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Abstract 

 

The numerical approach for the coupled damage-creep modeling of concrete biological shield, 

which combines the current and the past knowledge regarding the effects of irradiation and 

temperature on concrete with the real measured and calculated neutron fluence and temperature 

distribution for VVER-440/213 reactors, is described in detail in this study. The proposed approach 

takes into account the real structural geometry as well as the real neutron fluence and temperature 

distribution and the latest knowledge about the effect of irradiation and temperature on concrete 

strength and stiffness. The radiation induced volumetric expansion and the thermal expansion of 

concrete are modeled. According to the results of the numerical simulation, the analyzed structure 

reaches critical damage within the time interval from 10.00 to 35.25 years of normal operation. 

The damage of the concrete biological shield of the VVER reactor will not affect the load-bearing 

function of the containment building, since the biological shield is self-bearing. The shielding 

properties of the biological shield may be reduced due to the appearance of the radial cracks, 

however, the concrete wall, which is situated right behind the biological shield, will ensure the 

necessary shielding. Therefore, the concrete biological shield of the VVER reactors can be 

considered as sacrificial structure and can be damaged without significant consequences. However, 

this study implies the importance of capability to predict the behavior of those PWR reactor 

biological shields which serve both the load-bearing and shielding purposes. 
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1. Introduction 

 

This study focuses on the numerical analysis of the structural response of a real nuclear power 

plant (NPP) biological shield which takes into account the real irradiation and temperature 

conditions. Three examples of NPPs, besides others of the same reactor type, can be mentioned 

which may benefit from this study. 

Dukovany Nuclear Power Plant is situated in the Czech Republic and consists of four units of 

VVER-440/213 reactors. The operation of the oldest Unit 1 started in 1985 year. The design 

operation life of this type of reactors is thirty years and expired in 2015. Recently, (in 2016-2017), 

the operation license of all four units was extended for an indefinite period with the next planned 

inspection in 2025. The situation in Hungarian Paks Nuclear Power Plant is similar. It also consists 

of four units of VVER-440/213 reactors. The Unit 1 is under the operation since 1982. During 

2012 and 2017, all the units were granted a license-extension for additional 20 years of operation. 
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Consequently, their total permitted operation time is 50 years. Loviisa Nuclear Power Plant in 

Finland consists of two units of VVER 440/213 reactors. The Unit 1 is under operation since 1977 

and similarly to the above described Dukovany and Paks nuclear power plants it has an operation 

license till 2027, which corresponds to 50 operational years. The Unit 2 of the Loviisa NPP also 

has an operation license for 50 years, i.e. to the end of year 2030. As a difference from the 

Dukovany and Paks NPPs, at Loviisa NPP 36 outermost fuel assemblies are replaced with “shield 

elements” therefore the neutron flux and operation temperature are lower. 

There are two significant factors which lead to development of this study. Firstly, there is no 

precedent of such a long-term radiation exposure to concrete which would be well documented 

and with the neutron flux similar to that in operating NPPs. Secondly, there is no possibility to 

investigate the real-scale structural elements under long-term irradiation conditions, mainly due to 

safety restrictions and cost. Therefore, the only possible way to predict the behavior of concrete 

biological shield is to use available data from accelerated tests on small-scale concrete specimens 

obtained in test reactors and to extrapolate these data to real scale by numerical simulation. 

This paper then presents a numerical approach to predict the VVER-440/213 concrete 

biological shield behavior under long-term irradiation, which also considers the temperature and 

creep effects. The presented numerical approach utilizes the latest research results related to 

concrete degradation under irradiation and operation temperature as well as the real experimental 

measurements and numerical estimations of the neutron flux and temperatures generated by 

VVER-440/213 reactors during their normal operation. The ultimate goal of this study is to assess 

the possible mechanical response and the state of the concrete biological shield under normal 

power plant operational condition. 

 

2. Problem description 

 

2.1. Geometry 

The concrete biological shield of VVER-440/213 reactor is a self-bearing cylindrical wall with 

the inner radius of 2.37 m, the outer radius of 3.07 m and the height of 2.8 m. The upper 0.6 m of 

the cylindrical wall is truncated from the outer side upward at an angle of 45 degrees as shown in 

Fig. 1. 

