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Semi-algebraic colorings of complete graphs

Jacob Fox∗ János Pach† Andrew Suk‡

Abstract

We consider m-colorings of the edges of a complete graph, where each color class is defined
semi-algebraically with bounded complexity. The case m = 2 was first studied by Alon et al.,
who applied this framework to obtain surprisingly strong Ramsey-type results for intersection
graphs of geometric objects and for other graphs arising in computational geometry. Considering
larger values of m is relevant, e.g., to problems concerning the number of distinct distances
determined by a point set.

For p ≥ 3 and m ≥ 2, the classical Ramsey number R(p;m) is the smallest positive integer
n such that any m-coloring of the edges of Kn, the complete graph on n vertices, contains
a monochromatic Kp. It is a longstanding open problem that goes back to Schur (1916) to
decide whether R(p;m) = 2O(m), for a fixed p. We prove that this is true if each color class is
defined semi-algebraically with bounded complexity. The order of magnitude of this bound is
tight. Our proof is based on the Cutting Lemma of Chazelle et al., and on a Szemerédi-type
regularity lemma for multicolored semi-algebraic graphs, which is of independent interest. The
same technique is used to address the semi-algebraic variant of a more general Ramsey-type
problem of Erdős and Shelah.

1 Introduction

The Ramsey number R(p;m) is the smallest integer n such that any m-coloring on the edges of the
complete n-vertex graph contains a monochromatic copy of Kp. The existence of R(p;m) follows
from the celebrated theorem of Ramsey [20] from 1930, and for the special case when p = 3, Issai
Schur proved the existence of R(3;m) in 1916 in his work related to Fermat’s Last Theorem [21].
He showed that

Ω(2m) ≤ R(3;m) ≤ O(m!).

While the upper bound has remained unchanged over the last 100 years, the lower bound was
successively improved and the current record is R(3;m) ≥ Ω(3.199m) due to Xiaodong et al. [25].
It is a major open problem in Ramsey theory, for which Erdős offered some price money, to close
the gap between the lower and upper bounds for R(3;m).

In this paper, we study edge-colorings of complete graphs where each color class is defined
algebraically with bounded complexity. It is known that several classic theorems in graph theory
can be improved for intersection graphs of geometric objects of bounded “description complexity”
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or bounded VC-dimension, graphs of incidences between points and hyperplanes, distance graphs,
and, more generally, for semi-algebraic graphs [1, 11, 5, 10, 22]. To make this statement more
precise, we need to introduce some terminology. Let V be an ordered point set in R

d, and let
E ⊂

(

V
2

)

. We say that E is a semi-algebraic relation on V with complexity at most t if there are at
most t polynomials g1, . . . , gs ∈ R[x1, . . . , x2d], s ≤ t, of degree at most t and a Boolean formula Φ
such that for vertices u, v ∈ V such that u comes before v in the ordering,

(u, v) ∈ E ⇔ Φ(g1(u, v) ≥ 0; . . . ; gs(u, v) ≥ 0) = 1.

At the evaluation of gℓ(u, v), we substitute the variables x1, . . . , xd with the coordinates of u, the
variables xd+1, . . . , x2d with the coordinates of v. We may assume that the semi-algebraic relation E
is symmetric, i.e., for all points u, v ∈ R

d, (u, v) ∈ E if and only if (v, u) ∈ E. Indeed, given such an
ordered point set V ⊂ R

d and a not necessarily symmetric semi-algebraic relation E of complexity
at most t, we can define V ∗ ⊂ R

d+1 with points (v, i) where v ∈ V and v is the ith smallest element
in the given ordering of V . Then we can define a symmetric semi-algebraic relation E∗ on the
pairs of V ∗ with complexity at most 2t+ 2, by comparing the value of the last coordinates of the
two points, and checking the relation E using the first d coordinates of the two points. We will
therefore assume throughout this paper that all semi-algebraic relations we consider are symmetric,
and the vertices are not ordered. Hence, all edges are unordered and we denote uv = {u, v}. We
also assume that the dimension d and complexity t are fixed parameters, and n = |V | tends to
infinity.

Let Rd,t(p;m) be the minimum n such that every n-element point set V in R
d equipped with

m semi-algebraic binary relations (edge-colorings) E1, . . . , Em ⊂
(V
2

)

, each of complexity at most

t, where E1 ∪ · · · ∪ Em =
(

V
2

)

, contains a subset S ⊂ V of size p such that
(

S
2

)

⊂ Ek for some k.
Clearly, Rd,t(p;m) ≤ R(p;m). For this setting, it was known that for fixed d, t ≥ 1, Rd,t(3;m) =
2O(m log logm), which is much smaller than Schur’s bound R(3;m) = O(m!) mentioned in the first
paragraph of the Introduction; see [22]. In this paper, we completely settle Schur’s problem for
semi-algebraic graphs, by showing that in this setting Schur’s lower bound is tight. In fact, we
prove this in a more general form, for any p ≥ 3.

