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Abstract This paper investigates the structural stability of long boring or milling tools. The tool is modelled by7

a rotating cantilever beam that is subject to compression and torsion, manifested by semi-tangential torque. The8

three-dimensional mathematical model is based on Euler–Bernoulli beam theory considering a linear three-9

dimensional problem. We obtain a dimensionless relationship between the relative importance of rotation,10

compression, and torsion that reveals the stability boundaries of the system.11

1 Modelling12

Consider a long boring or a milling tool (see Fig. 1a) modelled by a straight vertical cantilever beam. The13

beam rotates about its vertical axis as well as being subjected to torsion Mt and compression mg. Due to the14

presence of torsion, we are not able to analyse the system in two-dimensions [1]. The compression can be15

modelled by a lumped mass m attached to the free end of the beam (see Fig. 2a) that is much larger than the16

mass of the beam. Thus, the mass of the beam might be neglected. The beam is considered to be prismatic,17

homogeneous, linearly elastic and inextensible. It is either in compression or in tension depending on whether18

it stands upward or downward, respectively. The described system might become unstable depending upon the19

speed of rotation, the compression, the torsion, or a combination of all three [1].20

The arrangement of the model and the corresponding notation can be seen in Fig. 2a where the gravitational21

acceleration is denoted by g, the angular velocity is ω, the centrifugal force is mω2d1, the compression is mg22

and the torsional moment vector is Mt . Note that the twisting moment is assumed to be semi-tangential [3,4]23

depicted in Fig. 1b, that is, the forces F acting on the beam generate an axial torque Mt that is able to tilt24

about both the y and z axes. By taking into account only small displacement r = col
(

v w
)

and angles ψ, θ25

during buckling, the linearised form of the torque is Mt = Mt col
(

1 δ′
v/2 δ′

w/2
)

where Mt = 4Fa, and the26

bending components of Mt come from its resolution with respect to the principal system (ξ, η, ζ ) and by using27

the definition of the semi-tangential torque in the sense of Ziegler [3] (see Fig. 1b, c). In case of the principal28

system, we consider ξ to be tangential to the deflected beam, while η is parallel to the (x−y) plane and ζ is29

parallel to the (x−z) plane. The notations δ′
v and δ′

w define the corresponding angular rotations of the end of30

the beam (see Fig. 2a).31
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(a) (b) (c)

Fig. 1 a Model of the rotating tool. b Concept of the semi-tangential moment in the sense of Ziegler [3]. c Formulation of torsion

The mathematical model is obtained using the Euler–Bernoulli connection between curvature and bending32

moment [6]33

∂θ(s̃)

∂ s̃
= −

Mz(s̃)

IE
,

∂ψ(s̃)

∂ s̃
= −

My(s̃)

IE
, (1)34

where the slope angles in the direction y and z are defined by θ and ψ (see Fig. 2b), respectively, and s̃ is35

the arc length coordinate. The bending moment functions My,z(s̃) are expressed about y axis and z axis as36

follows:37

My(s̃) = −Mtθ(s̃) + mgs̃ψ(s̃) − mgδw + mω2δw(s̃ − L) +
1

2
Mtδ

′
v ,

Mz(s̃) = Mtψ(s̃) + mgs̃θ(s̃) − mgδv + mω2δv(s̃ − L) −
1

2
Mtδ

′
w ,

(2)38

where δv = v + δv and δw = w + δw at the end of the beam (see Fig. 2b). Since the variation of the torsional39

moment (the projection of Mt to ξ ) is of second order, the torsional stiffness of the beam is irrelevant from the40

viewpoint of buckling [6].41

The dimensionless length coordinate s = s̃/L is normalised by the length L of the beam. By taking into42

account Eqs. (1) and (2), and neglecting the nonlinear terms of the bending functions above, the bending43

moment balance gives the dimensionless differential equation system [2,5,6] for small θ and ψ in the form44

∂2θ(s)

∂s2
+ α

∂ψ(s)

∂s
+ γ θ(s) + χδv = 0 ,

∂2ψ(s)

∂s2
− α

∂θ(s)

