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a b s t r a c t

In this paper we investigate two special qualitative properties of the finite difference
solutions of one-dimensional nonlinear parabolic initial boundary value problems. The
first property says that the number of the so-called L-level points, or specially the
number of the zeros, of the solution must be non-increasing in time. The second property
requires a similar property for the number of the local maximizers and minimizers. First
we recall a theorem that guarantees the above properties for the solution of a special
second order nonlinear parabolic problem. Then we generate the numerical solution
with the implicit Euler finite difference method and show that the obtained numerical
solution satisfies the discrete versions of the above properties without any requirements
on the mesh parameters. We close the paper with some numerical tests.

© 2019 Published by Elsevier B.V.

1. Introduction1

The qualitative properties of partial differential equations and their numerical solutions are under intensive research2

nowadays. Partial differential equations generally model some real-life phenomena of some applied sciences such as3

physics, chemistry, biology, etc. These phenomena possess some characteristic properties, so it is natural that similar4

properties are required also for their mathematical and numerical models. From the point of view of the applications, it5

is useful to show that the mathematical models satisfy the required properties, moreover, in the numerical models the6

qualitative properties are essentially guaranteed by restricting somehow the spatial mesh and the time step.7

For initial boundary value problems of parabolic equations, which can be considered as equations that model for8

example heat conduction phenomena, the linear case has been investigated thoroughly in the literature. The most9

frequently investigated properties are the
∧
maximum–minimum principles, the non-negativity and non-positivity preser-10

vation properties and the maximum norm contractivity properties, e.g. [1–6]. Monotonicity and sign-stability properties11

were also discussed [7,8]. In the last decades the interest of the researchers turned to nonlinear problems, e.g. [9–15],12

where the qualitative properties can be guaranteed by much more complicated assumptions than in the linear case.13

In this paper we concentrate on two special properties of one-dimensional nonlinear parabolic problems. The first14

property is the monotone change of the number of the level points of the solution function. To the author’s knowledge,15

this property has not been investigated for the numerical solution of nonlinear problems yet. The special version of this16

property says that the number of the zeros of the solution function must be non-increasing in time. This property is similar17

to the sign-stability property that says that the number of the sign-changes of the solution function must be non-increasing18

in time. Let us notice, however, that these properties are not the same. For example, the function x ↦→ |sin x| has one19

sign-change on the interval [0, 2π ] but it has three zeros, namely at x = 0, x = π and x = 2π . The second investigated20
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property will be the monotone change of the number of the local maximizers and minimizers of the solution function. 1

This property was already investigated in [15] but only for semi-linear problems and for the explicit Euler method. In 2

this paper, we formulate new results and generalize the previous ones in the sense that we consider nonlinear equations 3

and general time-dependent Dirichlet boundary conditions. Nevertheless, our result is restrictive in the sense that it is 4

formulated only for the implicit Euler finite difference solution of the continuous problem. 5

The paper is structured as follows. In Section 2, we formulate the initial boundary value problem to be investigated and 6

review some results from the literature that show the validity of the two investigated qualitative properties. In Section 3, 7

the discrete equivalents of the continuous properties are defined and proven for the implicit Euler finite difference solution 8

of the problem. In
∧
this Section 4, we verify our theoretic results on some numerical test problems. 9

2. The continuous problem and its qualitative properties 10

Let us introduce the notations QT = (0, T ) × (0, 1), Q̄T = [0, T ] × [0, 1] and QT̄ = (0, T ] × (0, 1), where T is a fixed 11

positive number. Let us consider the nonlinear initial boundary value problem 12

u′

t = r(t, x, u, u′′

xx), (t, x) ∈ QT̄ ,

u(0, x) = u0(x), x ∈ [0, 1],
u(t, 0) = ν0(t), u(t, 1) = ν1(t), t ∈ [0, T ]

