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Abstract

Domination game [SIAM J. Discrete Math. 24 (2010) 979–991] and total domination
game [Graphs Combin. 31 (2015) 1453–1462] are by now well established games played
on graphs by two players, named Dominator and Staller. In this paper, Z-domination
game, L-domination game, and LL-domination game are introduced as natural com-
panions of the standard domination games.

Versions of the Continuation Principle are proved for the new games. It is proved
that in each of these games the outcome of the game, which is a corresponding graph
invariant, differs by at most one depending whether Dominator or Staller starts the
game. The hierarchy of the five domination games is established. The invariants are
also bounded with respect to the (total) domination number and to the order of a graph.
Values of the three new invariants are determined for paths up to a small constant
independent from the length of a path. Several open problems and a conjecture are
listed. The latter asserts that the L-domination game number is not greater than 6/7
of the order of a graph.

Keywords: domination game; total domination game; L-domination game; Z-domination
game; Grundy domination number
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1 Introduction

Domination game [7] and total domination game [16] have been investigated in depth by
now; see the recent papers [2,3,8,9,13,22,25,27,29,30] on the domination game, [15,17,18,21]
on the total domination game, as well as references therein.

In [4] the Grundy domination number of a graph G was introduced as the length of a
longest sequence of vertices such that each vertex of the sequence dominates at least one
new vertex. From our point of view, a vertex by vertex determination of such a sequence
can be considered as the domination game for a single player (Staller). The Grundy total
domination number was later studied in [5] which can again be considered as a one player
total dominaton game. Moreover, motivated by zero forcing sets, Z-Grundy domination
number and L-Grundy domination number was investigated in [1]. In this paper we in turn
introduce the corresponding Z-domination game, L-domination game, and for reasons to be
clarified later, LL-domination game.

Each of the games, the domination game, the total domination game, and the Z-, L-, and
LL-domination game, is played on an isolate-free graph G. (Actually, the domination game
and the Z-domination game do not require the graph to be isolate-free, but here we will
consider only this more restricted case. Nevertheless, to be on the safe side we will state this
fact in statements of the results.) All these games can be uniformly described as follows. As
usual, for a vertex v of a graph G, its open and closed neighborhoods are denoted by N(v)
and N [v], respectively. Two players, traditionally named Dominator and Staller, alternately
select a vertex from G. If Dominator is the first player to select a vertex in a domination
game, we speak of a D-game. Otherwise (that is, if Staller begins the game), we have an
S-game. In the ith move, the choice of a vertex vi is legal if for the vertices v1, . . . , vi−1

chosen so far, the following hold:

(i) N [vi] \
⋃i−1

j=1 N [vj ] 6= ∅, in the domination game;

(ii) N(vi) \
⋃i−1

j=1 N(vj) 6= ∅, in the total domination game;

(iii) N(vi) \
⋃i−1

j=1 N [vj ] 6= ∅, in the Z-domination game;

(iv) N [vi] \
⋃i−1

j=1 N(vj) 6= ∅ and vi 6= vj for all j < i, in the L-domination game; and

(v) N [vi] \
⋃i−1

j=1 N(vj) 6= ∅, in the LL-domination game.

Each of the games ends if there are no more legal moves available. Dominator wishes to
finish the game as soon as possible, while Staller wishes to delay the end. If a D-game is
played and both players play optimally, the length of the game, i.e. the total number of
moves played during the game, is, respectively,

(i) the game domination number γg(G);

(ii) the game total domination number γtg(G);

(iii) the game Z-domination number γZg(G);

(iv) the game L-domination number γLg(G); and

(v) the game LL-domination number γLLg(G) of G.
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For the S-game the lengths of the above games give analogous graph invariants γ′

g(G),
γ′

tg(G), γ′

Zg(G), γ′

Lg(G), and γ′

LLg(G), respectively.
We proceed as follows. In the next section we prove that the Continuation Principle

holds also for the Z-, L-, and LL-domination game. In addition we show that for any of
these games the corresponding values of the invariants for the D-game and the S-game differ
by at most one. While the proofs of these results for the Z- and LL-domination game are
standard (in particular, the difference by at most one follows easily from the corresponding
Continuation Principle), the proofs for the L-domination game are more subtle because of
the extra condition that the vertices played in the game must be pairwise different. In
Section 3 we investigate the hierarchy of the five domination games and prove that γg(G)
and γtg(G) are upper bounds for γZg(G) and lower bounds for γLg(G), which is on the other
hand a lower bound for γLLg(G). In Section 4 we bound γZg(G), γLg(G) and γLLg(G) and
show that γLLg(G) ≤ n(G) + 1, where n(G) stands for the order of the graph G. We also
characterize graphs with γLLg(G) = n(G) + 1. Then, in Section 5, we consider the path Pn

on n vertices and determine the values of γZg(Pn), γLg(Pn) and γLLg(Pn) up to an additive
constant error term. We conclude the paper with several open problems. In particular, we
pose a conjecture that γLg(G) ≤ 6

7n(G) holds for any isolate-free graph G.

2 Continuation Principles and applications

One of the key tools for the domination game is the Continuation Principle proved in [24].
The corresponding result for the total domination game was established in [16]. Here we
prove that the analogous statements, which express the monotonicity of the invariants, are
true for the other three domination games.

For the formulation of the theorem, consider a graph G and a subset A of vertices which
are considered to be pre-dominated or pre-totally-dominated. With G|A we denote such a
pre-dominated graph, meaning that when a game is played on G|A, the vertices from A need
not be dominated but they are allowed to be played (provided they are legal moves). More
formally, in a Z- or LL-domination game on G|A the choice of a vertex vi is legal if for the

vertices v1, . . . , vi−1 chosen so farN(vi)\(A∪
⋃i−1

j=1 N [vj ]) 6= ∅ orN [vi]\(A∪
⋃i−1

j=1 N(vj)) 6= ∅
holds, respectively. The condition for the L-domination game on G|A is the same as for the
LL-domination game with the additional requirement that no vertex can be selected twice.
We use γZg(G|A), γLg(G|A), and γLLg(G|A) to denote the number of moves in the Z-, L-, and
LL-domination game respectively, under optimal play in a D-game on G|A. For an S-game
the analogous invariants are denoted γ′

Zg(G|A), γ′

Lg(G|A), and γ′

LLg(G|A), respectively.
In the following proofs we will use a standard tool called the imagination strategy that

was introduced in the context of the domination game in [7].

Theorem 2.1 (Continuation Principle) If G is a graph without isolated vertices and B ⊆
A ⊆ V (G), then

(i) γZg(G|A) ≤ γZg(G|B) and γ′

Zg(G|A) ≤ γ′

Zg(G|B);

(ii) γLLg(G|A) ≤ γLLg(G|B) and γ′

LLg(G|A) ≤ γ′

LLg(G|B); and

(iii) γLg(G|A) ≤ γLg(G|B) and γ′

Lg(G|A) ≤ γ′

Lg(G|B).

Proof. In each proof we consider two games: Game A is the real game played on G|A,
while Game B is a game on G|B imagined by Dominator. Staller plays optimally in Game
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A, and Dominator playes optimally in Game B. We denote by ai and bi the vertex played in
the ith move of Game A and Game B respectively. If Staller plays ai in Game A, Dominator
copies it into Game B that is bi = ai (we will prove that it is always legal). Then, Dominator
responds optimally in Game B by playing bi+1. If bi+1 is a legal move in Game A, Dominator
plays the same vertex there i.e, ai+1 = bi+1. In the other case, ai+1 will be defined to be
a legal move in Game A (if there exists such a move). We will prove that the length ℓA of
Game A is not greater than the length ℓB of Game B.