∂s
+ γψ(s) + χδw = 0 ,

(3)45

where the parameter α = Mt L/IE specifies the relative importance of torsion to bending stiffness, γ =46

mgL2/IE is the relative importance of gravity to bending stiffness andχ = mω2L3/IE is the relative importance47

of rotation to bending stiffness.48

Let us introduce a complex function d(s) = θ(s) + iψ(s). Hence from Eq. (3), we have49

∂2d(s)

∂s2
− iα

∂d(s)

∂s
+ γ d(s) + χd1 = 0 , (4)50
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(a) (b)

Fig. 2 a Rotating beam subjected to torsion and compression. b Infinitesimal piece of the beam

where d1 = δv + iδw and d1 = col
(

δv δw

)

. The boundary conditions are51

θ(0) = 0 ,
∂θ(s)

∂s

∣

∣

∣

∣

s=1

= −
1

2
αδ′

w ,

ψ(0) = 0 ,
∂ψ(s)

∂s

∣

∣

∣

∣

s=1

=
1

2
αδ′

v ,

(5)52

where the free end conditions are originated in the semi-tangential torque [3] as discussed above. Using the53

complex function d , the boundary conditions above can be expressed as54

d(0) = 0 ,
∂d(s)

∂s

∣

∣

∣

∣

s=1

=
1

2
iαd ′

1 , (6)55

where d ′
1 = δ′

v + iδ′
w.56

In addition, we are able to specify a linear connection between an assumed radial function r(s) and d(s)57

(see Fig. 2b)58

∂r(s)

∂s
= d(s) , (7)59

where r(s) = v(s) + iw(s). It provides three additional conditions60

r(0) = 0 , r(1) = d1 ,
∂r(s)

∂s

∣

∣

∣

∣

s=1

= d ′
1 , (8)61

for the complex form Eq. (4) when it is transformed for r(s) .62

2 Stability63

The general solution of Eq. (4) is given by64

d(s) = Aeλ1s + Beλ2s −
χ

γ
d1 , λ1,2 = (µ ± ν)i ,

µ = α/2 , ν =
√

α2 + 4γ /2 ,

(9)65
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where λ1,2 are purely imaginary eigenvalues. Applying Eq. (6), the unknown coefficients A, B are given by66

A =
χ

γ
d1 −

1

2
iαd ′

1 −
χ

γ
d1λ1eλ1

λ2eλ2 − λ1eλ1
, B =

1

2
iαd ′

1 −
χ

γ
d1λ1eλ1

λ2eλ2 − λ1eλ1
. (10)67

In view of Eq. (7), the radial function r(s) is then given by68

r(s) = A
eλ1s

λ1
+ B

eλ2s

λ2
−

χ

γ
d1s + C . (11)69

By means of Eq. (8), we could eliminate d1 and d ′
1, to find70

χ

γ
=

eλ2 (iα − 2λ2) − eλ1 (iα − 2λ1)

iα

(

1 − eλ1

λ1
+ 1

)

(

eλ1 − eλ2
)

1 +
λ2

(

1 − eλ1
)

− λ1

(

1 − eλ2
)

λ1λ2

(

1 − eλ1

λ1
+ 1

)(

eλ1 − eλ2

1 − eλ1

) +
λ2

2eλ2
(

1 − eλ1 + λ1

)

− λ2
1eλ1

(

1 − eλ2 + λ2

)

iαλ1λ2

2

(

1 − eλ1

λ1
+ 1

)

(

eλ1 − eλ2
)

. (12)71

In order to proceed, we note that the right-hand side of Eq. (12) is in the form72

χ

γ
=

Pr + iPi

Qr + iQi

(13)73

where Pr , Pi and Qr , Qi are real quantities. Now the left-hand side of Eq. (12) is real. So the right-hand side74

of Eq. (13) must also be real and so its imaginary part has to vanish. Hence75

Pi Qr − Pr Qi = 0. (14)76

But then the real part of the right-hand side of Eq. (13) can be simplified so that we find77