 

 
Fig. 1. Geometry of concrete biological shield of VVER-440/213 reactor. 
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Fig. 2. Neutron flux distribution: (a) height neutron flux distribution and neutron flux 

attenuation, (b) azimuthal neutron flux distribution. 

 

2.2.Neutron flux 

In order to obtain the neutron flux distribution on the inner surface of the concrete biological 

shield, detailed 3D neutron transport calculations were performed for the volume residing between 

the outer boundary layer of the active core and the inner boundary layer of the concrete biological  

shield, using the MCNP4C code with the appropriate Evaluated Nuclear Data File cross-section 

libraries. The neutron flux distributions on the core-volume interface were generated by detailed 

3D reactor-physics calculations for the core. The Monte Carlo N-Particle neutron transport 

calculations for the given volume take into account the real 3D structure of the core baffle, the 

downcomer, the reactor pressure vessel wall and the cavity, so the neutron flux and neutron fluence 

results for the inner boundary layer of the concrete biological shield are adequate. The obtained 

neutron flux with the maximum value of 4.95·1010 n/cm2/s for the fast neutrons (>0.1 MeV) 

corresponds to the direct flux measurements.  

 

 
Fig. 3. Neutron fluence distribution on inner surface of concrete biological shield over time. 

 



 

4 
 

The 60-degree symmetry of the azimuthal flux distribution was assumed due to the hexagonal 

shape of VVER reactor active core, (Košťál et al., 2016; Tóth et al., 2006). The height and the 

azimuthal neutron flux distribution are shown schematically in Fig. 2(a) and Fig. 2(b), respectively. 

The accumulated neutron fluence at different time intervals was calculated as the sum of the flux, 

with the realistic assumption of 300 operational days per year. The total neutron fluence on the 

inner surface of the biological shield is shown in Fig. 3. 

The neutron flux over the thickness of concrete decreases due to the attenuation which, as the 

first and crude estimation, is defined by the exponential neutron attenuation law 

   Rd

surff d f e


  , (1) 

where f(d) is the neutron flux at a given depth under the inner surface of the biological shield, fsurf 

is the neutron flux on the inner surface of the biological shield, ΣR = 0.191 1/cm is the neutron 

removal cross section which corresponds to Portland concrete and is in accordance with (Esselman 

and Bruck, 2013) and d is the depth under the inner surface of the biological shield given in cm, 

(Khmurovska and Štemberk, 2018; Willam et al., 2013). The neutron flux attenuation effect is 

schematically shown in Fig. 2(a). 

In this way, the neutron flux and, subsequently, the neutron fluence can by defined at any point 

on the inner surface as well as under the inner surface of the biological shield at any given time 

instant. 

 

2.3. Temperature 

The temperature distribution was obtained from a 1D numerical analysis of Loviisa Nuclear 

Power Plant biological shield and represents the “full” core, thus corresponding to the temperature 

at the Dukovany and Paks NPPs and slightly overestimating that at the Loviisa NPP. The 1D 

temperature field is used with the assumption of insignificant temperature gradient in azimuthal 

and vertical directions. The calculated temperature field is in accordance with the measured 

reference values at Dukovany and Paks NPPs and is shown in Fig. 4. It should be noted that the 

highest temperature is located inside the biological shield and not on the surface due to the 

consideration of gamma radiation heating. 

 

 
Fig. 4. Temperature distribution in concrete biological shield in operation. 

 

2.4. Concrete degradation caused by irradiation 

According to the current and past research the properties of concrete change due to neutron 

irradiation, while gamma irradiation does not affect concrete properties significantly, (Hilsdorf et 

al., 1978; Field et al., 2015; Maruyama et al., 2018). Neutron irradiation causes the so-called 

metamictization (amorphization in some literature) of mineral crystal structures. Since the cement 

paste consists mostly of the amorphous calcium silicate hydrate gel, it is believed that the neutron 
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irradiation affects the cement paste only slightly (Kontani et al., 2010). Metamictization of 

aggregates composed of crystalline minerals causes the so-called radiation induced volumetric 

expansion (RIVE) (Hilsdorf et al., 1978; Field et al., 2015; Kontani et al., 2010). The RIVE 

depends on the crystal structure of minerals which constitute the aggregates. The random 

distribution of the expanding aggregates in concrete mass causes crack formations and, 

consequently, reduction in concrete strength and stiffness, (Hilsdorf et al., 1978; Field et al., 2015; 

Maruyama et al., 2017). 