(i) Consider a real and an imagined Z-domination game as described above. We prove
that

B ∪
k
⋃

j=1

N [bj ] ⊆ A ∪
k
⋃

j=1

N [aj ] (1)

holds for every k. Since B ⊆ A is assumed, the analogous relation is valid before the first
move (k = 0). For the inductive step, suppose that (1) is true for k = i− 1. If Staller plays

ai in Game A, it is a legal move and hence N(ai) \ (A ∪
⋃i−1

j=1 N [aj]) 6= ∅. Since (1) holds

for k = i − 1, we obtain N(ai) \ (B ∪
⋃i−1

j=1 N [bj ]) 6= ∅ that is, ai is a legal move in Game

B. We define bi = ai and infer that (1) remains valid with k = i. In the other case, the ith

move is taken by Dominator. He picks a vertex bi in Game B. If bi is a legal move in Game
A, he sets ai = bi and (1) remains valid for k = i. Otherwise, if bi is not legal in Game A,

we have N(bi) ⊆ (A ∪
⋃i−1

j=1 N [aj]) and distinguish two subcases. If bi /∈ (A ∪
⋃i−1

j=1 N [aj ]),

then ai can be any vertex from N(bi), and (1) remains valid. If bi ∈ (A ∪
⋃i−1

j=1 N [aj]), we

have B ∪
⋃i

j=1 N [bj] ⊆ A ∪
⋃i−1

j=1 N [aj]. Consequently, ai can be any legal move in Game
A, (1) remains valid for k = i.

This proves that (1) holds after each move. Then, Game A cannot be longer then Game
B that is ℓA ≤ ℓB. Since Staller played optimally on G|A and Dominator played optimally
on G|B, we may conclude that γZg(G|A) ≤ ℓA ≤ ℓB ≤ γZg(G|B). Our proof equally holds
for the D-game and the S-game. Thus γ′

Zg(G|A) ≤ ℓA ≤ ℓB ≤ γ′

Zg(G|B) also follows.
(ii) Now, consider a real and an imagined LL-domination game on G|A and G|B respec-

tively. Here, we prove

B ∪
k
⋃

j=1

N(bj) ⊆ A ∪
k
⋃

j=1

N(aj) (2)

for every k. The argumentation is very similar to that of part (i). The assumption B ⊆ A
gives the base for the inductive proof. If Staller playes ai in Game A and (2) holds with

k = i − 1, then N [ai] \ (B ∪
⋃i−1

j=1 N(bj)) ⊇ N [ai] \ (A ∪
⋃i−1

j=1 N(aj)) 6= ∅. Therefore
bi = ai is a legal move in Game B and, after this choice, (2) is valid for k = i. Now,
suppose that Dominator plays the ith move bi in Game B. If bi is a legal move in Game
A, we set ai = bi and (2) clearly holds with k = i. If bi is not a legal move in the real

game, N [bi] ⊆ A ∪
⋃i−1

j=1 N(aj). Then, already the set A ∪
⋃i−1

j=1 N(aj) is a superset of

B ∪
⋃i

j=1 N(bj) and for any legal move ai, the relation (2) will be valid for k = i. Since

Game A finishes when A ∪
⋃k

j=1 N(aj) = V (G), the conclusion is ℓA ≤ ℓB and the required
inequalities follow as in the proof of (i).

(iii) In an L-domination game, no vertex can be played more than once. Hence, we
define the following sets FA

k and FB
k containing those vertices which cannot be played after
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the kth move in the real and in the imagined L-domination game, respectively:

FA
k = {a1, . . . , ak} ∪ {v ∈ V (G) : N [v] ⊆ A ∪

k
⋃

j=1

N(aj)}, (3)

FB
k = {b1, . . . , bk} ∪ {v ∈ V (G) : N [v] ⊆ B ∪

k
⋃

j=1

N(bj)}. (4)

Observe that for any two sets S, S′ of vertices, S′ ⊆ S implies {v ∈ V (G) : N [v] ⊆ S′} ⊆
{v ∈ V (G) : N [v] ⊆ S}. We will prove that both (2) and

FB
k ⊆ FA

k (5)

hold for every k ≥ 0. Our condition B ⊆ A implies that (2) and (5) are valid for k = 0. For
the inductive proof, assume that both (2) and (5) hold for k = i − 1. If Staller plays ai in

Game A, then N [ai] \ (A ∪
⋃i−1

j=1 N(aj)) 6= ∅ and, by (2), N [ai] \ (B ∪
⋃i−1

j=1 N(bj)) 6= ∅ also

holds. Moreover, by (5), ai /∈ FA
i−1 implies ai /∈ FB

i−1. Then, bi = ai is a legal move in Game
B. This definition ensures that (2) and (5) hold for k = i. In the other case Dominator plays
bi as the ith move in Game B. If bi is also a legal move in Game A, we set ai = bi. Then
both (2) and (5) hold with k = i. Now, assume that bi is not a legal move in the real game
that is bi ∈ FA

i−1. Then, at least one of the following statements is true:

(a) bi = as for some s < i;

(b) N [bi] ⊆ A ∪
⋃i−1

j=1 N(aj).

In either case, we have N(bi) ⊆ (A ∪
⋃i−1

j=1 N(aj)) and hence,

B ∪
i
⋃

j=1

N(bj) ⊆ A ∪
i−1
⋃

j=1

N(aj).

The latter relation and bi ∈ FA
i−1 also imply FB

i ⊆ FA
i−1. Then, ai can be chosen as any

legal move in Game A, (2) and (5) will be valid with k = i.
We have just proved that (2) can be maintained for the real and imagined games. This

implies, as in the previous parts of the proof, that ℓA ≤ ℓB and the two inequalities stated
in (iii) follow. �

Next we prove that for the Z-, L- and LL-domination games, the lengths of the D-game
and S-game cannot differ by more than 1, if the players play optimally. The analogous
statements for domination and total domination game were proved in [7, 16, 24].

Theorem 2.2 If G is a graph without isolated vertices, then

(i) |γZg(G)− γ′

Zg(G)| ≤ 1;

(ii) |γLLg(G)− γ′

LLg(G)| ≤ 1; and

(iii) |γLg(G) − γ′

Lg(G)| ≤ 1.
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Proof. For the Z- and LL-domination games, the statements easily follow from Theorem 2.1
(i) and (ii). First, consider a Z-domination game on G where Staller starts by playing one
of her optimal first moves, say a1. If the game is not finished yet, from the second move we
may interpret it as a D-game on G|N [a1] and therefore, by Theorem 2.1 (i), we have

γ′

Zg(G) = 1 + γZg(G|N [a1]) ≤ 1 + γZg(G).