χ

γ
=

Pr

Qr

. (15)78

So using Eqs. (15) and (12) simplifies greatly to become79

χ = −
γ 2ν cos ν

αν sin µ + γ ν cos ν − (2ν2 − γ ) sin ν
. (16)80

3 Results81

Equation (16) is the main result of this paper. It denotes the relationship between rotation, compression and82

torsion and generates stability boundaries for the system. When α tends to zero, we have µ = 0, ν = √
γ83

and so we obtain Wang’s result [1], that is, the case of a two-dimensional problem investigating a compressed,84

rotating beam in the absence of torsion85

χ = −
γ
√

γ cos
√

γ
√

γ cos
√

γ − sin
√

γ
(17)86

shown in Fig. 3a. The stability boundaries are slightly curved. Boundary 1 is asymptotic to the line χ = −γ87

and boundaries 2, 3 are asymptotic to the values of γ2 = 20.191 and γ3 = 59.679 , that are obtained from88

Eq. (17), when χ tends to infinity, that is89

√
γ cos

√
γ = sin

√
γ .90
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(a) (b)

(c) (d)

Fig. 3 a Stability boundaries in (χ−γ ) plane. b Stability boundaries in (χ−α) plane. c Stability boundaries in (α−γ ) plane. d
3D stability boundaries

When γ tends to zero (α �= 0), that is, the relative importance of gravity is negligible, we have that91

µ = ν = α/2 and hence from Eq. (16) by using L’Hospital’s rule92

χ =
α3

2(1 + µ2) tan µ − α
, (18)93

the stability boundaries can be seen in Fig. 3b. Boundary 1 tends to the line χ = 3 and boundaries are94

asymptotic to the values of α2 = 6.811 and α3 = 12.868 , obtained from Eq. (18), when χ tends to infinity,95

that is96

2(1 + µ2) tan µ = α .97

When χ might be neglected, the stability boundaries can be seen in Fig. 3c. They are parabolic. The roots98

along the γ axis are the well-known, normalised Euler buckling modes (2n + 1)2π2/4 where n = 0, 1 . . . ,99

and along the α axis are the normalised critical loads in terms of semi-tangential torque (2n + 1)π where100

n = 0, 1 . . . .101

The stability boundaries of the system, corresponding to Eq. (16) are depicted by Fig. 3d. The curvature of102

the stability boundaries is continuously increasing as the parameter α grows. They are asymptotic to the dashed103

lines. Looking again at Fig. 3a, surface 1 crosses the χ axis at χ = 3 (see Fig. 4). The system is absolutely104

stable as long as the solution does not reach the surface 1. Between surface 1 and 2 instability of the first mode105

might occur depending on whether the beam stands upward or downward. To the right of surface 2, 3 and 4 the106

instabilities of the second, third and fourth modes may occur. The validity of the stable and unstable modes is107

affected by torsion because it bends the stability boundaries as we can see in Fig. 3c.108

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d

p
ro

o
f

“707_2017_1902_Article” — 2017/6/14 — 14:36 — page 6 — #6

B. Béri et al.

Fig. 4 Explanation of stable and unstable modes

4 Conclusion109

The paper investigates the structural stability of a light rotating beam under torsion and compression. Torsional110

torque is assumed to be semi-tangential, and compression is manifested by a block attached to the free end of111

the shaft. The study is the generalisation of the result of Wang [1] on the stability of a light rotating column112

with and end mass when torsion is also applied.113

There are many advanced practical models in the literature where our analytical results could be applied114

and extended further: Lee [7], Chen and Liao [8] have investigated the buckling and dynamics stability of a115

spinning pre-twisted beam under compressive loads. They have taken into account how the speed of rotation116

affects the stability behaviour of the shaft depending on whether the shaft is pre-twisted or nonpre-twisted.117

Chen and Peng [9] have examined the dynamic behaviour of a rotating composite beam subjected to axial118

periodic forces. Como [10] dealt with the case of lateral buckling of a cantilever bar subjected to a transverse119

following force and studied the stability of bending-torsional equilibrium. Another related topics is vibrations120

of drill strings where the stability issues have been investigated, for example, by Gulyaev et al. [11] and Liu et121

al. [12]. Liu et al. [12] presented a discrete system model to study the axial torsional dynamics of a drill string.122

They also took into account nonlinearities that come from dry friction and loss of contact.123

The analytical results of the present paper provide test examples for checking the numerical methods124

developed for analysis of the above-mentioned mechanical models of the literature.125
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