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Wheat dwarf virus (WDV) is an economically important, phloem-

limited, insect-transmitted virus belonging to the Geminiviridae

family (Tholt et al., 2018). WDV strains infect both wheat and

barley causing severe yield losses and the natural resistance

resources are limited (Nygren et al., 2015). Direct utilization of

the CRISPR/Cas9 system to inhibit geminivirus replication has

been described in model plants (Zaidi et al., 2016). Here, we

show the direct antiviral utilization of the CRISPR/Ca9 system in

an important crop plant, barley (Hordeum vulgare L. cv. Golden

promise), to establish an effective WDV resistance.

To identify multiple target sites, we mapped the WDV genome

for potential CRISPR/Cas9 target sequences encompassing the

PAM motif. To create protection against multiple virus strains, the

genomic sequence of two barley and two wheat WDV strains

were used to identify potential sgRNA target sites located in

conservative regions (Figure S1). Four target sites were selected

which did not exhibit in silico predicted off-target effects and

attack different viral DNA segments (Table S1, Figure S2). The

sgRNA_WDV1 shows complementarity to the overlapping region

of the MP and CP coding sequence, sgRNA_WDV2 targets the

Rep/RepA coding sequence at the N-terminus of the proteins

while sgRNA_WDV3 the LIR region, sgRNA_WDV4 targets

genomic region encoding the C-terminus of Rep (Figure 1a).

An Agrobacterium-mediated transient expression system was

built to assess the biological activity of the sgRNA constructs on

their target sequences. The individual sgRNA constructs were

cloned into a binary vector [pKSE401; (Xing et al., 2014)] contain-

ing a 35S promoter-driven Cas9 expression cassette (Figure 1b)

and transformed into Agrobacterium tumefaciens. We generated

transient in vivo sensor systems by introducing single 24-nt long

sgRNA target sequences containing the PAM region in-frame after

the start codon of the dsRED reporter gene. These sensor

constructs were then cloned into binary vectors under the control

of the 35S promoter (Figure 1c) and transformed into A. tumefa-

ciens. The Agrobacterium-mediated transient co-transformation

experiments were carried out by co-infiltrating the dsRED sensor

constructs with the particular sgRNAs; hence the inhibited activity

of the dsRED reflects the activity of the sgRNAs (Figure 1d). We

found that all the four sgRNAs inhibited the activity of the adequate

sensor construct. Control agroinfiltration experiments confirmed

the sequence-specific actions of the tested WDV-specific sgRNAs

(Figure S3 and S4).

To produce transgenic plants a binary construct harbouring the

four WDV-specific sgRNAs (1-4) under the control of three

different monocotyledon-specific small nuclear RNA promoters

was constructed (WDVGuide4Guard) using the vector system

described previously (Xing et al., 2014). This vector also expresses

a codon-optimized maize Cas9 under the control of the mono-

cotyledon-specific maize Ubi1 promoter (Figure 1e). Barley plants

(cv. Golden Promise) were used for Agrobacterium-mediated

transformation as described previously (Kis et al., 2016) and 20

transformants were collected from four independent calli. We

selected four T0 lines, representatives of the four different calli,

and checked the lines for the presence of the transgene casette

by PCR analyses and sequencing (Figure S5). These transgenic

plants were indistinguishable from the wild-type barley plants

indicating that the presence of the transgene cassette does not

interfere with normal development. We used these T0 transgenic

lines and control plantlets for challenge infection studies.

We produced WDV-infected barley plants by Agrobacterium-

mediated delivery of an agroinfectious WDV clone, as described

previously (Kis et al., 2016). These plants were used to feed the
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reared Psammotettix alienus (Dahlbom) leafhoppers to acquire

WDV. Next, isolation chambers containing the WDV-carrying

leafhoppers were applied onto plants to mimic the natural

infection process. The selected four transgenic lines and control

plants were further grown in a climate chamber at 12–15 °C and

challenge infected by WDV-carrying leafhoppers at the 3–4 leaves

stage. The infection processes of the transgenic and control

barley plants were monitored by molecular techniques: PCR

analysis, detecting the presence of viral genomic DNA while

northern blot analyses of WDV-specific Rep RNA quantitatively

indicating active virus replication, and also by phenotypic obser-

vations (Figure 1f and g). In all the virus-inoculated leaves, we

could detect the presence of virus-specific DNA by PCR at 7 days

postinfection (DPI; Figure 1f). This observation indicates that the

viral DNA has been successfully delivered by the vector insects.