Similarly, if Dominator starts the game on G and b1 is one of his optimal first moves,

γZg(G) = 1 + γ′

Zg(G|N [b1]) ≤ 1 + γ′

Zg(G)

follows. These establish part (i).
The proof is very similar for the LL-domination game, so we omit it. The main difference

is that here G|N(a1) and G|N(b1) are considered instead of G|N [a1] and G|N [b1].
To prove (iii), we cannot use Theorem 2.1 (iii) directly, but we can use the imagination

strategy. First, assume that Staller starts the L-domination game on G by playing a1 which
is an optimal first move. This will be the real game, Game A, where Staller plays optimally.
The imagined game (i.e., Game B) will be an L-domination game on G where Dominator
starts by playing b1 and he plays optimally throughout. Hence, the move a1 is not copied
into Game B. On the other hand, for every odd i with i ≥ 3, the move ai will be copied into
Game B by setting bi−1 = ai. Dominator chooses his moves to be optimal in Game B, and
for every positive odd i, his move bi is copied into Game A as ai+1 = bi, if it is legal in the
real game; otherwise we show that ai+1 can be any legal move in Game A. Our main goal
is to prove that

k−1
⋃

j=1

N(bj) ⊆
k
⋃

j=1

N(aj) (6)

holds for all k ≥ 1. We also define the set of forbidden vertices FA
k and FB

k after the kth

move, similarly as they were given in (3) and (4), respectively, that is,

FA
k = {a1, . . . , ak} ∪ {v ∈ V (G) : N [v] ⊆

k
⋃

j=1

N(aj)},

FB
k = {b1, . . . , bk} ∪ {v ∈ V (G) : N [v] ⊆

k
⋃

j=1

N(bj)}.

We are going to prove that
FB
k−1 ⊆ FA

k (7)

holds for every k ≥ 1.
Relations (6) and (7) clearly hold for k = 1, since in this case the left-hand side sets are

empty sets. For the inductive step, we suppose and (6) and (7) are true for k = i − 1 ≥ 0.
If i is odd, ai is chosen optimally by Staller in Game A. Since it is a legal move, ai /∈ FA

i−1,
and the inductive hypothesis on (7) implies ai /∈ FB

i−2. Hence, bi−1 = ai is a legal move in
Game B and we may conclude that both (6) and (7) remain valid with k = i. If i is even,
bi−1 is chosen optimally by Dominator in Game B. If it is legal in Game A, we set ai = bi−1

and then, (6) and (7) hold with k = i. If bi−1 is not legal in Game A that is, bi−1 ∈ FA
i−1,

we have the following possibilities:

(a) bi−1 = as for some s < i; or

6



(b) N [bi−1] ⊆
⋃i−1

j=1 N(aj).

In either case, we have N(bi−1) ⊆
⋃i−1

j=1 N(aj) that, together with (6), implies

i−1
⋃

j=1

N(bj) ⊆
i−1
⋃

j=1

N(aj).

By this relation, by the inductive hypothesis on (7), and since bi−1 ∈ FA
i−1, we conclude

than FB
i−1 ⊆ FA

i−1. Consequently, choosing an arbitrary legal move ai in Game A, (6) and
(7) remain valid with k = i. Therefore, we can maintain (6) and (7) during the games while
letting Staller and Dominator play optimally in Game A and B respectively. For the lengths
ℓA and ℓB of Game A and B, (6) implies ℓA − 1 ≤ ℓB. Finally, we get

γ′

Lg(G) ≤ ℓA ≤ ℓB + 1 ≤ γLg(G) + 1.

To prove γLg(G) ≤ γ′

Lg(G) + 1, we can use an analogous argumentation. Here the real
game, namely Game A, is an L-domination game where Dominator starts with an optimal
first move a1 and then, from the second turn, Staller plays optimally. Game B is the imagined
L-domination game in which Dominator plays optimally. Moreover, this is an S-game which
begins with copying here the move a2 from Game A as b1. The moves are defined by the
rules used in the previous proof. More precisely, if i is even, Staller picks an optimal move
ai in Game A, and it can be proved that bi−1 = ai is a legal move in Game B. If i is an
odd number with i ≥ 3, Dominator plays an optimal vertex bi−1 in Game B and we define
ai = bi−1 in Game A, if it is legal; otherwise, we may define ai to be an arbitrary but legal
move in Game A. As it can be proved, again, (6) and (7) hold for every k ≥ 1. These imply
ℓA ≤ ℓB + 1. Since Staller plays optimally in Game A and Dominator in Game B, we have

γLg(G) ≤ ℓA ≤ ℓB + 1 ≤ γ′

Lg(G) + 1

which completes the proof of the theorem. �

3 Hierarchy of the games

In this section we show that the five domination games fulfill the following hierarchy.

Theorem 3.1 If G is a graph without isolated vertices, then

γZg(G) ≤ γg(G), γtg(G) ≤ γLg(G) ≤ γLLg(G) .

Proof. To prove γZg(G) ≤ γg(G), consider a domination game on G and assume that
Dominator plays optimally. Suppose further that in the ith move he selects a vertex vi
such that N [vi] \

⋃i−1
j=1 N [vj ] = {vi}. If he chooses a neighbor u ∈ N(vi) instead of vi,

⋃i−1
j=1 N [vj ]∪N [u] ⊇

⋃i
j=1 N [vj ] holds, and by the Continuation Principle for the domination

game ( [24]) this change does not lengthen the game. Hence, Dominator can choose a strategy

in the domination game which is optimal and also obeys the rule N(vi) \
⋃i−1

j=1 N [vj ] 6= ∅
of the Z-domination game in each of his turns. Therefore, it means real restriction only
for Staller when Z-domination game is played instead of domination game on G. Thus,
γZg(G) ≤ γg(G).
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The remaining inequalities will be proved by using the imagination strategy. Given an
isolate-free graph G, we assume that Dominator and Staller play a real game on G, while
Staller also imagines another game is played on it. Dominator plays optimally in the real
game and Staller plays optimally in the imagined one. We denote by vi and ui the vertex
played in the ith move of the real and the imagined game respectively, and prove that Staller
can guarantee that the length ℓ′ of the imagined game is not greater than the length ℓ of
the real game.

We next prove that γZg(G) ≤ γtg(G). Here the real game is a total domination game on
G and the imagined one played by Staller is a Z-domination game on G. We will prove that

i
⋃

j=1

N [uj] ⊇
i
⋃

j=1

N(vj) (8)

holds for every i. Since the Z-domination game ends when
⋃i

j=1 N [uj] = V (G) and the total

domination game ends when
⋃i

j=1 N(vj) = V (G), the condition (8) will imply ℓ′ ≤ ℓ.
In the first turn, Dominator plays v1 in the real game and Staller copies it into the

imagined game (u1 = v1). Clearly, (8) is valid for i = 1. Now, assume that (8) is true for
i = k − 1. If k is even, Staller selects a vertex uk in the Z-domination game. This move
is also legal in the real game, because N(uk) \

⋃k−1
j=1 N [uj ] 6= ∅ and (8) together imply that

N(uk) \
⋃k−1

j=1 N(vj) 6= ∅. Then, Staller copies her move into the real game (vk = uk) and
(8) will be valid for i = k. In the other case k is odd and Dominator plays a vertex vk in the
total domination game. If uk = vk is a legal move in the imagined game, Staller just copies
the move into the Z-domination game and (8) remains valid for i = k. If vk is not a legal

choice in the Z-domination game, N(vk) ⊆
⋃k−1

j=1 N [uj] and hence, after any legal choice of
uk, the relation (8) remains valid. Hence, ℓ′ ≤ ℓ. Moreover, since Staller played optimally in
the imagined Z-domination game and Dominator played optimally in the total domination
game, we have γZg(G) ≤ ℓ′ ≤ ℓ ≤ γtg.