 

 
Fig. 5. Concrete elastic modulus degradation caused by irradiation. 

 

 
Fig. 6. Concrete compressive strength degradation caused by irradiation. 
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Fig. 7. Concrete tensile strength degradation caused by irradiation. 

Since the aggregate type varies from study to study, the degradation of concrete properties are 

expressed as a normalized value at a given neutron fluence, (Field et al., 2015), see Figs. 5-7, 

where the gray area denotes 90 % confidence interval of the experimental measurements, the black 

dashed curve indicates an average trend and the blue, green and red lines denotes maximum 

neutron fluence on the surface of the VVER-440/213 biological shield after 10, 30 and 60 years of 

operation, respectively. The best fitting of the average trends can be expressed analytically as 

follows (Le Pape, 2015) 

  0 exp
airr irr

ER E E b    
 

,    14.025 10a   ,    224.073 10b   cm2/n, (2) 

 

  0 exp
airr irr

fc c cR f f b    
 

,    1.582a  ,    217.253 10b   cm2/n, (3) 

  0 exp
airr irr

ft t tR f f b    
 

,    14.364 10a   ,    218.649 10b   cm2/n, (4) 

where R is the reduction factor, E, fc, ft
 are the elastic modulus, the compressive and the tensile 

strength, respectively, the superscript 0 indicates the initial value and the superscript irr denotes 

the value after irradiation at a given fluence, Φ is the neutron fluence, a and b are fitted material 

constants according to (Le Pape, 2015). 

The radiation induced elastic modulus degradation is shown in Fig. 5 and the average trend 

which is used in the modeling, is expressed by Eq. 2. Similarly, the radiation induced compression 

and tension strength degradation is shown in Figs. 6 and 7 and is expressed by Eqs. 3 and 4, 

respectively. 

 

2.5. Concrete degradation caused by operation temperature 

The temperature, at which an NPP normally operates, along with the gamma radiation heating 

can cause non-uniform thermal expansion of aggregates and cement paste and the subsequent 

degradation of concrete. Heating up to 120°C affects slightly concrete properties, (Lee et al., 2009). 

Elevated-temperature induced elastic modulus degradation under stressed condition shows a linear 

trend and can be expressed as, (Willam et al., 2009; Nielsen et al., 2004), 

 0 1 0.1temp temp

ER E E    ,     0 100T T   ,    0 10  , (5) 

where T is the specimen temperature in °C and the superscript temp denotes the value of specimens 

under thermal load at given temperature, while the superscript 0 indicates the initial value. 

The change of the concrete compressive strength under elevated temperature shows a parabolic 

reduction and can be expressed as follows, (Nielsen et al., 2004; Willam et al., 2009), 

 0 21 0.016temp temp

fc c cR f f    ,    0 7.9  . (6) 

The concrete tensile strength degradation is expressed by a piecewise linear function, (Phan et 

al., 1996; Willam et al., 2009), 

 0 1temp temp

ft t tR f f  ,    20 50C T C    ,  

 0 1 0.1356temp temp

ft t tR f f    ,    0 6.4  , (7) 

 0 0.2temp temp

ft t tR f f  ,    640 800C T C    .  

 

2.6. RIVE 

Due to the fact that the concrete biological shield is a self-bearing structure, i.e. it supports only 

itself, the RIVE of aggregates becomes the primary acting load. The RIVE depends on aggregate 
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composition, as was mentioned above. All existing data regarding the RIVE are collected in 

(Hilsdorf et al., 1978; Field et al., 2015; Kontani et al., 2010; Maruyama et al., 2017). Since the 

data regarding serpentinite and barite, either of which were used as the coarse aggregate in the 

concrete in Dukovany, Paks and Loviisa NPPs, are limited, the data available in (Le Pape, 2015) 

for structural concrete were used in present modeling and were expressed by the so-called Zubov 

function, (Zubov and Ivanov, 1966), 

 
max

max

1RIVE e
k

ke




 











, (8) 

where εRIVE is the RIVE strain, εmax = 0.936 % is the maximum RIVE strain, k = 0.968 % and δ = 

3.092·10-20 cm2/n are material parameters according to (Le Pape, 2015). 