Theorem 1.1. For fixed integers d, t ≥ 1 and p ≥ 3, we have

Rd,t(p;m) = 2O(m).

Our proof uses geometric techniques and is based on the Cutting Lemma of Chazelle, Edels-
brunner, Guibas, and Sharir [3] described in Section 2.

Edge-colorings of semi-algebraic graphs with m colors can be used, e.g., for studying problems
concerning the number of distinct distances determined by a point set; see [12]. One can ex-
plore the fact that multicolored semi-algebraic graphs have a very nice structural characterization,
reminiscent of Szemerédi’s classic regularity lemma for general graphs [24], but possessing much
stronger homogeneity properties. Our next theorem provides such a characterization, which is of
independent interest. To state our result, we need some notation and terminology.

A partition is called equitable if any two parts differ in size by at most one. According to
Szemerédi’s lemma, for every ε > 0 there is a K = K(ε) such that the vertex set of every graph has
an equitable partition into at most K parts such that all but at most an ε-fraction of the pairs of
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parts are ε-regular.1 It follows from Szemerédi’s proof that K(ε) may be taken to be an exponential
tower of 2s of height ε−O(1). Gowers [14] used a probabilistic construction to show that such an
enormous bound is indeed necessary.

Alon et al. [1] (see also Fox, Gromov et al. [9]) established a strengthening of the regularity
lemma for point sets in R

d equipped with a semi-algebraic relation E. It was shown in [1] that for
any semi-algebraic graph of bounded complexity defined on the vertex set V ⊂ R

d (that is, for any
semi-algebraic binary relation E ⊂

(V
2

)

), V has an equitable partition into a bounded number of
parts such that all but at most an ε-fraction of the pairs of parts (V1, V2) behave not only regularly,
but homogeneously in the sense that either V1 × V2 ⊆ E or V1 × V2 ∩ E = ∅. The first proof of
this theorem was essentially qualitative: it gave a poor estimate for the number of parts in such a
partition. Fox, Pach, and Suk [11] gave a stronger quantitative form of this result, showing that
the number of parts can be taken to be polynomial in 1/ε.

Let V be an n-element point set in R
d equipped with m semi-algebraic relations E1, . . . , Em

such that E1 ∪ · · · ∪ Em =
(V
2

)

of bounded complexity. In other words, suppose that the edges of
the complete graph on V are colored with m colors, where each color class is semi-algebraic. Then,
for any ε > 0, an m-fold repeated application of the result of Fox, Pach, and Suk [11] gives an
equitable partition of V into at most K ≤ (1/ε)cm parts such that all but an ε-fraction of the pairs
of parts are complete with respect to some relation Ek, i.e., all edges between the two parts are of
color k, for some k. In Section 4, we strengthen this result by showing that the number of parts
can be taken to be polynomial in m/ε.

Theorem 1.2. For any positive integers d, t ≥ 1 there exists a constant c = c(d, t) > 0 with the
following property. Let 0 < ε < 1/2 and let V be an n-element point set in R

d equipped with semi-
algebraic relations E1, . . . , Em such that each Ek has complexity at most t and

(

V
2

)

= E1∪· · ·∪Em.
Then V has an equitable partition V = V1 ∪ · · · ∪ VK into at most 4/ε ≤ K ≤ (m/ε)c parts such
that all but an ε-fraction of the pairs of parts are complete with respect to some relation Ek.

In Section 5, we apply this result to solve a problem of Erdős and Shelah [6]) in the semi-
algebraic setting. Let d, t, p, q, n be positive integers, p ≥ 3, and 2 ≤ q ≤

(p
2

)

. Let fd,t(n, p, q) be the
minimum m such that there exists a semi-algebraic m-coloring of the edges of the complete graph
of n vertices (with parameters d and t, as above) with the property that any p vertices induce at
least q distinct colors. Our next theorem precisely determines the smallest q for a given p, where
fd,t(n, p, q) changes from log n to a power of n.

Theorem 1.3. For fixed integers d, t ≥ 1, there is a c = c(d, t) > 0 such that for p ≥ 3, we have

fd,t(n, p, ⌈log p⌉+ 1) ≥ Ω
(

n
1

c log2 p

)

.

Moreover, for t ≥ 4,

fd,t(n, p, ⌈log p⌉) ≤ O(log n).

In [12], we studied a geometric instance of this problem, where every set of p points induces at
least q distinct distances.