We proceed with the proof of γg(G) ≤ γLg(G). Now, the real game is an L-domination
game and the imagined one is a domination game on G. We prove that (8) holds for all
i. In the first turn, Dominator’s move v1 is copied into the imagined game and (8) clearly
holds for i = 1. Suppose that (8) is valid for i = k − 1 ≥ 1. Under this assumption, if k is
even, every legal (and optimal) move uk of Staller in the imagined game is legal in the real
game as well. Setting vk = uk, (8) will be valid with i = k. If k is odd, any optimal move vk
of Dominator in the real game is either valid in the imagined game and uk = vk maintains
the relation (8), or N [vk] ⊆

⋃k−1
j=1 N [uj ] holds. In the latter case, from our assumption

⋃k−1
j=1 N [uj ] ⊇

⋃k

j=1 N(vj) follows, that any legal move uk in the imagined game ensures
that (8) is valid for i = k. Thus, the imagined game finishes no later than the real one and
we have γg(G) ≤ ℓ′ ≤ ℓ ≤ γLg(G).

Next we prove γtg(G) ≤ γLg(G). To prove this inequality, the real game is an L-
domination game and the imagined one is a total domination game on G. As we will
see, Staller may ensure that

i
⋃

j=1

N(uj) ⊇
i
⋃

j=1

N(vj) (9)

holds for every i. Setting u1 = v1, (9) will be valid for i = 1. Then, assume that (9) is valid
for i = k − 1. If k is even, any legal move uk taken in the total domination game is also
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legal in the L-domination game, and (9) remains valid for i = k, if uk is copied into the real
game. The situation is similar if k is odd and vk is a legal move in the imagined game. The
only remaining case is when Dominator chooses a vertex vk in the L-domination game such
that N(vk) ⊆

⋃k−1
j=1 N(uj). Then, again, any legal move uk in the total domination game

ensures that (9) is valid for i = k. These prove γtg(G) ≤ ℓ′ ≤ ℓ ≤ γLg(G).

It remains to prove that γLg(G) ≤ γLLg(G). Let the real game be the LL-domination
game and let the imagined one be the L-domination game. Staller plays by applying an
optimal strategy in the L-domination game and meantime, she ensures that (9) is valid after
each turn. Assuming that (9) holds with i = k−1, any move uk of Staller may be copied into
the real game and (9) remains valid. If k is odd and the move vk of Dominator is not legal

in the L-domination game, we have either
⋃k−1

j=1 N(uj) ⊇ N [vk] or vk = uj for a j < k. In

both cases, our assumption implies
⋃k−1

j=1 N(uj) ⊇
⋃k

j=1 N(vj). Therefore, any legal choice
of uk maintains relation (9). At the end, we obtain γLg(G) ≤ ℓ′ ≤ ℓ ≤ γLLg(G). �

Theorem 3.1 together with fact (established in [16]) that γg and γtg are incomparable,
can be briefly presented with the Hasse diagram representing the partial ordering between
γZg, γg, γtg, γLg, and γLLg as shown in Fig. 1.

γZg

γtg γg

γLg

γLLg

Figure 1: Relations between the five versions of the game domination number.

The five game domination invariants from Theorem 3.1 can be pairwise different as we
have demonstrated with a computer search over the class of trees. The smallest such trees
are presented in Fig. 2.

The top-left tree on 11 vertices in Fig. 2 has the following values:

γZg = 5, γg = 6, γtg = 7, γLg = 8, γLLg = 9 .

The remaining trees are the smallest trees (each of them having 14 vertices) with the same
separability property, except that γg and γtg are reversed. More precisely, for these seven
trees we have

γZg = 5, γtg = 6, γg = 7, γLg = 8, γLLg = 9 .

Note that all five inequalities in Theorem 3.1 are sharp. For example, for the five-cycle,
γZg(C5) = γg(C5) = γtg(C5) = γLg(C5) = 3 (but γLLg(C5) = 5). Another example, say
Fn, can be obtained from the complete graph Kn by attaching n leaves to each vertex of
Kn. Assume that n ≥ 2. Clearly, γt(Fn) = n. First consider the Z-domination game and
the total domination game on Fn and assume that Dominator plays a vertex v1 ∈ V (Kn)
in the first turn. Then, in the Z-domination game, we have N(u) \N [v1] = ∅ for every leaf
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Figure 2: Smallest trees with pairwise different values of the game domination numbers.

u. Hence, all the played vertices are from V (Kn) and γZg(Fn) = n. In the total domination
game, if Dominator plays v1 as his first move, Staller may respond by playing a leaf adjacent
to v1. But once at least two non-leaf vertices have been played in the total domination game,
no leaves can be chosen in the later turns. Hence, Staller can ensure that at least one leaf is
played, and Dominator has a strategy to ensure that at most one leaf is played. This implies
γtg(Fn) = n + 1. In the domination game, L- and LL-domination game, Staller always
may play a leaf while there is at least one non-selected vertex of higher degree. Hence,
γg(Fn) ≥ 2n− 1. On the other hand, 2γt(Fn)− 1 = 2n− 1 ≥ γLLg(Fn) (see Proposition 4.1
below) implies γg(Fn) = γLg(Fn) = γLLg(Fn) = 2n− 1.

4 Bounds on γZg, γLg, and γLLg

In this section we bound γZg(G), γLg(G), and γLLg(G). In the main result we prove that
γLLg(G) ≤ n(G)+1 and characterize the equality case. In this way we round off Theorem 3.1.

To state the results we need to recall some standard terminology. We say that a vertex
of a graph totally dominates its neighbors and dominates itself and its neighbors. If S is a
subset of vertices of a graph G, then S (totally) dominates G if each vertex of G is (totally)
dominated by some vertex from S. The size of a smallest set that (totally) dominates G is
called (total) domination number of G. These invariants are denoted by γ(G) (resp. γt(G)).

The bounds γ(G) ≤ γg(G) ≤ 2γ(G) − 1 and γt(G) ≤ γtg(G) ≤ 2γt(G) − 1 were proved
in [7] and [16], respectively. For the three domination games introduced in this paper the
following related bounds hold.

Proposition 4.1 If G is a graph without isolated vertices, then

(i) γ(G) ≤ γZg(G) ≤ 2γ(G)− 1;
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(ii) γt(G) ≤ γLg(G) ≤ 2γt(G) − 1; and

(iii) γt(G) + 1 ≤ γLLg(G) ≤ 2γt(G)− 1.

Proof. A Z-domination game ends when the set {v1, . . . , vi} of the chosen vertices becomes

a dominating set of G. Indeed, otherwise we have a vertex u outside of
⋃i

j=1 N [vj ] and the
choice of a neighbor of u is a legal move. Hence, γ(G) ≤ γZg(G). The upper bound follows
from Theorem 3.1 and the above mentioned inequality γg(G) ≤ 2γ(G)− 1. This proves (i).