After 42 DPI, the control plants showed signs of dwarfing typical

of WDV infection and the abundant accumulation of virus-

associated DNA and RNA products, while no signs of infection

could be detected on the transgenic lines. However, at 56 DPI,

although no visible disease symptoms were observed and the viral

RNAs could not be detected by northern blot, the presence of

viral DNA was confirmed by PCR in line 2. The other transgenic

lines showed no virus presence. As the viral infection advances,

the control plants showed severe viral disease symptoms and high

level of virus accumulation (Figure 1f and g). WDVGuide4-

Guard_2 line exhibited effective virus tolerance since despite

the accumulation of virus DNA and RNA products at 112 DPI and

the plant showed normal phenotype and produced spikes

similarly to the noninfected control plant. WDVGuide4Guard

lines 1, 3 and 4 exhibited no viral symptoms, and the presence of

the virus was detected neither by northern blot nor PCR analysis.

These data indicated that these lines are fully resistant to the

insect vector-mediated WDV infection.

Next, we investigated the presence of different sgRNAs in the

infected plants at 112 DPI. RT-PCR analyses confirmed the

expression of sgRNA_WDV1, sgRNA_WDV2 and sgRNA_WDV4,

however, sgRNA_WDV3 did not accumulate in any of the lines

(Figure 1h). The lack of proper accumulation of this sgRNA can be

explained by the high T content of the spacer sequence of

sgRNA_WDV3 which may result in transcriptional termination by

RNApolymerase III (Hamada et al., 2000).We also found that there

is no direct correlation between resistance and the level of Cas9

protein since the tolerant WDVGuide4Guard_2 line contained a

high level of Cas9 while the resistant WDVGuide4Guard_1

produced less Cas9 (Figure S6). Next, we amplified the WDV strain

present in WDVGuide4Guard_2 line by PCR to assess potential

recombination events at the recognition sites of sgRNAs. The direct

sequencing of the PCR products revealed that only the

sgRNA_WDV2 worked, inducing a three-nucleotide insertion in

the WDV genome (Figure 1i). The sequence analyses of the three

other sgRNA target sites recovered no changes (Figure S7). The

absence of recombination events at the target sites of

sgRNA_WDV1 and sgRNA_WDV4 suggests that the efficient

activity of sgRNA_WDV2 can be responsible for theWDV resistance

or tolerance. To test the heritability of the introduced trait of we

collected seeds from a sibling plant of WDVGuide4Guard_2 (T0)

line and investigated ten selected lines from T1 progeny plants.

These healthy T1 plants were challenge infected byWDV (wild type

strain) carrying leafhoppers similarly to the T0 plants. The virus

delivery by leafhopperswas successful in all plants demonstrated by

the presence of virus-specific DNA by PCR at 7 DPI (Figure S8a). At

Figure 1 CRISPR/Cas9-mediated WDV resistance in barley. (a)

Schematic representation of the WDV genome with the four selected

guide RNA target site positions (sg1, sg2, sg3, sg4). (b) Schematic

representation of the dicotyledonous-specific sgRNA and Cas9-

expressing binary vector. (c) Physical map of the sgRNA-sensor vectors.

The 24-nt WDV target sequences with the PAM motif are fused

individually to the dsRED-encoding sequence in-frame after the

translation start codon (ATG). (d) The results of Agrobacterium-

mediated transient sensor tests in Nicotiana benthamiana leaves.

Expression of the dsRED sensor constructs containing the four different

WDV target sites (WDV1, WDV2, WDV3 or WDV4) co-infiltrated with

the corresponding sgRNAs (sg1, sg2, sg3 or sg4) or nonspecific guide

RNA (M) at 3 days postinoculation. (e) Schematic representation of the

WDVGuide4Guard binary vector with the four different WDV genome-

specific sgRNA sequences and the maize codon-optimized Cas9 gene

controlled by the constitutive maize Ubi1 promoter. (f) Rep-specific PCR

assays from inoculated leaves at 7 DPI (day postinfection) at the time of

removal of WDV-carrying leafhoppers (upper panel). Northern blot

hybridization and Rep-specific PCR assays from systemically infected

leaves at the indicated time points (bottom panels). Relative gel loadings

in the northern blot assay are indicated by ethidium bromide staining of

the ribosomal RNAs (rRNA). (g) Phenotypic analysis of the WDV-infected

transgenic lines (WDVGuide4Guard1–4) in comparison with control-

infected (WDV1 and 2) and noninfected mock (M) wild-type plants at

different time points after infection (42, 56, 77, 112 DPI). Bar = 10 cm.