1For a pair (Vi, Vj) of vertex subsets, e(Vi, Vj) denotes the number of edges in the graph running between Vi and

Vj . The density d(Vi, Vj) is defined as
e(Vi,Vj)

|Vi||Vj |
. The pair (Vi, Vj) is called ε-regular if for all V ′

i ⊂ Vi and V ′
j ⊂ Vj

with |V ′
i | ≥ ε|Vi| and |V ′

j | ≥ ε|Vj |, we have |d(V ′
i , V

′
j )− d(Vi, Vj)| ≤ ε.
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Our paper is organized as follows. In the next section, we describe the Cutting Lemma of
Chazelle et al., which is the main geometric tool used in all proofs. In Section 3, we establish
Theorem 1.1. Section 4 contains the proof of our multicolored semi-algebraic regularity lemma,
Theorem 1.2, which is then applied in the following section to deduce Theorem 1.3. We end this
paper with some concluding remarks.

2 The cutting lemma

The main tool we use to prove Theorems 1.1 and 1.2 is commonly referred to as the cutting lemma,
which we now recall. A set ∆ ⊂ R

d is semi-algebraic if there are polynomials g1, . . . , gt and a
boolean formula Φ such that

A = {x ∈ R
d : Φ(g1(x) ≥ 0; . . . ; gt(x) ≥ 0) = 1}.

We say that a semi-algebraic set in d-space has description complexity at most t if the number of
inequalities is at most t, and each polynomial gi has degree at most t. Let σ ⊂ R

d be a surface
in R

d, that is, σ is the zero set of some polynomial h ∈ R[x1, . . . , xd]. The degree of a surface
σ = {x ∈ R

d : h(x) = 0} is the degree of the polynomial h. We say that the surface σ ⊂ R
d crosses

a semi-algebraic set ∆ if σ ∩∆ 6= ∅ and ∆ 6⊂ σ.
Let Σ be a collection of surfaces in R

d, each having bounded degree. A (1/r)-cutting for Σ is a
family Ψ of disjoint (possibly unbounded) semi-algebraic sets of bounded complexity such that

1. each ∆ ∈ Ψ is crossed by at most |Σ|/r surfaces from Σ, and

2. the union of all ∆ ∈ Ψ is Rd.

In [3], Chazelle et al. (see also [15]) proved the following.

Lemma 2.1 (Cutting lemma). Let Σ be a multiset of N surfaces in R
d, each surface having degree

at most t, and let r be an integer parameter such that 1 ≤ r ≤ N . Then there is a constant
c1 = c1(d, t) such that Σ admits a (1/r)-cutting Ψ, where |Ψ| ≤ c1r

2d, and each semi-algebraic set
∆ ∈ Ψ has complexity at most c1.

We note that the original statement of Chazelle et al. [3] and Koltun [15] is stronger. Namely, they
also guarantee that the number of cells in the cutting Ψ is at most r2d−4+ǫ for d ≥ 4. Here, for
simplicity, we use the weaker bound of c1r

2d, as stated above.

3 Multicolor Ramsey numbers for small cliques

–Proof of Theorem 1.1

Theorem 1.1 will easily follow from Theorem 3.1 below. For integers p1, . . . , pm ≥ 2, d, t ≥ 1, let
Rd,t(p1, . . . , pm) be the minimum integer n with the following property. Every complete graph Kn,
whose n vertices lie in R

d and whose edges are colored with m colors such that each color class is
defined by a semi-algebraic relation of description complexity t, contains a monochromatic copy of
Kpk in color k for some 1 ≤ k ≤ m.
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Theorem 3.1. For any d, t ≥ 1 and p ≥ 3, there exists a constant c = c(d, t, p) satisfying the
following condition. For any m integers p1, . . . , pm ≤ p, we have

Rd,t(p1, . . . , pm) ≤ 2c
∑m

k=1 pk .

Proof. Fix d, t ≥ 1, p ≥ 3 and set c = c(d, t, p) to be a large constant that will be determined
later. We will show that Rd,t(p1, . . . , pm) ≤ 2c

∑m
k=1 pk by induction on s =

∑m
k=1 pk. The base case

s ≤ 10 · 210dtp follows for c sufficiently large.
Now assume that the statement holds for s′ < s. Set n = 2cs and let V be an n-element point

set in R
d equipped with semi-algebraic relations E1, . . . , Em ⊂

(V
2

)

such that
(V
2

)

= E1 ∪ · · · ∪ Em

and each Ek has complexity at most t. Let us remark the an edge uv may have several colors. We
will show that there is a subset S ⊂ V of size pk such that

(S
2

)

⊂ Ek for some k ∈ [m], in other
words, we will find a monochromatic copy of Kpk in color k for some k ∈ [m]. Throughout the
proof, we will let c1 be as defined in Lemma 2.1.