 

 
 

Fig. 8. RIVE of structural concrete. 

 

Eq. 8 is visualized in Fig. 8 with the black full line, while the black dashed lines denote the 

minimum and the maximum RIVE which cover the 90 % confidence interval of the existing 

experiments, which are explained in detail in (Le Pape, 2015). The blue, green and red lines in Fig. 

8 denote the maximum fluence on the inner surface of the biological shield after 10, 30 and 60 

years of operation, respectively. 

 

2.7. Thermal expansion 

Another significant load which affects the concrete biological shield is the thermal expansion. 

The experimental data regarding the effect of irradiation on the coefficient of thermal expansion 

is limited. The data for α-quartz aggregates (Le Pape et al., 2016) are used in the presented 

numerical approach as the most comprehensive of the available data and are expressed by 

 
 0 1

1
1

1

RIVE
C

RIVE
L C

aggr

e

e

 

  
  



 

 
   
 

 

, (9) 

where αaggr is the coefficient of thermal expansion of α-quartz aggregates, α0 = -0.52·10-6 1/°C is 

the coefficient of thermal expansion of α-quartz after phase transformation due to elevated 

temperature, α1 = 8.63·10-6 1/°C, εC = 0.85 % and εL = 4.27 % are fitted material parameters 

according to (Le Pape et al., 2016). 

Fig. 9 shows the change of the coefficient of thermal expansion of α-quartz as a function of 

RIVE with indication of the maximum RIVE on the surface of the biological shield after 10, 30 

and 60 years in blue, green and red, respectively. 

The total coefficient of thermal expansion of concrete, which considered its dependence on 

RIVE, was calculated as 
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 aggr aggr cem cemV V    , (10) 

where αcem is the coefficient of thermal expansion of cement independent of irradiation, Vaggr and 

Vcem are the volume fractions of aggregate and cement paste in concrete mixture, respectively. 

It should be noted that the empirical curve defined by Eq. 9 is valid for quartz only, however, 

the change is insignificant (see Fig. 9) and rather it shows the possibilities of the code. 

 

 
Fig. 9. Coefficient of thermal expansion of irradiated α-quartz. 

 

3. Numerical approach and verification 

 

In order to carry out the numerical simulation of the biological shield, the nonlinear finite 

element method code was written in MATLAB. The basic parameters which are used in the 

analysis are summarized in Table 1, where ν is Poisson's ratio, Ac, Bc, At, Bt are the damage model 

constants which define the shape of the stress-strain diagram, w, c and a are water, cement and 

aggregate (fine and coarse) content in kg in 1 m3 of concrete, respectively, t' is the age of concrete 

at the beginning of loading in years. 

The biological shield was modeled in 3D using the 12-degrees of freedom linear tetrahedrons. 

The problem was considered as quasi-static. 

When the degradation of the concrete properties due to irradiation and operation temperature 

was determined, it was possible to define the concrete properties at any point of biological shield 

at any time by 

 ^ 0irr temp

E EE R R E   , (11) 

 ^ 0irr temp

c fc fc cf R R f   , (12) 

 ^ 0irr temp

t ft ft tf R R f   , (13) 

where the superscript ^ denotes the value after irradiation at operation temperature.  

Mazars’ “μ damage model”, which is based on Mazars damage model (Mazars and Pijaudier-

Cabot, 1989; Mazars et al., 2014), was used in the presented numerical approach. The Mazars 

damage model can be used for radiation induced damage analysis and shows acceptable results 

according to (Le Pape, 2015). The isotropic mechanical damage Dmech is calculated using the “μ 

damage model” as 

 (1 )mech mech

ER D  , (14) 

 0irr temp mech

E E EE R R R E    , (15) 

where RE
mech is the reduction factor due to mechanical damage. The damage surface then can be 

defined after specification of the reduced elastic modulus, the compressive and tensile strength. 