(1) 13

for the unknown function u : Q̄T → R, (t, x) ↦→ u(t, x), where r , ν0, ν1 and u0 are suitable, sufficiently smooth functions 14

that guarantee the unique solvability of the problem such that u ∈ C(Q̄T )∪ C1,2(QT̄ ). We always assume the compatibility 15

conditions u0(0) = ν0(0) and u0(1) = ν1(0). In problems that are described by Eq. (1) (e.g. heat conduction, diffusion) the 16

variables t and x denote the time and space variables, respectively. We will adopt this terminology in this paper. 17

Definition 1. Let φ : [a, b] → R be a continuous function defined on the real interval [a, b]. Let L be a fixed real number. 18

If an interval [α, β] ⊂ [a, b] (β ≥ α) satisfies the properties 19

(a) φ(y) = L for all y ∈ [α, β], 20

(b) there does not exist an interval [α′, β ′
] ⊂ [a, b] such that β ′

− α′ > β − α, [α, β] ⊂ [α′, β ′
] and φ(y) = L for all 21

y ∈ [α′, β ′
], 22

then the interval [α, β] is called the (generalized) L-level point of the function φ. 23

The number of the L-level points of a function φ can be any natural number or infinity and will be denoted by ζ L
φ|[a,b]

. 24

For the case L = 0 and α = β , the L-level points give the usual zeros of the function. For example, 25

ζ 0
x↦→0|[0,1] = 1, ζ 0

x↦→sin x|[0,2π ]
= 3, ζ 0

x↦→− sin−x|[0,2π ]
= 2 26

(sin− denotes the usual negative part of the sin function). 27

Definition 2. Let φ : [a, b] → R be a continuous function defined on the real interval [a, b]. If an interval [α, β] ⊂ [a, b] 28

(β ≥ α) satisfies the properties 29

(a) there exists a real constant C such that φ(y) = C for all y ∈ [α, β], 30

(b) there does not exist an interval [α′, β ′
] ⊂ [a, b] such that β ′

− α′ > β − α, [α, β] ⊂ [α′, β ′
] and φ(y) = C for all 31

y ∈ [α′, β ′
], 32

(c) there exists an interval [α′′, β ′′
] ⊂ [a, b] such that α′′ < α (α′′

= α if α = a), β ′′ > β (β ′′
= β if β = b) and 33

φ(y) ≤ (≥)C for all y ∈ [α′′, β ′′
], 34

then the interval [α, β] is called the (generalized) local maximizer (minimizer) of the function φ. 35

The number of the local maximizers (minimizers) of a function φ can be any natural number or infinity and will be 36

denoted by µφ|[a,b] . For example, for the number of the local maximizers we have 37

µx↦→const|[0,1] = 1, µx↦→sin x|[0,2π ]
= 2, µx↦→− sin−x|[0,2π ]

= 2. 38

It is easy to see that (in the above sense) all continuous functions possess at least a local maximizer and a minimizer. 39

Between any two maximizers (minimizers) there is at least one minimizer (maximizer). 40

Let us introduce the following subsets of the set Q̄T : the parabolic boundary Q̄T \QT̄ will be denoted by Γ and the final 41

time level set {T }× [0, 1] by T . Let v be an arbitrary continuous function defined on Q̄T . The number of the L-level points 42

of v on the set T is defined as the number of the L-level points of the one-variable function x ↦→ v(T , x) (x ∈ [0, 1]) and 43

will be denoted by ζ L
v|T

. The number of the L-level points of v on the parabolic boundary is defined as the number of the 44

L-level points of the one-variable function 45

y ↦→

⎧⎨⎩
v(−y, 0) y ∈ [−T , 0],
v(0, y) y ∈ (0, 1),
v(y − 1, 1) y ∈ [1, 1 + T ],

46



CAM: 12330

Please cite this article as: R. Horváth, On somediscrete qualitative properties of implicit finite difference solutions of nonlinear parabolic problems, Journal
of Computational and Applied Mathematics (2019), https://doi.org/10.1016/j.cam.2019.06.046.