For each relation Ek, there are t polynomials gk,1, . . . , gk,t of degree at most t, and a Boolean
function Φk such that

uv ∈ Ek ⇔ Φk(gk,1(u, v) ≥ 0, . . . , gk,t(u, v) ≥ 0) = 1.

For 1 ≤ k ≤ m, 1 ≤ ℓ ≤ t, v ∈ V , we define the surface σk,ℓ(v) = {x ∈ R
d : gk,ℓ(v, x) = 0}.

Before we continue, let us briefly sketch the idea of the proof. We start by applying Lemma 2.1
(the cutting lemma) to Σ = {σk,ℓ(v) : k ∈ [m], ℓ ∈ [t], v ∈ V } and obtain a space partition which
induces a partition of the vertex set V = V1 ∪ · · · ∪ VK . If there is a “large” part Vj with many
distinct colors appearing in Vj × (V \Vj), then we show that Vj induces few distinct colors, and by
induction we can find a monochromatic copy of Kpk for some k ∈ [m]. If none of the “large” parts
has the above property, the colors of nearly all edges can be defined by much fewer polynomial
inequalities, i.e., by a much small set of surfaces Σ′ ⊂ Σ . Now we can repeat.

In what follows, we spell out these ideas in full detail. Set m0 = m and define mi =
4d log(c1mi−1t) for i > 0. We will establish the following claim.

Claim 3.2. Let V and E1, . . . , Em ⊂
(V
2

)

be defined as above. Then we will recursively find either

1. a monochromatic copy of Kpk in color k for some k ∈ [m], or

2. a function χi : V → 2[m] such that |χi(v)| ≤ mi, and the number of edges uv ∈
(V
2

)

with the
property that for one of its endpoints, say u, no color assigned to uv belongs to χi(u), is at

most 4n2

tmi−1
. We will refer to these edges as bad at stage i. All edges that are not bad are

called good at this stage, meaning that, there is a color k appearing on uv such that k ∈ χi(u),
and there is a color k′ appearing on uv such that k′ ∈ χi(v).

Proof. We start by setting χ0(v) = [m] for all v ∈ V , and m0 = m. Having found χi with the
properties above, we will produce χi+1 as follows. We have mi+1 = 4d log(c1mit), and let us assume

that mi > (8c1dtp)
2. Hence, there are at most 4n2

tmi−1
bad edges. Let Σ be the set of surfaces σk,ℓ(v),

where v ∈ V , k ∈ χi(v), and 1 ≤ ℓ ≤ t. This implies that |Σ| ≤ nmit.
We apply Lemma 2.1 to Σ with parameter r = (tmi)

2 to obtain a (1/(tmi)
2)-cutting Ψ =

{∆1,∆2, . . . ,∆K0}, such that K0 ≤ c1(tmi)
4d. Hence, we have a partition P0 : V = V1 ∪ · · · ∪ VK0 ,

where Vj = V ∩∆j for ∆j ∈ Ψ. For each part Vj of size greater than 2n/(tmi), we (arbitrarily)
partition Vj into parts of size ⌊2n/(tmi)⌋ and possibly one additional part of size less than 2n/(tmi).
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Let P : V = V1 ∪ · · · ∪ VK be the resulting partition, where K ≤ 2c1(tmi)
4d and |Vj | ≤ 2n/(tmi)

for all j.

Now we define χi+1(v) for all v ∈ V .

Case 1. If v ∈ Vj for some Vj with |Vj | <
n

2c1(tmi)4d+1 , we set χi+1(v) = ∅.

Case 2. Suppose v ∈ Vj such that |Vj | ≥
n

2c1(tmi)4d+1 . In order to define χi+1(v), we need some

preparation. Let ∆j ∈ Ψ such that Vj ⊂ ∆j. We define Xj ⊂ V \ Vj to be the set of vertices
from V \ Vj that gives rise to a surface in Σ that crosses ∆j. Hence |Xj | ≤ n/(tmi). Fix a vertex
v ∈ V \ {Vj ,Xj}. Since none of the surfaces of the form σk,ℓ(v), where k ∈ χi(v) and ℓ ∈ {1, . . . , t},
cross ∆j , either v × Vj is monochromatic with color k for some k ∈ χi(v), or none of the colors in
χi(v) appear in v×Vj. Let Sj be the set of vertices v ∈ V \{Vj ,Xj} satisfying the former condition
and let Tj denote the set of vertices v ∈ V \ {Vj ,Xj} satisfying the latter one. Since there are at
most 4n2/(tmi−1) bad edges, we have

|Tj |
n

2c1(tmi)4d+1
≤

4n2

tmi−1
,

which implies

|Tj | ≤
8nc1(tmi)