Eq. 15 is mathematically equal to 
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0(1 ) ,

1 (1 )(1 )(1 ),irr temp mech

E D E

D D D D

  

    
 (16) 

presented in (Willam et al., 2013; Nechnech et al., 2002), where (1 – Dirr ) = RE
irr and (1 – Dtemp ) 

= RE
temp represent the isotropic damage due to irradiation and the operation temperature effect, 

respectively. The following approach assumes irradiation-induced damage and mechanical 

damage independent, however, it may be overly conservative.  

In the study presented by Gray (1971), the influence of neutron irradiation on concrete creep 

was investigated and it appeared to be insignificant, nevertheless, the final conclusion is difficult 

to draw from this experiment. According to Denisov et al. (2012), the creep of the irradiated 

samples is approximately seven times higher in comparison with the control samples, however, an 

increase in the creep is explained by the high temperature (240 °C) which accompanied irradiation 

in the test reactor. The research presented by Dubrovskii et al. (2010) also concludes that the 

increase in creep is caused by the elevated temperature only. Therefore, the effect of irradiation on 

concrete creep may be neglected and the commonly accepted B3 model (Bažant and Jirásek, 2018) 

can be used. Since the steel liner, which covers concrete biological shield, prevents concrete 

drying, only the basic creep was taken into account with the assumption of constant relative 

humidity in the concrete body. Then, according to the B3 model, the basic creep of concrete 

depends on the concrete composition, the concrete stiffness, the stress level, the load duration and 

the age of concrete structure. 

The interaction between the damage model and the creep model was carried out by coupling 

the models using the staggered algorithm with the following constitutive equation 

 ( )tot temp irr crE         , (17) 

where σ is the stresses, E is the elastic modulus defined by Eq. 15, εtot  is the total strain, εtemp is the 

thermal strain, εirr is the linear strain due to the RIVE and εcr is the creep strain defined as follows 

 3

temp

RIVE

irr

cr cr

T

J

 




 

 



 

, (18) 

where α is the coefficient of thermal expansion defined by Eq. 10, ΔT is the temperature change, 

εRIVE is the RIVE strain defined by Eq. 8, Jcr is the creep compliance defined by B3 model (Bažant 

and Jirásek, 2018). 

Since the mechanical damage may grow even under constant stresses, the strain, which drives 

the evolution of mechanical damage, is calculated as follows 

 (1 )tot temp irr cr           , (19) 

where ω is a material parameter, which, as the crude estimation, is equal to 0.2 according to 

(Bažant and Jirásek, 2018; Mazzotti and Savoia, 2003). 

The system of nonlinear equations was solved using the force-controlled modified Newton-

Raphson method in each time step with the time increment equal to a quarter of a year. The system 

of nonlinear equations converges when the sum of squares of the residual divided by the sum of 

squares of the applied force is less than 1·10-6. The iteration process was then stopped when the 

convergence was achieved. Then, the solver proceeded to the next time step. The concise flowchart 

of the analysis is shown in Fig. 10.  
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Table 1 Material properties used in modeling 

 

Parameter Value Reference 

Elastic properties 

E0, [GPa] 30 (Vaitová et al, 2018) 

ν 0.2 (Vaitová et al, 2018) 

fc
0, [MPa] 20 (Vaitová et al, 2018) 

ft
0, [MPa] 2.5 (Vaitová et al, 2018) 

Neutron fluence 

Φ, [n/cm2] Eq. 1. *, (Esselman and 

Bruck, 2013) 

Temperature 

T, [°C] - * 

Properties reduction 

RE
irr Eq. 2. (Le Pape, 2015) 

Rfc
irr Eq. 3. (Le Pape, 2015) 

Rft
irr Eq. 4. (Le Pape, 2015) 

RE
temp Eq. 5. (Willam et al., 2009) 

Rfc
temp Eq. 6. (Willam et al., 2009) 

Rft
temp Eq. 7. (Willam et al., 2009) 

“μ damage model” parameters 

Ac 1.82 (Mazars et al., 2014) 