R. Horváth / Journal of Computational and Applied Mathematics xxx (xxxx) xxx 3

where we think of the parabolic boundary Γ as an unbent one-dimensional interval, and it is denoted by ζ L
v|Γ

. The1

numbers of the local maximizers and minimizers of v on T and Γ are defined similarly and are denoted by µv|T and2

µv|Γ
, respectively.3

Let us turn back to problem (1). The relation between the above defined quantities for the solution u of problem (1)4

was revealed in paper [16].5

Theorem 1 ([16]). Let us assume that the function r : (0, T ] × (0, 1) × R × R → R is continuous on its domain of definition.6

Furthermore, let us assume that7

(a) r(t, x, z, 0) = 0 for all t ∈ (0, T ], x ∈ (0, 1) and z ∈ R, and8

(b) r(t, x, z, w1) ≤ r(t, x, z, w2) for all t ∈ (0, T ], x ∈ (0, 1), z ∈ R and real numbers w1 ≤ w2 (r is non-decreasing in its9

fourth argument).10

Then for any fixed real number L we have11

ζ L
u|T ≤ ζ L

u|Γ12

for the L-level points, moreover,13

µu|T ≤ µu|Γ14

is valid for the local maximizers (minimizers) of the solution of problem (1).15

Remark 1. Conditions (a) and (b) restrict the choice for the function r essentially. For example, the linear right-hand16

side u′′
xx + u is not allowed because r does not satisfy requirement (a). However, functions in the form r(t, x, z, w) =17

r1(t, x, z)r2(w), where r2 is non-decreasing (non-increasing), r2(0) = 0 and r1(t, x, z) ≥ (≤)0 satisfy the assumptions of18

the theorem. Thus, the theorem is valid, for example, for the right-hand sides19

u′′

xx, t(u′′

xx)
3, u2 sinh(u′′

xx).20

Remark 2. In Nickel’s original paper, the function r is allowed to depend also on the first derivative of the solution. For21

the discrete case, we have to leave out this dependence because the finite difference approximation of the first derivative22

of a differentiable function at a local extremizer is not necessarily zero. We generally do not know even the sign of the23

approximation.24

In the next section we show that the numerical solution obtained by the implicit Euler method possesses the discrete25

versions of the above properties.26

3. Qualitative properties of the implicit Euler finite difference solution27

We construct the implicit Euler finite difference solution of problem (1). For the full discretization we define a space–28

time mesh as follows. We choose the discretization points xi = i∆x (i = 0, . . . , n+ 1), where n is a fixed natural number29

and ∆x = 1/(n+1). The discrete time levels are defined as tk = k∆t (k = 0, . . . , nT ) with ∆t = T/nT , where nT is another30

fixed natural number. The approximation of the solution u (the so-called numerical solution) at the point (k∆t, i∆x) will31

be denoted by uk
i , and these values can be computed by solving the system of nonlinear algebraic equations32

uk+1
i − uk

i

∆t
= r

(
tk+1, xi, uk+1

i ,
uk+1
i−1 − 2uk+1

i + uk+1
i+1

∆x2

)
,

i = 1, . . . , n
k = 0, . . . , nT − 1

,

u0
i = u0(xi), i = 0, . . . , n + 1,

uk
0 = ν0(tk), uk

n+1 = ν1(tk), k = 0, . . . , nT .

(2)33

In order to formulate the discrete version of Theorem 1, we define the number of L-level points and the number of local34

maximizers (minimizers) of the numerical solutions as follows. We construct the bilinear two-dimensional interpolation35

function of the mesh function uk
i on the set Q̄T . Let us denote this interpolation function by p(t, x). Let us notice that albeit36

the obtained interpolation function is piecewise quadratic, it gives a piecewise linear interpolation function in both t and37

x
∧
variables. Thus the discrete equivalents of the values ζ L

u|T , ζ L
u|Γ , µu|T and µu|Γ can be defined as ζ L

p|T , ζ L
p|Γ , µp|T and µp|Γ ,38

respectively. To prove the discrete equivalent of Theorem 1 we have to show the relations ζ L
p|T ≤ ζ L

p|Γ and µp|T ≤ µp|Γ .39

This is the goal of the remainder of this section of the paper.40

We introduce the following terminology. For the sake of simplicity, we say that the value uk
i (or the mesh point (tk, xi))41

is L-positive (L-negative) if uk
i > (<)L. We say that the sequence of the mesh points42