The L-domination game and the LL-domination game on G ends when
⋃i

j=1 N(vj) =
V (G), moreover Dominator may fix a total dominating set D′ and in each move he plays

a vertex w ∈ D′ for which N(w) \
⋃i

j=1 N(vj) 6= ∅ (while such a vertex exists). This
implies the upper bounds in (ii) and (iii). The lower bound in (ii) is a direct consequence
of Theorem 3.1 and the inequality γt(G) ≤ γtg(G). Concerning the lower bound in (iii), we
note that 2 ≤ γt(G) ≤ γLLg(G) holds for every graph G. Moreover, in the second move of
an LL-domination game Staller may repeat the first move of Dominator. In this way she
can ensure that γLLg(G) ≥ γt(G) + 1. �

In the rest of this section we prove an upper bound on γLLg(G), for which we need the
following two results.

Proposition 4.2 If G is a graph without isolated vertices and Staller plays an LL-domination
game according to an optimal strategy, then Dominator makes the last move of the game.
In particular, γLLg(G) is odd and γ′

LLg(G) is even. In particular, γLLg(G) 6= γ′

LLg(G).

Proof. Suppose u ∈ V (G) is the last move in an LL-domination game on G with Staller
playing optimally. Then there exists v ∈ N [u]\∪m

i=1N(ui) with u1, . . . , um being the vertices
picked earlier in the game. We infer that v 6= u because otherwise u could be selected again,
so the game would not be over yet. Hence Staller was not the player who has selected u,
because she could play v instead of u and prolong the game for at least one more move. �

One can strengthen Proposition 4.2 using the Continuation Principle.

Proposition 4.3 If G is a graph without isolated vertices and an LL-domination game is
played on G, then there exists an optimal strategy of Staller such that the last move in every
component is made by Dominator.

Proof. Suppose Staller, according to an optimal strategy S, plays the last move u of a
component C during an LL-domination game on a graph G with previous moves u1, . . . , um.
Then there exists v ∈ N [u]\∪m

i=1N(ui). If v = u, then u is still a legal move, so Staller does
not finish the game on C. If v 6= u, then Staller could have played v instead of u. After
her move, v would still be a legal move, while if u is played, no vertex in C is legal. So by
Theorem 2.1(ii), the latter strategy is at least as good as S. �

All is now ready for the main result of this section.

Theorem 4.4 If G is a graph without isolated vertices, then γLLg(G) ≤ n(G)+1. Moreover,
equality holds if and only if all components of G are K2s.

Proof. First we prove the theorem for connected graphs. We start with a simple claim.
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Claim 1 If the minimum degree in G is at least 2, then in any LL-domination game on G
at least one vertex will not be picked at all.

Proof (of Claim 1). Observe that at the moment when the last but first vertex is picked
all vertices are totally dominated. �

Suppose the vertices picked by the players are u1, . . . , um. Let dm denote the number
of repetitions, i.e. |{j ≤ m : ∃i < j ui = uj}|. Furthermore, let bm denote the number of
isolated vertices in G[u1, . . . , um].

Claim 2 If Dominator starts the game, then he has a strategy that for any m we have
d2m+1 + b2m+1 ≤ 1 and if Staller starts the game, then he can manage to maintain d2m +
b2m = 0.

Proof (of Claim 2). We proceed by induction on m. If Staller starts by picking u1, then
Dominator picks a neighbor u2 of u1 and thus d2 = 0, b2 = 0. If Dominator starts, then he can
pick u1 arbitrarily. If Staller picks u2 = u1, then Dominator picks u3 ∈ N(u1) and obtains
d3 = 1, b3 = 0. If Staller picks u2 6= u1, then Dominator picks u3 ∈ N(u1)∪N(u2)\ {u1, u2}
(as G is connected, if no such vertex exists, then there is no legal move for Dominator) and
obtains d3 = 0, b3 ≤ 1.

For the inductive step in the Staller starts game: first of all, as b2m = 0, Staller cannot
pick a previously played vertex. If Staller picks a vertex u2m+1 /∈ ∪2m

j=1N(uj), then Domina-

tor picks any neighbor u2m+2 of u2m+1. If u2m+1 ∈ ∪2m
j=1N(uj), then Dominator picks any

legal vertex u2m ∈ ∪2m+1
j=1 N(uj). Note that as G is connected, if no legal vertex exists, then

the game is over. In both cases, Dominator maintained d2m+2 = b2m+2 = 0.
For the inductive step in the Dominator starts game: first of all, Staller can pick a

previously played vertex only if b2m+1 = 1 and thus d2m+1 = 0 and Staller can only repeat
the isolated vertex of G[u1, . . . , u2m+1]. So if u2m+2 is a repeated vertex, then Dominator
can pick any neighbor u2m+3 of u2m+2 obtaining d2m+3 = 1, b2m+3 = 0. If b2m+1 = 0, then
Dominator proceeds as in the Staller-start-game. �

Clearly, Claim 2 proves γLLg(G) ≤ n + 1 and γ′

LLg(G) ≤ n for any connected graph G
on n vertices. Also, Claim 1 yields γLLg(G) ≤ n for any connected graph G with minimum
degree at least two. Suppose G contains a vertex v of degree one. Then Dominator modifies
his strategy as follows: he first picks a neighbor u1 of v. Then depending on Staller’s move
u2, he responds as follows:

• If u2 = u1, then he picks u3 ∈ N(u1) \ {v} (note that u3 exists if G is not K2). This
ensures that v cannot be picked during the game. At this point, we have d3 = 1, b3 = 0
and Dominator is able to follow his strategy above to guarantee γLLg(G) ≤ n.

• If u2 ∈ N(u1), then d2 = b2 = 0 and the above strategy of Dominator guarantees
γLLg(G) ≤ n.

• Finally, if u2 /∈ N(u1), then Dominator picks u3 ∈ N(u1)\{v} to ensure that v cannot
be picked during the game. At this point, we have d3 = 0, b3 = 1 and Dominator is
able to follow his strategy above to guarantee γLLg(G) ≤ n.

This concludes the proof if G is connected.
For the general case let G be an isolate-free graph on n vertices with at least one com-

ponent C1 consisting of at least 3 edges. We can assume that Staller follows a strategy
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as in Proposition 4.3, so in each component, Dominator makes the last move. Then Dom-
inator starts by picking a vertex u1 ∈ C1 according his strategy above for C1. By the
assumption on Staller’s strategy, Dominator can always play a vertex from the component
of Staller’s last move and therefore partition the game into games on the components in
such a way that all components’ games are Staller-start-games apart from the one on C1.
So γLLg(G) ≤ γLLg(C1) +

∑k

i=2 γ
′

LLg(Ci) ≤ n, where C2, . . . , Ck are the other components
of G. �

Combining Theorem 4.4 and Proposition 4.1(iii) with Theorem 3.1 we have:

Corollary 4.5 If G is a graph without isolated vertices, then

γZg(G) ≤ γg(G), γtg(G) ≤ γLg(G) ≤ γLLg(G) ≤ min{2γt(G) − 1, n(G) + 1} .

5 The games played on paths

In this section we examine the values of the five games on one of the simplest graphs,
the path graphs. The result for the domination game was first proved in the unpublished
manuscript [23], an alternative proof appeared several years later in [26]. It reads as follows:

Theorem 5.1 [23, 26] If n ≥ 1, then

γg(Pn) =







⌈

n
2

⌉

− 1; n ≡ 3 (mod 4) ,

⌈

n
2

⌉

; otherwise .

Dorbec and Henning [12] obtained the corresponding result for the total domination
game.