Bc 1023 (Mazars et al., 2014) 

At 1 (Mazars et al., 2014) 

Bt 10000 (Mazars et al., 2014) 

B3 model parameters 

w, [kg/m3] 190 ** 

c, [kg/m3] 499 ** 

a, [kg/m3] 1676 ** 

t', [years] 3 *** 

Load parameters 

εRIVE, [%] Eq. 8. (Le Pape, 2015) 

αaggr, [1/°C] Eq. 9. (Le Pape et al., 

2016) 

αcem, [1/°C] 10·10-6 (Le Pape et al., 

2016) 

α, [1/°C] Eq. 10. *** 

T0, [°C] 25 *** 

 

* measured and calculated environmental conditions during the normal operation of NPP 

** real structural concrete mixture composition for Dukovany NPP 

*** estimated parameters 
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Fig. 10. Concise flowchart of analysis. 
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The 60-degree segment of the biological shield was analyzed with the assumption of the flux 

symmetry due to the 60-degree symmetry geometry of the reactor active zone (see Fig. 2). The 

regular finite element mesh with the maximum element size of 7 cm and the applied boundary 

conditions are shown in Fig. 11. 

 

 
Fig. 11. Finite element mesh with applied boundary conditions. 

 

The developed finite element code was verified with available related experimental data. The 

verification was performed according to the experiment presented in (Kommendant et al. 1979) 

where the concrete for NPPs was studied. The concrete cylinders with the radius of 76.2 mm and 

the height of 406.4 mm made of concrete with the compressive strength of 45 MPa were insulated 

and subjected to a sustained load of 14.48 MPa, which does not cause damage to the samples, and 

29.3 MPa, which causes damage of the samples. The loading started at the sample age of 28 days. 

The concrete mixture was composed of 449 kg/m3 of cement, 170 kg/m3 of water and 1810 kg/m3 

of aggregates (fine and coarse). The strain calculated using the developed code shows good 

correlation with the experimental data, see Fig. 12 for both undamaged and damaged concrete. 

 

 
Fig. 12. Verification example. 
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4. Results and discussion 

 

According to the numerical simulation, the concrete biological shield is already severely 

damaged after the simulated 12.75 years of normal operation, when the solver was not able to find 

an equilibrium of the analyzed structure since the force-controlled Newton-Raphson method was 

used in the developed code. Then, the 12.75 years indicate the end of the theoretical structural 

integrity time of the analyzed biological shield in this study.  

 

 
Fig. 13. Displacement of biological shield after 12.75 years of normal operation (Magnification = 

5000) (a) with creep and temperature, (b) without creep and temperature. 

 

 
Fig. 14. Principal tensile stresses in biological shield after 12.75 years of normal operation (a) 

with creep and temperature, (b) without creep and temperature. 

 

The corresponding displacements, the principal tensile stresses and the damage of the biological 

shield in the case which takes into account creep and temperature effect are shown in Figs. 13(a), 

14(a) and 15(a), while the displacements, the principal tensile stresses and the damage which were 

calculated without creep and temperature effect are shown in Figs. 13(b), 14(b) and 15(b). The 

structural integrity time for these two cases remained unchanged and equal to 12.75 years due to 
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the negative effect of temperature change (increase of stresses) and positive effect of creep 

(stresses redistribution). However, the displacements, principal stresses distribution and the 

damage varied, see Figs. 13-15. 

 

 
Fig. 15. Damage in biological shield after 12.75 years of normal operation (a) with creep and 

temperature, (b) without creep and temperature. 

 

The compressive stresses in Fig. 14, which are much lower than the compressive strength, 

appear in the zone which is affected by the neutrons, but the upper part and the outer surface of 

the analyzed structure is under significant tension due to the structural response. It can be seen that 

the principal tensile stresses achieve their limit, which implies the occurrence of cracks and, as 

shown in Fig. 15, the deep radial cracks develop from the upper part of outer surface of the 

analyzed structure and propagate inward. 