4d+1

tmi−1
≤

n

tmi
,

where the last inequality follows from the assumption mi > (8c2dtp)
2. Now, suppose there are at

least mi+1 = 4d log(c1tmi) distinct colors between Vj and Sj. Let I = {k1, . . . , kmi+1} ⊂ [m] be the
set of these mi+1 distinct colors. Then there are mi+1 vertices v1, . . . , vmi+1 ∈ Sj, possibly with
repetition, such that vw×Vj is monochromatic with color kw ∈ I, for each w ∈ {1, . . . ,mi+1}. Hence,
if Vj contains a monochromatic copy of Kpk−1 in color k ∈ I, we would have a monochromatic copy
of Kpk in color k. On the other hand, if Vj does not contain a monochromatic copy of Kpk−1 in
color k for no k ∈ I, then, using that

|Vj | ≥
n

2c1(tmi)4d+1
> 2cs−8d log(c1mit) > 2c(s−mi+1) = 2c(

∑
k∈I(pk−1)+

∑
k 6∈I pk)

for a sufficiently large c, we obtain by induction that there is a monochromatic copy of Kpk in color
k where k 6∈ I.

Therefore, we can assume that the number of distinct colors between Vj and Sj is less than
mi+1 = 4d log(c1mit). For every vertex v ∈ Vj, define χi+1(v) as the set of all colors that appear
on the edges belonging to v × Sj.

Now that we have defined mi+1 and χi+1 such that |χi+1(v)| ≤ mi+1 for all v ∈ V , it remains
to show that the number of edges uv ∈

(V
2

)

with the property that for one of its endpoints, say

u, no color assigned to uv belongs to χ(u), is at most 4n2

tmi
. Let B ⊂

(

V
2

)

be the collection of such
edges. Notice that if uv ∈ B, then either

1. both u and v lie inside the same part in the partition P, or

2. u or v lies inside a part Vj such that |Vj| <
n

2c1(tmi)4d+1 , or

3. u ∈ Vj with |Vj | ≥
n

2c1(tmi)4d+1 and v ∈ Xj ∪ Tj , or

6



4. v ∈ Vj with |Vj| ≥
n

2c1(tmi)4d+1 and u ∈ Xj ∪ Tj .

The number of edges of type 1 is at most tmi
2

(

2n
tmi

)2
/2 = n2/(tmi). The number of edges of type 2

is at most

(

n

2c1(tmi)4d+1

)

K · n ≤
n2

tmi
.

Since |Xj |, |Tj | ≤ n/(tmi), the number of edges of types 3 and 4 is at most

∑

j

|Vj |
2n

tmi
≤

2n2

tmi
.

Hence, |B| ≤ 4n2

tmi
. Therefore, either we have found a monochromatic copy of Kpk in color k for

some k ∈ [m], or we have found mi+1 and χi+1 with the desired properties.

Let w be the minimum integer such that mw ≤ (8c1dtp)
2. Then either we have found a

monochromatic copy of Kpk in color k for some k ∈ [m], or we have obtained mw and χw with the
desired properties. Since there are at most 4n2/(tmw−1) < n2/8 bad edges, there is a vertex v ∈ V
incident to at least n/2 good edges. Moreover, since χw(v) ≤ mw ≤ (8c1dtp)

2, at least n
2(8c1dtp)2

of

these edges incident to v have color k′ for some color k′ ∈ χw(v). Let S ⊂ V be the set of endpoints
of these edges. If S contains a monochromatic copy of Kpk′−1 in color k′, then we are done. On
the other hand, if S does not contain a monochromatic copy of Kpk′−1 in color k′, and using the
lower bound

|S| ≥
n

2(8c1dtp)2
=

2cs

2(8c1dtp)2
≥ 2c(

∑
k 6=k′ pk+(pk′−1)),

for c = c(d, t, p) sufficiently large, we conclude by induction that S contains a monochromatic copy
of Kpk for some k 6= k′. This completes the proof of Theorem 3.1.

4 Multicolor semi-algebraic regularity lemma

–Proof of Theorem 1.2

First, we prove the following variant of Theorem 1.2, which easily implies Theorem 1.2.

Theorem 4.1. For any ε > 0, every n-element point set V ⊂ R
d equipped with semi-algebraic

binary relations E1, . . . , Em ⊂
(V
2

)

such that
(V
2

)

= E1 ∪ · · · ∪ Em and each Ek has complexity at

most t, can be partitioned into K ≤ c2(
m
ε )

5d2 parts V = V1∪ · · · ∪VK, where c2 = c2(d, t), such that

∑ |Vi||Vj |

n2
≤ ε,

where the sum is taken over all pairs (i, j) such that (Vi, Vj) is not complete with respect to Ek for
all k = 1, . . . ,m.