(tnT , xi), (tnT , xi+1), (tnT , xi+2), . . . , (tnT , xj)43

form an L-positive (L-negative) group of mesh points of T if all unT
i , unT

i+1, . . ., u
nT
j values are L-positive (L-negative), and if44

i ̸= 0, then unT
i−1 ≤ (≥)L, and if j ̸= n + 1, then unT

j+1 ≤ (≥)L. These
∧
types of groups can be defined for all other time levels45

and also for the parabolic boundary Γ . In the last case, we think of Γ as an unbent one-dimensional interval.46
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Let us choose an L-positive (L-negative) group of mesh points G of T . Let us denote the set of all L-positive (L-negative) 1

mesh points (tk, xi) that can be connected with the points of G by a path (in graph theoretic sense) through adjacent 2

L-positive (L-negative) mesh points by BG . The properties of these sets is discussed in the next lemma. 3

Lemma 1. Let us suppose that the assumptions of Theorem 1 for the function r are fulfilled. Let L be a fixed real value. If 4

the implicit Euler finite difference numerical solution of problem (1) produced by (2) exists, then the above constructed BG sets 5

have the properties: 6

(i) BG ∩ Γ ̸= ∅ (that is BG always reaches the parabolic boundary), and 7

(ii) for any two different (L-positive or L-negative) groups G1 and G2 we have BG1 ∩ BG2 = ∅. 8

Proof. To show property (i) for L-positive groups (the proof for L-negative groups is similar), we assume the opposite of 9

the statement, that is we assume that BG ∩ Γ = ∅. We choose a point (tk⋆ , xi⋆ ) ∈ BG (due to the indirect assumption we 10

have k⋆ > 0 and 0 < i⋆ < n + 1) that satisfies the property 11

uk⋆
i⋆ = max

(tk,xi)∈BG
{uk

i }. 12

Because uk⋆
i⋆−1 ≤ uk⋆

i⋆ and uk⋆
i⋆+1 ≤ uk⋆

i⋆ , it is valid that 13

uk⋆
i⋆−1 − 2uk⋆

i⋆ + uk⋆
i⋆+1

∆x2
≤ 0 14

and because of the assumptions (a) and (b) in Theorem 1 we have

uk⋆
i⋆ − uk⋆−1

i⋆

∆t
= r

(
tk⋆ , xi⋆ , uk⋆

i⋆ ,
uk⋆
i⋆−1 − 2uk⋆

i⋆ + uk⋆
i⋆+1

∆x2

)
≤ r

(
tk⋆ , xi⋆ , uk⋆

i⋆ , 0
)

= 0.

This implies that uk⋆−1
i⋆ ≥ uk⋆

i⋆ , which means that (tk⋆−1, xi⋆ ) ∈ BG and uk⋆−1
i⋆ = uk⋆

i⋆ . Repeating the previous reasoning, we 15

get that the points (tk, xi⋆ ) (k = k⋆
− 1, k⋆

− 2, . . . , 1, 0) are all in the set BG , that is (t0, xi⋆ ) = (0, xi⋆ ) is in both BG and Γ , 16

which contradicts
∧
the indirect assumption. 17

The statement (ii) is trivial if one of the groups is L-positive and the other one is L-negative. So it is enough to show 18

the property for two L-positive groups (for L-negative groups the proof is similar). We apply indirect proof again. Let us 19

suppose that G1 and G2 are two different L-positive groups of T such that BG1 ∩ BG2 ̸= ∅. Then there is a shortest path γ 20

