec1m
√
x, 0 ≤ x ≤ 1, 0 < qn−m,h(x) ≤ e−c2(n−m)h, h ≤ x ≤ 1.
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Now we set pn := Tmqn−m,h ∈ Pn with a :=
2c1
c2
.

Let w ∈ C[−1, 1], w(0) = 0, 0 < w(x) ≤ 1, 0 < |x| ≤ 1, be such that

w

(
a

ψn

)
= e−2a2nψ

−3/2
n , w(−n−2) = ψ−1

n , n ∈ N ,

and let w be linear between the adjacent points where the values are pre-
scribed.

Let us show first that ∥wpn∥I ≤ 1. By the above estimates we have

∥wpn∥I = max

(
max
0≤x≤h

|wpn|(x), max
h≤x≤1

|wpn|(x), max
−1≤x≤0

|wpn|(x)
)

≤ max
(
w(h)ec1m

√
h, ec1m−c2(n−m)h, 1

)
≤ max

(
exp(−2a2 + c1

√
a)nψ−3/2

n , exp
c1n

ψ2
n

(−ψn + 2), 1

)
= 1.

Now we can get a lower bound for |φwp′n| as follows

2∥φwp′n∥I ≥ |wp′n|(−n−2) ≥ |wT ′
mqn−m,h|(−n−2)− |wTmq′n−m,h|(−n−2) ≥

1

2
ψ−1
n T ′

m(1− 2n−2)− |q′n−m,h|(−n−2) ≥ cψ−1
n m2 −O(1) ≥ cn2

ψ3
n

=
cn2

Ψn

. �

These results naturally lead to the following

Question 1. Consider an arbitrary a.e. positive weight w. Is it true that

∥φwp′n∥I = o(n2)∥wpn∥I

for all polynomials pn ∈ Pn?
Question 2. Consider an arbitrary nonnegative weight w. Is it true that

∥φwp′n∥I = O(n2)∥wpn∥I

for all polynomials pn ∈ Pn?
The example

w(x) =

{
1 if − 1 ≤ x ≤ 0,

0 if 0 < x ≤ 1,
pn(x) = Tn(2x+ 1)
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shows that the O(n2) Bernstein factor can be attained, since p′n(0) = 2n2.

Finally, we show that for a wide class of weights (including asymmetric
weights), if we perform a slight change in the weight, namely add a properly
chosen quantity to it which goes to zero as n goes to infinity, then the classic
Bernstein inequality holds.

Theorem 5. Let w(x) be an r ≥ 0 times continuously differentiable positive
weight in I except that w(0) = 0. Further let

wn(x) := w(x) +
C

nr
ω

(
w(r),

1

n

)
(|x| ≤ 1, n = 1, 2, . . . )

where ω is the modulus of continuity of the corresponding function, and c > 0
is an arbitrary constant. In case r ≥ 1, also assume that

sup
0<|x|≤1

|xw′(x)|
w(x)

<∞ . (18)

Then for all polynomials pn ∈ Pn we have

∥φwnp′n∥I ≤ cn∥wnpn∥I . (19)

Proof. We distinguish two cases.
Case 1: r = 0. By the Jackson theorem, for a sufficiently large c > 1,

there exist polynomials qn(x) ∈ Pcn such that

∥wn − qn∥I ≤
1

2
ω

(
w,

1

n

)
.

Since wn(x) ≥ ω

(
w,

1

n

)
, hence

1

2
qn(x) ≤ wn(x) ≤

3

2
qn(x) (|x| ≤ 1) . (20)

Also,

∥φq′n∥I ≤ cnω

(
qn,

1

n

)
(21)

≤ cn

[
ω

(
qn − wn,

1

n

)
+ ω

(
wn,

1

n

)]
≤ cω

(
w,

1

n

)
.
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Thus we obtain

∥φwnp′n∥I ≤
3

2
∥φqnp′n∥I ≤

3

2
∥φ(qnpn)′∥I +

3

2
∥φq′npn∥I . (22)

We estimate the two terms on the right hand side separately. Concerning
the first term, we use the ordinary Bernstein inequality for the polynomial
qnpn ∈ P(c+1)n to get

∥φ(qnpn)′∥I ≤ cn∥qnpn∥I ≤ cn∥wnpn∥I , (23)

where we used (20).

As for the second term, using (21) and ω

(
w,

1

n

)
≤ wn(x) we get

∥φq′npn∥I ≤ cnω

(
w,

1

n

)
∥pn∥I ≤ cn∥wnpn∥I .

Collecting these estimates, we obtain the statement of the theorem in
Case 1.

Case 2: r ≥ 1. Then there exist polynomials qn ∈ Pcn such that

∥w(i)
n − q(i)n ∥I ≤

1

2nr−i
ω

(
w(r),

1

n

)
(i = 0, . . . , r) , (24)

provided c > 1 is large enough. Using this estimate with i = 0 as well as the

inequality
1

nr
ω

(
w(r),

1

n

)
≤ wn(x), we obtain (20). Next, using (24) with

i = 1 as wells as (18) we get

|q′n(x)| ≤ w′(x) +
1

2nr−1
ω

(
w(r),

1

n

)

≤ c
w(x)

x
+ cnwn(x) ≤ cnwn(x) (1/n ≤ |x| ≤ 1) .

Hence by the Remez inequality

∥φq′npn∥I ≤ c∥q′npn∥I{1/n ≤ |x| ≤ 1} ≤ cn∥wnpn∥I .

Using (22)-(23) together with this estimate, we can finish the proof as in
Case 1. �
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Remark. In particular, if

wn(x) = wα,β(x) +
c

nα
(0 < α ≤ β) ,

then we have (19). Namely, in this case

r =

{
[α] if α > [α],

α− 1 if α = [α] > 0 ,

ω(w(r), h) ≤ hα−r, and for α > 1, (18) holds.

Moreover, if α = β > 0, then we obtain by the classic Remez inequality

∥φwα,αp′n∥I ≤ ∥φwnp′n∥I ≤ cn∥wnpn∥I ≤ ∥wα,αpn∥I + cn1−α∥pn∥I

≤ cn∥wnpn∥I ≤ ∥wα,αpn∥I+cn1−α∥pn∥I+cn1−α∥pn∥{|x|≥1/n} ≤≤ cn∥wα,αpn∥I
which is just a special case of the inequality (7.28) in [4].
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