7



Proof. For each relation Ek, let gk,1, . . . , gk,t ∈ R[x1, . . . , x2d] be polynomials of degree at most t,
and let Φk be a boolean formula such that

uv ∈ Ek ⇔ Φk(gk,1(u, v) ≥ 0; . . . ; gk,t(u, v) ≥ 0) = 1.

For each point x ∈ R
d, k ∈ {1, . . . ,m}, and ℓ ∈ {1, . . . , t}, we define the surface

σk,ℓ(x) = {y ∈ R
d : gk,ℓ(x, y) = 0}.

Let Σ be the family of tmn surfaces in R
d defined by

Σ = {σk,ℓ(u) : u ∈ V, 1 ≤ k ≤ m, 1 ≤ ℓ ≤ t}.

We apply Lemma 2.1 to Σ with parameter r = tm/ε to obtain a (1/r)-cutting Ψ, where

|Ψ| = s ≤ c1
(

tm
ε

)2d
, such that each semi-algebraic set ∆i ∈ Ψ has has complexity at most c1,

where c1 is defined in Lemma 2.1. Hence, at most tmn/r = εn surfaces from Σ cross ∆i for every
i. This implies that at most εn points in V give rise to at least one surface in Σ that cross ∆i.

Let Ui = V ∩ ∆i for each i ≤ s. We now partition ∆i as follows. For k ∈ {1, . . . ,m} and
j ∈ {1, . . . , s}, define ∆i,j,k ⊂ R

d by

∆i,j,k = {x ∈ ∆i : σk,1(x) ∪ · · · ∪ σk,t(x) crosses ∆j}.

Observation 4.2. For any i, j, and k, the semi-algebraic set ∆i,j,k has complexity at most c3 =
c3(d, t).

Proof. Set σk(x) = σk,1(x) ∪ · · · ∪ σk,t(x), which is a semi-algebraic set with complexity at most
c4 = c4(d, t). Then

∆i,j,k =

{

x ∈ ∆i :
∃y1 ∈ R

d s.t. y1 ∈ σk(x) ∩∆j, and
∃y2 ∈ R

d s.t. y2 ∈ ∆j \ σk(x).

}

.

We can apply quantifier elimination (see Theorem 2.74 in [2]) to make ∆i,j,k quantifier-free,
with description complexity at most c3 = c3(d, t).

Set Fi = {∆i,j,k : 1 ≤ k ≤ m, 1 ≤ j ≤ s}. We partition the points in Ui into equivalence classes,
where two points u, v ∈ Ui are equivalent if and only if u belongs to the same members of Fi as v
does. Since Fi gives rise to at most c3|Fi| polynomials of degree at most c3, by the Milnor-Thom
theorem (see [18] Chapter 6), the number of distinct sign patterns of these c3|Fi| polynomials is
at most (50c3(c3|Fi|))

d . Hence, there is a constant c5 = c5(d, t) such that Ui is partitioned into at
most c5(ms)d equivalence classes. After repeating this procedure to each Ui, we obtain a partition
of our point set V = V1 ∪ · · · ∪ VK with

K ≤ sc5(ms)d = c5m
dsd+1 ≤ c5t

2d(d+1)cd+1
1

(m

ε

)5d2

= c2

(m

ε

)5d2

,

where we define c2 = c5t
2d(d+1)cd+1

1 .
For fixed i, consider the part Vi. Then there is a semi-algebraic set ∆wi obtained from Lemma 2.1

such that Uwi = V ∩∆wi and Vi ⊂ Uwi ⊂ ∆wi . Now consider all other parts Vj such that not all of
their elements are related to every element of Vi with respect to any relation Ek where 1 ≤ k ≤ m.
Then each point u ∈ Vj gives rise to a surface in Σ that crosses ∆wi . By Lemma 2.1, the total
number of such points in V is at most εn. Therefore, we have

8



∑

j

|Vi||Vj | = |Vi|
∑

j

|Vj | ≤ |Vi|εn,

where the sum is over all j such that Vi×Vj is not contained in the relation Ek for any k. Summing
over all i, we have

∑

i,j

|Vi||Vj | ≤ εn2,

where the sum is taken over all pairs i, j such that (Vi, Vj) is not complete with respect to Ek for
all k.

Proof of Theorem 1.2. Apply Theorem 4.1 with approximation parameter ε/2. Hence, there is a
partition Q : V = U1∪· · ·∪UK ′ into K ′ ≤ (m/ε)c parts with c = c(d, t) and

∑

|Ui||Uj | ≤ (ε/2)|V |2,
where the sum is taken over all pairs (i, j) such that (Ui, Uj) is not complete with respect to Ek for
all k.