(the length of the path is measured in temporal and spatial step sizes) through adjacent mesh points (tk, xi) from one of 21

the points (tnT , xi1 ) of G1 to one of the points (tnT , xi2 ) of G2 such that uk
i is L-positive at all mesh points in the path. This 22

path separates all the mesh points into three mutually disjoint sets: the first set (denoted by γa) contains the inner mesh 23

points of the domain bordered by γ and T , and the points (tnT , xi1+1), (tnT , xi1+2), . . . , (tnT , xi2−1). The second set is the 24

set of the mesh points of γ , and the third set (denoted by γb) is the complement of the union of the previous two sets. 25

It can be seen from the construction that a point from γa cannot be adjacent to a point from γb. 26

The set γa is not empty because there must be a mesh point between G1 and G2 in T with solution value not greater 27

than L. We choose a point (tk⋆⋆ , xi⋆⋆ ) ∈ γa that satisfies the property 28

uk⋆⋆
i⋆⋆ = min

(tk,xi)∈γa
{uk

i }. 29

We trivially have uk⋆⋆
i⋆⋆ ≤ L. Because uk⋆⋆

i⋆⋆−1 ≥ uk⋆⋆
i⋆⋆ and uk⋆⋆

i⋆⋆+1 ≥ uk⋆⋆
i⋆⋆ , it is valid that 30

uk⋆⋆
i⋆⋆−1 − 2uk⋆⋆

i⋆⋆ + uk⋆⋆
i⋆⋆+1

∆x2
≥ 0 31

and because of the properties (a) and (b) of r in Theorem 1 we have

uk⋆⋆
i⋆⋆ − uk⋆⋆−1

i⋆⋆

∆t
= r

(
tk⋆⋆ , xi⋆⋆ , uk⋆⋆

i⋆⋆ ,
uk⋆⋆
i⋆⋆−1 − 2uk⋆⋆

i⋆⋆ + uk⋆⋆
i⋆⋆+1

∆x2

)
≥ r

(
tk⋆⋆ , xi⋆⋆ , uk⋆⋆

i⋆⋆ , 0
)

= 0.

This implies that uk⋆⋆−1
i⋆⋆ ≤ uk⋆⋆

i⋆⋆ , which means that (tk⋆⋆−1, xi⋆⋆ ) ∈ γa and uk⋆⋆−1
i⋆⋆ = uk⋆⋆

i⋆⋆ . Repeating the previous reasoning, 32

we get that the points (tk, xi⋆⋆ ) (k = k⋆⋆
− 1, k⋆⋆

− 2, . . . , 1, 0) are all in the set γa, which contradicts
∧
the fact that one of 33

these points must belong to γ . ■ 34

Remark 3. It can be seen from the proof of the lemma that the assumptions of the lemma are enough to guarantee the 35

maximum (minimum) principle for the implicit Euler finite difference solution. That is, the maximum (minimum) value 36
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of the numerical solution uk
i is taken also at some mesh point of the parabolic boundary Γ . Specially, if the maximum1

(minimum) is taken at an inner point (tk′ , xi′ ) ∈ QT̄ of the mesh, then we have uk′
i′ = uk′−1

i′ = · · · = u0
i′ , that is the maximum2

(minimum) is taken also at the zeroth time level.3

Based on this lemma we are ready to formulate the discrete version of Theorem 1.4

Theorem 2. Under the assumptions of Theorem 1 for the function r, if the implicit Euler finite difference numerical solution5

of problem (1) produced by (2) exists, then it satisfies the relations6

ζ L
p|T ≤ ζ L

p|Γ , µp|T ≤ µp|Γ7

for the number of L-level points (L is a fixed real number) and for the number of the local maximizers (minimizers).8

Proof. First we prove the relation ζ L
p|T ≤ ζ L

p|Γ . Let L be a fixed real number.9

If unT
i = L (i = 0, . . . , n + 1), then ζ L

p|T = 1 and ζ L
p|Γ ≥ 1, since the values unT

0 and unT
n+1 belong also to Γ . Thus the10

required relation is satisfied. In the sequel we assume that not all values unT
i are equal to L. We consider the L-positive11

and L-negative groups of T , and we number them with natural numbers in positive x direction. These groups are always12

disjoint, moreover, there is exactly one L-level point of the piecewise linear function p(t, x) between any two adjacent13

groups.14

Based on the properties (i)–(ii), we can assign an (not necessarily unique) L-positive or L-negative mesh point on the15

parabolic boundary Γ to each L-positive and L-negative group of T , respectively. The ordering of these points of Γ is the16

same as that of the groups of T , moreover, the function p has at least one L-level point between any two adjacent points.17