The effect of creep on the concrete biological shield plays an extremely important role in its 

structural performance. According to the presented numerical simulation, the theoretical structural 

integrity time of the analyzed structure decreases to 2.00 years from initial 12.75 years in the 

analysis without creep but with temperature because of the concentration of the huge thermal 

stresses near the supports due to the rapid heating. This is in accordance with (Giorla et al., 2017), 

which also shows the damage delay due to the creep. It should be noted that when the creep is not 

considered, the damage is localized in the support area, which will not result in reduction of the 

load-bearing capacity or the shielding properties of the analyzed self-bearing structure, but rather 

it indicates changes in the damage pattern. Therefore, since the creep not only slows down the 

damage evolution but also changes the damage pattern, it is recommended to perform the coupled 

creep-damage analysis of the concrete biological shield in 3D due to the highly non-uniform load 

distribution. The above also emphasizes the serious need to conduct an experimental investigation 

on the effect of radiation on the concrete creep in order to clarify the radiation induced creep 

mechanism. In further analysis the case with the creep and temperature effect which is shown in 

Figs. 13(a), 14(a) and 15(a) is taken in consideration. 

In order to estimate the creep sensitivity, these parameters were selected: concrete composition, 

the age of concrete at loading and the ω parameter (Bažant and Jirásek, 2018; Mazzotti and Savoia, 

2003). Firstly, the mixture with the composition presented in (Kommendant et al. 1979) was used 
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in the analysis. The strength and the elastic modulus remained unchanged and as a result the 

structural integrity time reduced to 12.00 years from 12.75 years. Secondly, the age of concrete at 

loading was changed to one year from the realistic three years and as a result the structural integrity 

time increased to 15.50 years for concrete mixture presented in Table 1 and to 15.00 years for 

concrete mixture presented in (Kommendant et al. 1979). Thirdly, the ω parameter varied from 0 

to 0.35 and as a result the structural integrity time varied within the limit of ±5 %. Therefore, the 

reasonable alteration of the creep parameters affects the rate of damage development 

insignificantly.  

The important aspect in these results is that with consideration of the RIVE lower limit (see 

Fig. 8.), the calculated structural integrity time of the concrete biological shield increases to 35.25 

years from the initially obtained 12.75 years, which corresponds to the maximum fluence of 

4.02·1019 n/cm2. Similarly, with consideration of the RIVE upper limit, the structural integrity time 

decreases to 10.00 years, which corresponds to the maximum fluence of 1.28·1019 n/cm2. The 

obtained neutron fluence value is in accordance with the limit value for the fast neutrons proposed 

by United States Nuclear Regulatory Committee, (US Nuclear Regulatory Commission, 2016), 

and the new reference value proposed in Japan for the fast neutron fluence, (Maruyama et al., 

2017), which is equal to 1·1019 n/cm2. Here it should be noted that the biological shield of some 

PWR reactors which are used in the USA and Japan is not only a shielding structure but also a 

load-bearing structure, (Rosseel et al., 2016). Therefore, its damage or displacement may result in 

serious consequences. On the other hand, the biological shield of the VVER reactors is a shielding 

structure only, and thus, its damage or displacement will not affect the containment structural 

performance or the designed reactor position.  

It should be also noted that the neutron attenuation due to the steel sheet liner of the thickness 

of 1.2 cm, which covers the concrete biological shield, was not taken into account in the presented 

simulation, which is a conservative assumption. According to the past and current research, the 

neutron removal cross section of different steel varies from 0.1586 to 0.2103, (Kassab et al., 2015; 

El-Khameesy et al., 2015). Then, even with more undervalued estimation when the neutron 

removal cross section of steel is equal to that of iron, 0.1576 1/cm (Snyder and Neufeld, 1957; 

Lamarsh and Baratta 2001), the maximum flux reduces to 2.48·1010 n/cm2/s from the originally 

considered maximum value of 4.95·1010 n/cm2/s and the critical damage of the biological shield is 

reached after 15.25 years of operation instead of  the calculated 12.75 years, when the mean RIVE 

curve is used. 