Let K = 8ε−1K ′. Partition each part Ui into parts of size |V |/K and possibly one additional
part of size less than |V |/K. Collect these additional parts and divide them into parts of size |V |/K
to obtain an equitable partition P : V = V1 ∪ · · · ∪ VK into K parts. The number of vertices of
V which are in parts Vi that are not contained in a part of Q is at most K ′|V |/K. Hence, the
fraction of pairs Vi × Vj with not all Vi, Vj are subsets of parts of Q is at most 2K ′/K = ε/4. As
ε/2 + ε/4 < ε, we obtain that less than an ε-fraction of the pairs of parts of P are not complete
with respect to any relation E1, . . . , Em.

5 Generalized Ramsey numbers for semi-algebraic colorings

–Proof of Theorem 1.3

Due to the lack of understanding of the classical Ramsey number R(p;m), Erdős and Shelah (see
[6]) introduced the following generalization, which was studied by Erdős and Gyárfás in [7].

Definition 5.1. For integers p and q with 2 ≤ q ≤
(

p
2

)

, a (p, q)-coloring is an edge-coloring of a
complete graph in which every p vertices induce at least q distinct colors.

Let f(n, p, q) be the minimum integer m such that there is a (p, q)-coloring of Kn with at most
m colors. Here, both p and q are considered fixed integers, where p ≥ 3, 2 ≤ q ≤

(p
2

)

, and n
tends to infinity. Trivially, we have f(n, p,

(p
2

)

) =
(n
2

)

, and at the other end, estimating f(n, p, 2) is
equivalent to estimating R(p;m) since f(n, p, 2) is the inverse of R(p;m). In particular,

Ω

(

log n

log log n

)

≤ f(n, 3, 2) ≤ O(log n). (1)

Erdős and Gyárfás [7] determined certain ranges for q ∈ {2, 3, . . . ,
(

p
2

)

} for which f(n, p, q) is
quadratic, linear, and subpolynomial in n. In particular, they showed that

Ω
(

n
1

p−2

)

≤ f(n, p, p) ≤ O
(

n
2

p−1

)

,

which implies that f(n, p, q) is polynomial in n for q ≥ p. Surprisingly, estimating f(n, p, p − 1) is
much more difficult. They [7] asked for p fixed if f(n, p, p− 1) = no(1) . The trivial lower bound is
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f(n, p, p − 1) ≥ f(n, p, 2) ≥ Ω
(

logn
log logn

)

, which was improved by several authors [17, 13], and it is

now known [4] that f(n, p, p− 1) ≥ Ω(log n). In the other direction, Mubayi [19] found an elegant
construction which implies f(n, 4, 3) ≤ eO(

√
logn), and later, Conlon et al. [4] gave another example

which implies f(n, p, p − 1) ≤ e(log n)
1−1/(p−2)+o(1)

. Hence, it is now known that f(n, p, p − 1) does
not grow as a power in n.

Here, we study the variant of the function f(n, p, q) for point sets V ⊂ R
d equipped with semi-

algebraic relations. Let fd,t(n, p, q) be the minimum m such that there is a (p, q)-coloring of Kn

with m colors, whose vertices can be chosen as points in R
d, and each color class can defined by a

semi-algebraic relation on the point set with complexity at most t. We note that here we require
that each edge receives exactly one color. Clearly, we have f(n, p, q) ≤ fd,t(n, p, q). Theorem 1.3
stated in the Introduction shows the exact value of q for which fd,t(n, p, q) changes from log n to a
power of n.

In the rest of this section, we prove Theorem 1.3. Let V be a set of points in R
d equipped with

semi-algebraic relations E1, . . . , Em such that each Ek has complexity at most t,
(V
2

)

= E1∪· · ·∪Em,
and Ek ∩ Eℓ = ∅ for all k 6= ℓ. Let S1, S2 ⊂ V be q-element subsets of V . We say that S1 and
S2 are isomorphic, denoted by S1 ≃ S2, if there is a bijective function h : S1 → S2 such that for
u, v ∈ S1 we have uv ∈ Ek if and only if h(u)h(v) ∈ Ek.

Let S ⊂ V be such that |S| = 2s for some positive integer s. We say that S is s-layered if s = 1
or if there is a partition S = S1 ∪ S2 such that |S1| = |S2| = 2s−1, S1 and S2 are (s − 1)-layered,
S1 ≃ S2, and for all u ∈ S1 and v ∈ S2 we have uv ∈ Ek for some fixed k. Notice that given an
s-layered set S, there are at most s relations Ek1 , . . . , Eks such that

(

S
2

)

⊂ Ek1 ∪ · · · ∪ Eks . Hence,
the lower bound in Theorem 1.3 is a direct consequence of the following result.