The possible L-level points in the corners (T , 0) and (T , 1) belong to both T and Γ . This shows the validity of the first18

statement.19

Now we prove the second statement µp|T ≤ µp|Γ for local maximizers (for local minimizers the proof is similar). We20

exclude the case when all values unT
i (i = 0, . . . , n + 1) are the same. In this case the statement is trivially true. Let the21

local maximizers of the function x ↦→ p(T , x) be numbered in positive x direction. There is exactly one local minimizer22

between each two adjacent local maximizers. If the first maximizer does not contain the point (T , 0) then this point is23

in a local minimizer, and similarly, if the last maximizer does not contain the point (T , 1) then this point is in a local24

minimizer.25

Let the maximum value at the ith local maximizer be denoted by Ci, respectively. We assign positive values εi to each26

local maximizer such that Li = Ci − εi is greater than the maximum values at the neighboring local minimizers. Let us27

construct the Li-positive groups that contain the mesh points of the ith local maximizers. Let these groups be denoted by28

Gi. Then we construct the set of points BLi
Gi
. According to Lemma 1, these sets reach the parabolic boundary Γ at some29

points Qi (which is not uniquely defined). We show that if i ̸= j, then BLi
Gi

∩ B
Lj
Gj

= ∅. If Li = Lj, then this follows from30

Lemma 1 directly. If we have Li < Lj, then instead of the Lj-positive group Gj we consider the Li-positive group that31

contains the mesh points of the jth maximizer. Let us denote this group by Gj′ . The choice of the ε values guarantees that32

Gi and Gj′ are disjoint Li-positive groups. Lemma 1 gives that BLi
Gi

∩ BLi
Gj′

= ∅. The inclusion B
Lj
Gj

⊂ BLi
Gj′

shows that the sets33

BLi
Gi

and B
Lj
Gj

must be disjoint.34

Let us consider the Li-positive groups of the mesh points on Γ that contains Qi, respectively. Based on the above35

considerations these groups must be disjoint. Each group contains at least one local maximizer of p on Γ . Let us choose36

one of these. In this way we have assigned a local maximizer on Γ to each local maximizer on T , which shows the relation37

µp|T ≤ µp|Γ and completes the proof. ■38

4. Some numerical examples39

4.1. A simple verification of the result40

In the first example we verify our theoretical result using the simple test problem41

u′

t = (1 + u2)(u′′

xx)
3, (t, x) ∈ QT̄ ,

u(0, x) = x2 sin(3πx), x ∈ [0, 1],
u(t, 0) = sin(2π t), u(t, 1) = − sin(2π t), t ∈ [0, T ],

(3)42

which problem trivially satisfies the conditions posed in Theorem 1. We construct the implicit Euler finite difference43

solution of the problem using the parameters T = 0.51, n = 20 (∆x = 1/21), ∆t = 1/100. The approximation of the44

initial function u0 can be seen on the left panel of Fig. 1. The right panel shows the approximation at the final time level45

T = 0.51.46

We consider first the 0-level points of the numerical solution. The sign of the numerical solution values can be seen47

in Fig. 2. + , ∗ and o signs denote positive, negative and zero values, respectively. It can be seen easily that ζ 0
p|T = 3 and48
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Fig. 1. Approximation of the initial function and the solution at T = 0.51 for the problem (3).

Fig. 2. The sign of the numerical solution values of problem (3). + , ∗ and o symbols denote positive, negative and zero values, respectively. In the
figure, the coordinates are shifted by 1, which means that the sign of the value uk

i can be found at the coordinates (k + 1, i + 1).