(h) RT-PCR analysis of the expressions of four sgRNAs (sg1, sg2, sg3,

sg4) and the Cas9 RNA in transgenic lines (WDVGuide4Guard1–4) and

wild-type control (M) plant at 112 DPI. Relative RNA loadings are

indicated by actin RT-PCR as an internal control. p – WDVGuide4Guard

plasmid DNA as PCR technical control. (i) Sequence analyses of

sgRNA_WDV2 target site of PCR products originating from WDV

genomes isolated from infected wild-type (WDV1) and transgenic T0

plant (line 2). Red box indicates the inserted phenylalanine (Phe) coding

TTT nucleotides in the mutant virus originated from line 2. PAM,

protospacer adjacent motif.

ª 2019 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd., 17, 1004–1006

Letters 1005



112 DPI, the control barley plants displayed the typical symptoms

normally associated withWDV infections and high-level accumula-

tion of viral DNA and RNA products. In contrast, seven of the ten

progeny lines showed no phenotypic signs of virus infection and no

WDV-derived products were detected by PCR or northern blot

analyses. However, virus derived products accumulated in three

progeny lines (2.1, 2.5 and 2.10; Figure S8a and b). Similarly to the

T0 plants sgRNA_WDV3 did not accumulate in the progeny lines

(Figure S8c) and Cas9 production was at high or average levels in

lines which became WDV infected (Figure S9). The developing

disease symptoms in infected T1 lines were different: 2.5. and 2.10

exhibited moderate and severe phenotypic alterations, respec-

tively, while 2.1 showed no visible symptoms. Sequencing of the

PCR products ofmutantWDV strains revealed that 2.1 and 2.5 lines

contained mixed sequence variants at the location of the

sgRNA_WDV2 target site while a nucleotide substitution at this

target site evolved a single recombinant WDV strain in the 2.10

(Figure S10). The presence of different, independently generated

mutant WDV strains might responsible for the development of

altered disease symptoms in T1 lines. Similarly to T0 plants the

recombinantWDV strains do not display anymutations at the three

other target sites, strongly suggesting that these sgRNAs are

ineffective on the viral genome (Figure S10). These results indicate

that the introduced trait is stably heritablemediating the expression

of sgRNAs and providing WDV resistance or tolerance. The used

oligonucleotides are listed in Table S2.

Our results demonstrate that in case of lacking natural resistance

resources, the CRISPR/Cas9 system can be utilized to establish

extremely efficient resistance in monocotyledonary plants to combat

an economically important, insect vector-transmitted, destructive

DNA virus. However, the selection of potent sgRNAs and ensuring

their proper expression areprerequisites of the optimal result. The co-

application of different alternative biotechnological techniques can

provide a powerful solution for elaborating durable, long-lasting,

highly efficient broad-spectrum resistance (Fuchs, 2017). The rapid

technological evolution of genome editing techniques (Wu et al.,

2018) and their adaptation to revolutionary newapplications, suchas

direct targeting of viruses with RNA genomes (Aman et al., 2018;

Zhang et al., 2018), will evolve this technology to one of the most

powerful molecular biology tools enabling the fast introduction of

efficient resistances against newly emerging pathogens.
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Figure S1 Positions of the 19 selected conservative target

sequences with the PAM site on the alignment of two barley

(AM747816.1, FM210034.1) and two wheat (FN806785,

FN806786) infecting WDV genomes.

Figure S2 The sequence details of the four selected target sites

(virion-sense orientation) with the spacer sequences of the

sgRNAs.

Figure S3. T7 endonuclease assay for detecting DNA repair event

in the dsRED sensor constructs. Red arrow indicates the T7

endonuclease cleavage products.

Figure S4 Control experiment for potential unspecific activities of

sgRNAs in Agrobacterium-mediated transient system in tobacco.

Figure S5 PCR analysis of the T0 barley line (1-4) with

WDV_sg1D_F and Ubi1_det_5’_R, w – wild plant, p – WDVGui-

de4Guard plasmid, dv – distillated water.

Figure S6 Cas9 western blot analysis of transgenic T0 barley lines

(1-4) and non-infected wild type barley plant (M) at 112 days post

infection (DPI).

Figure S7 Sequence analysis of the resistance breaking WDV

genome. WDV strains were isolated from infected wild-type

(WDV1) and the transgenic T0 plant (line 2) and sequence

analyses were carried out at the four target sites of sgRNAs (WDV

target 1-4).

Figure S8 Investigation of the T1 (line 2) progeny transgenic

barley lines after insect-mediated WDV infection.

Figure S9 Cas9 western blot analysis of transgenic barley T1 (line

2) progeny plants and non-infected wild type barley plant (Mock)

at 112 DPI.

Figure S10 Sequence analysis of the resistance breaking WDV

genomes in T1 plants.

Table S1 The potential off-target effects of WDV specific sgRNAs

on barley and wheat genomes based on Ensembl database

(http://plants.ensembl.org) BLAST.

Table S2 List of oligos used in this work.
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