Theorem 5.2. Let s ≥ 1 and let V be an n-element point set in R
d equipped with semi-algebraic

relations E1, . . . , Em such that each Ek has complexity at most t, E1∪· · ·∪Em =
(V
2

)

, and Ek∩Eℓ =

∅ for all k 6= ℓ. If m ≤ n
1

cs2 , then there is a subset S ⊂ V such that |S| = 2s and S is s-layered,
where c = c(d, t).

Proof. We proceed by induction on s. The base case s = 1 is trivial. For the inductive step,
assume that the statement holds for s′ < s. We will specify c = c(d, t) later. We start by applying
Theorem 1.2 with parameter ε = 1

ms to the point set V , which is equipped with semi-algebraic
relations E1, . . . , Em, and obtain an equitable partition P : V = V1 ∪ · · · ∪ VK , where

K ≤ c2

(m

ε

)5d2

≤ c2m
10sd2 ,

and c2 = c2(d, t). Since all but an ε fraction of the pairs of parts in P are complete with respect
to Ek for some k, by Turán’s theorem, there are ms−1 + 1 parts V ′

i ∈ P such that each pair
(V ′

i , V
′
j ) ∈ P × P is complete with respect to some relation Ek. Since P is an equitable partition,

we have |V ′
i | ≥

n

c2m10d2s
. By picking c = c(d, t) sufficiently large, we have

|V ′
i |

1
c(s−1)2 ≥

(

n

c2m10d2s

)
1

c(s−1)2

≥ m
cs2−10c2d

2s

c(s−1)2 ≥ m.

By the induction hypothesis, each V ′
i contains an (s − 1)-layered set Si for i ∈ {1, . . . ,ms−1 + 1}.

By the pigeonhole principle, there are two (s − 1)-layered sets Si, Sj such that Si ≃ Sj. Since
Si × Sj ⊂ Ek for some k, the set S = Si ∪ Sj is an s-layered set. This completes the proof.
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To prove the upper bound for fd,t(n, p, ⌈log p⌉), when d ≥ 1 and t ≥ 100, it is sufficient to
construct a 2m-element point set V ⊂ R equipped with semi-algebraic relations E1, . . . , Em that
is m-layered. More precisely, for each integer m ≥ 1, we construct a set Vm of 2m points in R

equipped with semi-algebraic relations E1, . . . , Em such that

1. Vm with respect to relations E1, . . . , Em is m-layered,

2. E1 ∪ · · · ∪ Em =
(Vm

2

)

is a partition,

3. each Ei has complexity at most four, and

4. each Ei is shift invariant, that is uv ∈ Ei if and only if (u+ c, y + c) ∈ Ei for c ∈ R.

We start by setting V1 = {1, 2} and defining E1 = {u, v ∈ V1 : |u − v| = 1}. Having defined
the point set Vi and relations E1, . . . , Ei, we define Vi+1 and Ei+1 as follows. Let C = C(i) be a
sufficiently large integer such that C > 10maxu∈Vi u. Then we have Vi+1 = Vi ∪ (Vi + C), where
Vi + C is a translated copy of Vi. We now define the relation Ei+1 by

uv ∈ Ei+1 ⇔ C/2 < |u− v| < 2C.

Hence, Vi+1 with respect to relations E1, . . . , Ei+1 satisfies the properties stated above and is
clearly (i+ 1)-layered. One can easily check that any set of p points in Vm induces at least ⌈log p⌉
distinct relations (colors).

Let us remark that the arguments above hold for semi-algebraic relations E1, . . . , Em that are
not necessarily disjoint if one defines a (p, q)-coloring as follows. Given a coloring χ :

(

V (Kn)
2

)

→ 2[m]

on the edges of Kn, where each edge receives at least one color among [m], χ is a (p, q)-coloring if
for every set S ⊂ V of size p, no matter how you choose one color in χ(uv) for each edge uv ∈

(S
2

)

,
S will induce at least q distinct colors.

6 Concluding remarks

In [22], it was shown that R1,t(3;m) > (1681)m/7 for t > 5, thus implying that the upper bound in
Theorem 1.1 is tight up to a constant factor in the exponent. This can be improved as follows. Let
C(p) = limm→∞R(p;m)1/m. Note that this limit exists by considering product colorings, but may
be finite or infinite. Then for each C < C(p), there is a t = t(C, p), such that for all m sufficiently
large we have

R1,t(p;m) > Cm.

Indeed, take a fixed coloring of the edges of KN which realizes R(p;m0) > Cm0 , and recursively
blow up this graph by introducing m0 new colors at each stage. Then this coloring can be realized
semi-algebraically in R with t = O(m2

0) linear constraints for each color class based on distances.
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[24] E. Szemerédi, Regular partitions of graphs, Colloques Internationaux CNRS 260 Problémes
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