Theorem 5.2 [12] If n ≥ 2, then

γtg(Pn) =







⌊

2n
3

⌋

; n ≡ 5 (mod 6) ,

⌈

2n
3

⌉

; otherwise .

Hence γg(Pn) roughly equals n/2, while γtg(Pn) is roughly 2n/3. In the following we
will prove similar results for the other three games, where we will consider only approximate
values since obtaining the exact ones could double the length of proofs with tedious case
analysis. The asymptotics of the parameters for all of the five games is presented in Fig. 3.

For the rest of the section we assume that V (Pn) = {0, 1, . . . , n− 1}, where the vertices
appear in the natural order, that is, i and j are connected by an edge if and only if |i−j| = 1.

Theorem 5.3 For every positive integer n there exists a constant cn such that γZg(Pn) =
n
2 + cn holds with |cn| ≤ 2.

Proof. The upper bound is obtained by Theorems 3.1 and 5.1, i.e., γZg(Pn) ≤ γg(Pn) ≤
n
2 + 1

2 .
To obtain a lower bound we will consider a strategy for Staller. Suppose the ith move is

Staller’s move and let vertex k be the smallest vertex not in
⋃i−1

j=1 N [vj ]. Then the vertex

k− 1 is a legal move with |
⋃i

j=1 N [vj ]| − |
⋃i−1

j=1 N [vj ]| = 1, unless k = 0. In the latter case,

13



γZg(Pn) ≈
n
2

γtg(Pn) ≈
2n
3

γg(Pn) ≈
n
2

γLg(Pn) ≈
2n
3

γLLg(Pn) ≈
4n
5

Figure 3: The five domination games played on the path graphs.

vertex 1 is a legal move only needed at most once at Staller’s first move. On the other hand,
at each move Dominator can dominate at most three new vertices. Hence, besides possibly
thefirst move, Staller has a strategy to achieve that in every two moves at most four new
vertices are dominated. This implies a lower bound γZg(Pn) ≥ 2 + n−6

2 − 1 = n
2 − 2. �

Theorem 5.4 For every positive integer n there exists a constant cn such that γLg(Pn) =
2n
3 + cn holds with |cn| ≤ 1.

Proof. The lower bound is obtained by Theorems 3.1 and 5.2, i.e. γLg(Pn) ≥ γtg(Pn) ≥
2n
3 − 1.

To obtain an upper bound we will provide a strategy for Dominator. For every i we
define three values:

• Let pi = |
⋃i

j=1 N(vj)|.

• Consider graphs G1 and G2 whose vertices are {0, 2, . . . , 2⌊n
2 ⌋} and {1, 3, . . . , 2⌈n

2 ⌉−1}
and are both isomorphic to paths with the increasing order of vertices. Let G1

i and

G2
i denote the induced subgraphs of G1 and G2 on the vertices in

⋃i

j=1 N(vj). Then

let di be the total number of connected components in G1
i and G2

i . The empty graph
has one connected component.

• Let fi denote the number of vertices v after the ith move such that v was not chosen
before and is not in

⋃i

j=1 N(vj) but N(v) is a subset of
⋃i

j=1 N(vj).

The strategy of Dominator is the following: say that after the ith move vertex k is
the smallest vertex not in

⋃i

j=1 N(vj). Then Dominator chooses vi+1 to be k + 1 and
thus totally dominates k and maybe also k + 2. We claim that with such a move it holds
∆ := (pi+1 − di+1− fi+1)− (pi− di− fi) ≥ 2. Notice that di+1 − di ≤ 0 by the choice of the
move, unless i + 1 = 3, v3 = 1 and v2 is an odd ineger picked by Staller. First assume that
pi+1 − pi = 2. Observe that fi+1 − fi could be positive only because of the vertices k − 1
or k + 3, if they were not chosen before, but after this move their open neighborhoods are
totally dominated. But k is the smallest vertex not totally dominated, thus k − 1 cannot
increase fi. But if the open neighborhood of k + 3 is totally dominated after the (i + 1)st

move, then k + 4 was totally dominated after the ith move, implying that di+1 − di = −1.
Thus in this case ∆ = 2. If fi+1 − fi is not positive, then clearly ∆ ≥ 2. Now assume that
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pi+1 − pi = 1. This implies that k + 3 was chosen before and that di+1 − di = −1. Hence
k + 3 cannot increase fi, while k− 1 cannot do it by the same reasoning as before. Thus in
this case ∆ ≥ 2.

In the final part of the proof we show that on the Staller’s move ∆ ≥ 1. First case is
if Staller plays a move when it does not increase pi. Then di remains the same, while fi
decreases by one giving ∆ = 1. If Staller plays a move when pi+1 − pi = 1, it is easy to see
that then either di+1 − di = fi+1− fi = 0 or di+1 − di = −1 and fi+1 − fi ≤ 1 giving ∆ ≥ 1.
Finally if pi+1− pi = 2, then only one connected component can be created, but in this case
fi+1 − fi = 0. On the other hand, fi+1 − fi = 2 implies di+1 − di = −1, thus also in this
case ∆ ≥ 1.

We have proved that with this strategy of Dominator for every i we have (pi+2 − di+2 −
fi+2)−(pi−di−fi) ≥ 3 unless i+2 is 3 or 4 and even then (pi+2−di+2−fi+2)−(pi−di−fi) ≥ 2.
Hence pm − dm − fm + 2 ≥ 3m

2 − 1, where m is the final length of the game. But pm = n,
dm = 2, and fm = 0, thus m ≤ 2n

3 + 1. �

In the proof of the following theorem we will consider also predominated graphs. If G
is a graph and v a vertex of G, then we say that v is predominated for the LL-domination
game if the move vi, for which N [vi] \

⋃i−1
j=1 N(vj) = {v}, is forbidden.

Theorem 5.5 It holds γLLg(Pn) =
4n
5 + cn for some small bounded constants cn.

Proof. As above let pi = |
⋃i

j=1 N(vj)|. First we present a strategy for Staller showing a
lower bound for γLLg(Pn). The strategy is the following: if Staller can play a move for which
pi does not increase, then this move is played. Otherwise, if vertex k is the smallest vertex
not totally dominated, then Staller chooses k − 1 (or k + 1 if k = 0 and thus i = 2). We
prove that if i ≥ 4 and the ith move is played by Staller, the pi+3 − pi−1 ≤ 5, i.e., the value
of pi increases by at most 5 within four consecutive moves. Notice that by the choice of the
Staller’s moves, each Staller’s move can increase pi by at most 1. Also, by the definition of
the game, pi can increase by at most 2 on Dominator’s turn. Hence we must prove that in
four moves it cannot happen that Dominator increases pi twice by 2 and Staller twice by 1.

Assume that Staller played vi with pi − pi−1 = 1 and Dominator picked vi+1 = k with
pi+1 − pi = 2. Note that this implies k − vi ≥ 3 and vj 6= k, k − 2, k + 2 for all j < i. We
claim that Staller can at the (i + 2)nd move repeat the vertex k. Assume that this is not
the case, i.e., vertex k is already totally dominated, i.e. for some j < i we have vj = k − 1
or k+1. But then could have selected k− 1 or k+1 for the ith move without increasing pi,
contrary to the assumption. Thus vertex k is not totally dominated at the (i + 2)nd move.
Thus if m is the total number of moves during the play, then n ≤ pm ≤ 7+ 5

4 (m−4) showing
γLLg(Pn) ≥

4n
5 − 2.