Fig. 3. The numerical solution values on the unbent parabolic boundary Γ . The figure shows the elements of the vector [unT
0 , unT −1

0 , . . . ,

u0
0, u

0
1, . . . , u

0
n+1, u

1
n+1, . . . , u

nT
n+1].

ζ 0
p|Γ = 6. The number of the L-level points for other nonzero values L can be counted similarly. For example, for L = 0.1 1

we have ζ 0.1
p|T = 0 and ζ 0.1

p|Γ = 4. These results verify the validity of our first statement in Theorem 2. 2

It can be seen from the right panel of Fig. 1 that the number of the local maximizers and minimizers of the numerical 3

solution at the nT th time level is 2. The number of the local maximizers and minimizers of the numerical solution on 4

Γ can be calculated using the plot (Fig. 3) of the numerical solution on the unbent set Γ . For the number of the local 5

maximizers (minimizers) we have µp|T = 2 (µp|Γ = 4), which verifies the second part of Theorem 2. 6

4.2. A counterexample for the explicit Euler method 7

In the second example we show that the investigated properties are not valid in general. While the implicit Euler 8

method behaves well from the point of view of the investigated qualitative properties, the explicit Euler method does not 9

possess these properties without some restrictions on the discretization parameters. 10
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Fig. 4. The approximation of the initial function of problem (4) on the mesh with n = 5.

Fig. 5. Approximation of the solution of problem (4) at t = 10−7 and t = 10−6 .

We solve the problem1

u′

t = (u′′

xx)
3, (t, x) ∈ QT̄ ,

u(0, x) = u0(x) = sin(πx) ·

(
1 +

(
19e−

(x−1/2)2

2·0.012

))
, x ∈ [0, 1],

u(t, 0) = u(t, 1) = 0, t ∈ [0, T ],

(4)2

with the explicit Euler method3

uk+1
i − uk

i

∆t
= r

(
tk, xi, uk

i ,
uk
i−1 − 2uk

i + uk
i+1

∆x2

)
,

i = 1, . . . , n
k = 0, . . . , nT − 1

,

u0
i = u0(xi), i = 0, . . . , n + 1,

uk
0 = uk

n+1 = 0, k = 0, . . . , nT .

(5)4

We set the discretization parameters to n = 5 (∆x = 1/6) and ∆t = 10−8. The approximation of the initial function on5

this mesh can be seen in Fig. 4. Taking into the account also the boundary conditions, we obtain that ζ 0
p|Γ = 2 and for the6

local maximizers (minimizers) we have µp|Γ = 1(2), independently of the choice of T . At the 10th time level (T = 10−7)7

we get the approximation of the left panel of Fig. 5. For this approximation we have ζ 0
p|T = 4 and for the local maximizers8

(minimizers) we have µp|T = 2(3). We see that the explicit Euler finite difference method with the above parameters9

does not fulfill any of the required qualitative properties. We can see (right panel of Fig. 5) that the condition for the local10

maximizers (minimizers) is not fulfilled even after 100 time steps.11

We can obtain qualitatively more correct numerical solution if we refine the mesh. If we set n = 25 and ∆t = 10−12
12

(such a small time step is needed to maintain the stability of the scheme) and perform 105 iterations, then we obtain the13

qualitatively adequate approximation of the solution at the same time level t = 10−7 as before (Fig. 6).14

5. Summary and conclusions15

We have shown that the implicit Euler finite difference numerical solution of the nonlinear problem (1) satisfies two16

special properties. It does not allow the number of the L-levels and the number of the local maximizers and minimizers17
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Fig. 6. Approximation of the solution of problem (3) at t = 10−7 using the mesh parameters n = 25 and ∆t = 10−12 .

of the solution to grow. We verified our results on some numerical test problems. We can conclude from the results that 1

the implicit Euler finite difference solution can be used to solve the problem (1) without any restriction from the point 2

of view of the above qualitative properties. We guess that, as in the linear case, the above properties are valid for the 3

explicit Euler and the Crank–Nicolson methods only under strict conditions for the mesh. To find sufficient conditions to 4

these methods would be an interesting task for future research. 5
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