It should be also noted that the analysis uses theoretical values of the concrete stiffness and the 

strengths in tension and compression. However, the real values can by much higher. For example, 

(Altynbaev et al., 2016) provides the mean value of concrete compressive strength during the 

construction of Unit 1 of Balakovo Nuclear Power Plant in 1980 of 40 MPa and the minimum 

value of 30 MPa with the design value of 20 MPa. If the real minimum value of the initial 

compressive strength of 30 MPa with the corresponding initial tensile strength of 2.9 MPa and the 

modulus of elasticity of 32 GPa are used in the analysis, the critical damage of concrete biological 

shield occurs after 18.00 years of operation instead of 15.25 years. Moreover, if the real mean 

value of the initial compressive strength of 40 MPa with the corresponding initial tensile strength 

of 3.5 MPa and the modulus of elasticity of 35 GPa are used, the critical damage occurs after 18.75 

years of the normal operation. According to this parametric study, with consideration of the mean 

RIVE curve, the biological shield will be damaged critically during the design operational time 

anyway. However, it should be stated at this point that the damage to the analyzed biological shield 

does not affect the normal NPP operation. As can be seen in Fig. 16, the truncated top of the 
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biological shield is supplemented with an antisymmetric concrete wedge, which is also covered in 

a steel liner and which can attenuate the penetrating neutrons. The calculated result can be seen in 

Fig. 16 (a) when it is expected that the neutron will be fully attenuated by the biological shield and 

the supplementary concrete wedge. Nevertheless, hypothetically, when the crack pattern lets the 

neutrons go through the supplementary concrete wedge, the load-bearing concrete wall may be 

affected, however, the affected area will be very small, or even negligibly small when the thickness 

of the load-bearing concrete wall is considered, see Fig. 16 (b). 

 

Fig. 16. Redistribution of neutron flux and analysis of potential consequences (a) crack in 

concrete biological shield, (b) crack in concrete wedge. 

 

The temperature, at which the accelerated irradiation tests are carried out, varies from 10 to 550 

°C, according to (Field et al., 2015; Willam et al., 2013). The low temperature can speed up the 

RIVE significantly, while the high temperature results in the RIVE delay due to the thermal 

healing, (Bykov et al. 1981, Le Pape et al., 2016). That means that either the RIVE has to be a 

function of temperature as proposed in (Maruyama et al., 2017) for α-quartz or only the data which 

were obtained under the temperature prevalent in the concrete biological shield (about 40 to 60 °C 

for VVER-440/213, see Fig. 4) should be used in numerical simulations. The reason for this 

limitation is that the high temperature, under which some of the accelerated irradiation tests were 

carried out, leads to additional inaccuracy, when the concrete samples can be damaged by the 

irradiation as well as the elevated temperature during the accelerated irradiation tests. 

 

5. Conclusions 

 

This paper describes in detail the numerical approach to the coupled damage-creep analysis of 

VVER-440/213 concrete biological shield, which combines existing hypotheses and experimental 

data on irradiation and temperature effects on concrete with the real flux and temperature 

measurements and calculations. 

According to the result of the presented numerical simulation, the radiation induced volumetric 

expansion of aggregates (RIVE) is the primary factor that affects the structural performance of 

concrete biological shield. Nevertheless, it is emphasized that the effect of RIVE should be 

considered together with the temperature and creep effects in order to obtain realistic results. 



 

17 
 

The obtained results indicate that the concrete biological shield of VVER-440/213 reactor may 

be damaged critically as early as after 10 years of the NPP normal operation, when its shielding 

property is partially compromised. However, this fact does not affect the containment building or 

the reactor pressure vessel design performance as the biological shield is self-bearing statically-

isolated structure. The partial reduction of shielding properties of the biological shield is 

compensated by the supplementing antisymmetric concrete wedge, which attenuates the 

permeating neutrons. Only hypothetically, as the material parameters were underestimated in the 

presented study, the neutrons may affect the load-bearing concrete wall, but the effect would be 

negligible with respect to the thickness of the load-bearing concrete wall, which supports the 

reactor pressure vessel. However, this result evidences the necessity to be able to predict the 

behavior of the biological shield of those PWR reactors which combine both the load-bearing and 

shielding function. In order to eliminate the uncertainties related to material properties and 

environmental condition, additional experiments have to be performed, such as related to barite 

and serpentinite RIVE or direct measurements of temperature fields during the entire operation 

cycle. 
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