To prove the upper bound we will consider a Staller start LL-domination game on two
predominated graphs. Let P 1

n be the predominated graph Pn with vertices 0 and n − 1
predominated. Similarly let P 2

n be the predominated graph Pn with vertices 0, 2, 4, and
n− 1 predominated. We will prove that:

γ′

LLg(P
1
n) ≤ θ(P 1

n) :=







4
⌊

n
5

⌋

; n ≡ 0, 1, 2 (mod 5) ,

4
⌈

n
5

⌉

+ 2; n ≡ 3, 4 (mod 5) ,
(10)
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and that

γ′

LLg(P
2
n) ≤ θ(P 2

n) :=























4
⌊

n
5

⌋

− 2; n ≡ 0, 1 (mod 5) ,

4
⌊

n
5

⌋

; n ≡ 2, 3 (mod 5) ,

4
⌊

n
5

⌋

+ 2; n ≡ 4 (mod 5) .

(11)

We prove the above statements by induction on n for n ≥ 3 in the case of P 1
n , and for

n ≥ 5 in the case of P 2
n . We have calculated the exact numbers of γ′

LLg(P
1
n) and γ′

LLg(P
2
n)

up to n = 24 and the above values are exact.
Consider P 1

n with n reasonably big (say n > 24), and assume that the inductive assump-
tion holds for P 1

m, P 2
m, with m < n. We consider various first moves of Staller.

• Staller chooses v1 = 1 or v1 = 2: then Dominator can choose v2 = 2 in the first
case and v1 = 1 in the second. The game on the obtained predominated graph with
predominated vertices 0, 1, 2, 3, and n− 1 is equivalent to the game on P 1

n−3. It holds
γ′

LLg(P
1
n) ≤ γ′

LLg(P
1
n−3) + 2 which is at most θ(P 1

n) in all the cases of n (mod 5).

• Staller chooses v1 = n− 2 or v1 = n− 3: symmetric as above.

• Staller chooses v1 = 0: then Dominator can choose v2 = 4. The game on the obtained
predominated graph with predominated vertices 0, 1, 3, 5, and n− 1 is equivalent to
the game on P 2

n−1. It holds γ
′

LLg(P
1
n) ≤ γ′

LLg(P
2
n−1) + 2 which is exactly θ(P 1

n) in all
the cases of n (mod 5).

• Staller chooses v1 = n− 1: symmetric as above.

• Staller chooses 2 < v1 < n− 3: If Dominator chooses either v2 = v1 − 1 or v2 = v1+1,
then the obtained predominated graph has predominated vertices either 0, v1− 2, v1−
1, v1, v1 + 1, n − 1 or 0, v1 − 1, v1, v1 + 1, v1 + 2, n − 1. In particular, Dominator can
consider the same strategy as playing on two disjoint graphs: P 1

v1
and P 1

n−(v1+2) in

the first case, or P 1
v1−1 or P 1

n−(v1+1) in the second. We have:

γ′

LLg(P
1
n) ≤ min{θ(P 1

v1
) + θ(P 1

n−(v1+2)) + 2, θ(P 1
v1−1) + θ(P 1

n−(v1+1)) + 2}

≤ θ(P 1
n) .

In fact the last inequality holds since θ(P 1
n) < θ(P 1

v1
) + θ(P 1

n−(v1+2)) + 2 only if v1 =

0 (mod 5) and n− (v1 + 2) = 0 (mod 5) as it can be checked by an easy examination.
In that case the second entry of the minimum is smaller.

Now consider P 2
n with n reasonably big (say n > 24) and again assume that the inductive

assumption holds for P 1
m, P 2

m, with m < n. Similarly as above we consider various first moves
of Staller:

• Staller chooses v1 = 1 or v1 = 3: then Dominator can select v2 = 2. The game on
the obtained predominated graph with predominated vertices 0, 1, 2, 3, 4 and n− 1 is
equivalent to the game on P 1

n−4. It holds γ
′

LLg(P
2
n) ≤ γ′

LLg(P
1
n−4)+2 which is exactly

θ(P 1
n) in all the cases of n (mod 5).

• Staller chooses v1 = 0, v1 = 2, or v1 = 4: then Dominator can choose v2 = 4 in the
first two cases, and v1 = 2 in the third. The game on the obtained predominated
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graph with predominated vertices 0, 1, 2, 3, 4, 5 and n− 1 is equivalent to the game
on P 1

n−5. It holds γ
′

LLg(P
2
n) ≤ γ′

LLg(P
1
n−5) + 2 which is at most θ(P 1

n) in all the cases
of n (mod 5).

• Staller chooses v1 = n − 2 or v1 = n − 3: then Dominator can choose v2 = n − 3 in
the first case, and v2 = n− 2 in the second. The game on the obtained predominated
graph with predominated vertices 0, 2, 4, n− 4, n− 3, n− 2 and n− 1 is equivalent to
the game on P 2

n−3. It holds γ
′

LLg(P
2
n) ≤ γ′

LLg(P
2
n−3)+ 2, which is at most θ(P 2

n) in all
the cases of n (mod 5).

• Staller chooses v1 = n − 1: then Dominator can choose v2 = 2. The game on the
obtained predominated graph with predominated vertices 0, 1, 2, 3, 4, n− 2 and n− 1
is equivalent to the game on P 1

n−5. It holds γ′

LLg(P
2
n) ≤ γ′

LLg(P
1
n−5) + 2, which is at

most θ(P 2
n) in all the cases of n (mod 5).

• Staller chooses 4 < v1 < n − 3: Then if Dominator chooses either v2 = v1 + 1
or v2 = v1 − 1, the obtained predominated graph has predominated vertices either
0, 2, 4, v1 − 1, v1, v1 + 1, v1 + 2, n − 1, or 0, 2, 4, v1 − 2, v1 − 1, v1, v1 + 1, n − 1 (if v1
is 5 then consider only the first case, and notice that in cases v1 is 5, 6 or 7 some
vertices are written twice). Dominator can consider the same strategy as playing on
two disjoint graphs: P 2

v1
and P 1

n−(v1+2) in the first case or P 2
v1−1 or Pn−(v1+1)1 in the

second. We have:

γ′

LLg(P
2
n) ≤ min{θ(P 2

v1
) + θ(P 1

n−(v1+2)) + 2, θ(P 2
v1−1) + θ(P 1

n−(v1+1)) + 2}

≤ θ(P 2
n) .

In fact, the last inequality holds since θ(P 2
n) < θ(P 2

v1
) + θ(P 1

n−(v1+2)) + 2 only if v1 =

4 (mod 5) and n− (v1 + 2) = 0 (mod 5) as it can be checked by an easy examination.
In that case the second entry of the minimum is smaller.

This proves the assertion for P 1
n and P 2

n .
Now we prove that γLLg(Pn) ≤ 4n

5 + c2n by defining a strategy for Dominator. Let
v1, . . . , vi be a sequence of moves. If v1, . . . , vi is also a legal sequence on P 1

n , then Dominator
selects the same vertex as he would if the game was played on P 1

n . If the game is finished after
i moves on P 1

n , then Dominator can play an arbitrary move. If vi is an illegal move on P 1
n ,

then Dominator can play an arbitrary move. If v1, . . . , vi has some illegal moves (besides the
last one) for the game on P 1

n , say vj , then Dominator proceeds as if the sequence v1, . . . , vi is
in fact v1, . . . , vj−1, vj+2, . . . , vi. Since only two vertices in P 1

n are predominated, the above
procedure ensures that there are at most four moves more needed than on P 1

n . �

6 Problems, conjectures, and related extremal exam-

ples

We first demonstrate that the hierarchy of Theorem 3.1 collapses for some graphs. For
this sake recall that the Cartesian product G�H of graphs G and H has the vertex set
V (G)× V (H), vertices (g, h) and (g′, h′) being adjacent if either gg′ ∈ E(G) and h = h′, or
g = g′ and hh′ ∈ E(H).
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Proposition 6.1 If G is a connected graph with n(G) ≥ 2 and k ≥ 2n(G), then

γZg(G�K1,k) = γLLg(G�K1,k) = 2n(G)− 1 .

Proof. Set H = G�K1,k. Note that γ(H) = γt(H) = n(G). Combining Theorem 3.1 and
Proposition 4.1(iii) we get

γZg(H) ≤ γLLg(H) ≤ 2γt(H)− 1 = 2n(G)− 1 .

Hence it remains to prove that γZg(H) ≥ 2n(G)−1. The strategy of Staller is the following.
Note that after the ith move of Dominator, i < n(G), he dominates at most i subgraphs of
H induced by the set Vu = {(u, h) : h ∈ V (K1,k)}, where u ∈ V (G). These subgraphs are
isomorphic to K1,k and are called fibers. Staller in each move follows Dominator in one of
the fibers induced by Vu in which Dominator has already played and for which there exists a
neighbor v of u in G such that Dominator did not yet play vertices from Vv. Clearly, Staller
can select a vertex from Vu which has a neighbor in Vv that has not been dominated in the
previous moves. (Here we use the fact that k ≥ 2n(G).) Therefore the move of Staller is
legal in the Z-domination game and hence the Z-domination game will last at least 2n(G)−1
moves. �

In view of Proposition 6.1 we pose:

Problem 6.2 Characterize graphs G without isolated vertices for which γZg(G) = γLLg(G)
holds.

Moreover we also pose:

Conjecture 6.3 If T is a tree with n(T ) ≥ 2, then γZg(G) < γLLg(G) holds.

We have verified by computer that Conjecture 6.3 holds true for all trees on up to and
including 18 vertices.

Recall from the end of Section 3 that γZg(C5) = γLg(C5) which implies that the other
two sandwiched game domination parameters are also equal to γZg(C5). This leads to:

Problem 6.4 Characterize graphs G without isolated vertices for which γZg(G) = γLg(G)
holds.

Related to the examples presented in Section 3 we also pose:

Problem 6.5 Is it true that γLLg(G) ≤ 2γZg(G)+1 holds for an arbitrary graph G without
isolated vertices?

Note that from Proposition 4.1 we easily get that γLLg(G) ≤ 4γZg(G)−1. Note also that
if the answer to Problem 6.5 is affirmative, then the bound is best possible as demonstrated
by any graph that contains a universal vertex.

With respect to Section 4 it would be interesting to systematically consider sharpness of
the proved bounds and to characterize the graphs attaining the bounds.

If G is an isolate-free graph such that not all of its components are K2, then by Theo-
rem 4.4 we have γLLg(G) ≤ n(G). So it would be interesting to characterize the graphs that
attain the equality. Instead, we propose the following special case which still seems very
demanding.
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Problem 6.6 Characterize the trees T with γLLg(T ) = n(T ).

The 3/5-conjecture for the domination game [24] and the 3/4-conjecture for the total
domination game [17] are among the main sources of interest for the games, cf. [6,8,9,14,19,
28] and [10, 11, 20], respectively. An analogous question can be posed for the L-domination
game hence we pose:

Conjecture 6.7 If G is a graph without isolated vertices, then γLg(G) ≤ 6
7n(G).

The conjecture has been verified by computer for all trees up to 18 vertices. It turned
out that among them there are only two trees that attain the equality. These two trees
belong to an infinite family of graphs G for which γLg(G) = 6

7n(G) holds which is defined
as follows. Let Y = S(K1,3), that is, Y is the graph obtained from K1,3 by subdividing each
of its edges exactly once. If G is an arbitrary graph, then let GY be the graph obtained
from G by identifying each vertex of G with the central vertex of a private copy of Y . In
particular, the two trees mentioned above that were found by computer are KY

1 and KY
2 .

Proposition 6.8 If G is a graph, then γLg(G
Y ) = 6

7n(G
Y ).

Proof. Let G be an arbitrary graph with the vertex set V (G) = {u1, . . . , uk}. To obtain
GY , we attach a copy Y i of Y to every ui. The vertices of Y

i are denoted by vi1, . . . , v
i
7 such

that vi1 = ui is the central vertex, vi2, v
i
3, v

i
4 are the support vertices, and vi5, v

i
6, v

i
7 are the

leaves in Y i. Clearly, |V (GY )| = 7k.
First, we prove that γLg(G

Y ) ≤ 6k and γ′

Lg(G
Y ) ≤ 6k. Consider the following strategy

of Dominator.

• If it is a D-game, Dominator plays his first move in an arbitrary Y i.

• Whenever Staller plays a vertex in a Y i, Dominator replies with a move in the same
Y i, if there is such a legal move. Otherwise, Dominator may play in any Y j where a
legal move can be made.

• Inside any Y i, Dominator first plays the central vertex vi1 (if it has not been played
by Staller earlier). Dominator’s second move is a support vertex whose leaf neighbor
has not been played yet. The third move may be any vertex.

By the first two rules, Dominator plays at least two of the first four moves in each Y i. Hence,
he can achieve that the central vertex and a support vertex are played before the adjacent
leaf would be selected. These ensure that at least one leaf of Y i will not be played in the
game. As a consequence, γLg(G

Y ) ≤ 6k and γ′

Lg(G
Y ) ≤ 6k.

To prove the other direction, we first note that every support vertex of GY must be
played in the L-domination game. Hence, if Staller ensures that either all the three leaves or
two leaves and the central vertex are played from every Y i, then at most one vertex remains
unplayed from each copy and therefore, the length of the game is at least 6n. Consider the
following strategy of Staller:

• If it is an S-game, Staller plays her first move in an arbitrary Y i.

• Whenever Dominator plays a vertex in a Y i, Staller replies in the same Y i, if it is
possible. Otherwise, she may choose any Y j where the game is not finished yet.

• Inside any Y i, Staller plays leaves while it is possible. Otherwise, she can choose any
legal move from Y i.
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The first two rules ensure that Staller plays at least two of the first four moves in each Y i.
Since playing an (unplayed) leaf is not legal only if its support vertex and also the central
vertex have been played earlier, the third rule ensures that at least three of the four vertices
from vi1, v

i
5, v

i
6 and vi7 are played in the L-domination game. Since, as already noted, each

of the vi2, v
i
3, and vi4 must be played, this proves that γLg(G

Y ) ≥ 6k and γ′

Lg(G
Y ) ≥ 6k and

finishes the proof of the proposition. �
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[6] B. Brešar, S. Klavžar, G. Košmrlj, D. F. Rall, Domination game: extremal families of
graphs for the 3/5-conjectures, Discrete Appl. Math. 161 (2013) 1308–1316.
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