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Abstract

Pro-social punishment is a key driver of harmonious and stable society. How-
ever, this institution is vulnerable to corruption since law-violators can avoid
sanctioning by paying bribes to corrupt law-enforcers. Consequently, to un-
derstand how altruistic behavior survives in a corrupt environment is an open
question. To reveal potential explanations here we introduce corrupt enforcers
and violators into the public goods game with pool punishment, and assume that
punishers, as corrupt enforcers, may select defectors probabilistically to take a
bribe from, and meanwhile defectors, as corrupt violators, may select punishers
stochastically to be corrupted. By means of mathematical analysis, we aim to
study the necessary conditions for the evolution of cooperation in such corrupt
environment. We find that cooperation can be maintained in the population
in two distinct ways. First, cooperators, defectors, and punishers can coexist
by all keeping a steady fraction of the population. Second, these three strate-
gies can form a cyclic dominance that resembles a rock-scissors-paper cycle or
a heteroclinic cycle. We theoretically identify conditions when the competing
strategies coexist in a stationary way or they dominate each other in a cyclic
way. These predictions are confirmed numerically.

1. Introduction

Understanding the emergence and persistence of altruistic cooperative be-
havior among selfish individuals has long been an enormous challenge.1,2, 3, 4, 5, 6, 7, 8, 9, 10,11,12,13,14,15
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This conundrum is generally studied by using evolutionary game theory as
a powerful theoretical framework.17,18,19,16,20,21,22 Particularly, public goods
game (PGG), as a standard metaphor of the mentioned social dilemma, has at-
tracted a lot of attention from broad range of research disciplines.23,24,25,26,27,28,29,30,31

In the PGG, individuals decide whether to contribute to the common pool or
not, and the accumulated and enhanced contribution are distributed to group
members equally. Thus defectors who contribute nothing will obtain a higher
payoff, no matter what other players do. If left controlled, each individual
prefers to defect in the game leading to the collapse of cooperation.32

In order to solve the problem of cooperation in the game, an intensive re-
search efforts have been carried out during the past few decades.34,35,36,33,37,39,38,40,41,42,43

One prominently discussed solution is the employ of punishment, that is, punish-
ing uncooperative individuals by lowering their income.46,49,47,50,51,52,48,44,45,53

In particular, two different ways of punishment are studied, namely, peer pun-
ishment and pool punishment. The former refers to that group individuals can
impose fines on the violators directly and its additional cost.54,46,55 The lat-
ter means that players can decide whether to contribute to a punishment pool
before contributing to the common pool of the basic game and sanctioning de-
fection is organized centrally.44,57,56 This way of punishment is widespread and
generally preferred in modern human societies.57,56

While punishment can solve the original dilemma of cooperation, but the
effectiveness of punishment in promoting cooperation has been challenged by
recent theoretical research showing that the existence of corruption where de-
fectors bribe corrupt officials to avoid punishment can destroy the positive
consequence of costly punishment in cooperation.58,59,61,60,62 For example,
Muthukrishna et al.60 experimentally showed that the possibility of corruption
can cause a significant fall in public good provisioning and make empowering
leaders decrease cooperative contributions.

It is worth mentioning that in most of the studies involving corruption, it is
always assumed that defectors bribe corrupt enforcers and meanwhile enforcers
who are involved with corruption take the bribes permanently. Indeed this as-
sumption is not always justified in realistic situations where officials who are
involved in corruption do not accept all the offered bribes and meanwhile civil-
ians who violate the rules are not always going to offer a bribe to the officials.
In other words, corrupt officials and defective civilians may act stochastically
and offer or take bribe occasionally.

Motivated by the above mentioned observations in this work we thus in-
troduce corrupt enforcers and violators into the public goods game with pool
punishment, and we assume that defectors bribe enforcers probabilistically to
avoid punishment and meanwhile pool punishers accept a bribe from defectors
also stochastically. By applying the replicator equation approach we assume
infinite population where the evolutionary game dynamics is used. Our theoret-
ical analysis reveals, which is also confirmed by numerical calculations, that the
cooperative behavior can be maintained in the population in two different ways.
First, cooperators, defectors, and punishers can coexist where the portions of
all strategies are stable in time. Alternatively, the three strategies can dominate

2



each other in a cyclic way similarly to the well known rock-scissors-paper cycel
or a heteroclinic cycle.

2. Model and method

2.1. Public goods game

We consider the PGG played in an infinite well-mixed population. At each
time step, N individuals are randomly chosen to form a group to participate
in the PGG. Each individual can choose to cooperate or defect. Cooperators
(C) contribute to the common pool at a cost c, while defectors (D) contribute
nothing. The sum of contributions is multiplied by a factor r (1 < r < N) and
then the enhanced amount is divided equally among all group members.

We then introduce a third strategist, pool punishers (P ), who contribute G
to the punishment pool before contributing c to the common pool. They are
responsible for monitoring the entire population and punishing those individu-
als who are unwilling to contribute to the common pool. Alternatively, some
defectors might be tempted to bribe the enforcers, so as to enable them to avoid
punishment. In the same way, some enforcers can choose to accept bribes and
do not punish the bribers. Here we assume that punishers decide to accept the
bribe b from corrupt defectors with probability p. With 1− p probability they
do not accept any bribes and punish defectors in the group. On the other hand,
we assume that defector will pay the cost h to bribe the corrupt punishers with
probability q, while with 1− q probability they are unwilling to do this. Thus,
a defector who does not bribe will receive a fine B(B ≥ h) from every punisher
no matter whether he/she is willing to accept bribe.

As a result, the payoffs of cooperators, defectors, and punishers from one
PGG can be respectively written as

πC =
rc(NC +NP + 1)

N
− c, (1)

πD =
rc(NC +NP )

N
− (1− pq)BNP − pqNPh, (2)

πP =
rc(NC +NP + 1)

N
− c−G+ pqNDb, (3)

where NC , ND, and NP represent the number of cooperators, defectors, and
pool punishers among the other N − 1 group members, respectively, and [1 −
p+ p(1− q)]B denotes the expected fine from each punisher.

2.2. Replicator equation

We apply replicator equations to study the evolutionary dynamics of strate-
gies in our model.63,64,65 We denote by x, y, and z the frequencies of C,D, and
P , respectively. Thus, x, y, z ≥ 0 and x + y + z = 1. The replicator equations
are written as

{ẋ = x(PC − P̄ ), (4)
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ẏ = y(PD − P̄ ), (5)

ż = z(PP − P̄ ),

(6)where PC , PD, and PP denote the expected payoffs of C,D, and P , re-
spectively, and P̄ = xPC + yPD + zPP gives the average payoff of the entire
population. Accordingly, the expected payoffs of the above three strategies can
be written as

Pi =

N−1∑
NC=0

N−NC−1∑
ND=0

N − 1NCN −NC − 1NDx
NCyNDzN−NC−ND−1πi, (7)

where i = C,D, or P .
In the next section, we examine the evolutionary dynamics for the men-

tioned three strategies. Particulary, we analysize the distribution and stability
of equilibrium points in the following section.

3. Theoretical analysis

3.1. Equilibrium points

We consider the replicator dynamics for cooperators (C), defectors (D), and
pool punishers (P ), with the frequencies x, y, and z, respectively. We can get the
expected payoffs of these three strategies by simplifying the formula presented
in Eq. (7) as follows

PC =
rc

N
(N − 1)(x+ z) +

rc

N
− c, (8)

PD =
rc

N
(N − 1)(x+ z)− (1− pq)B(N − 1)z − pq(N − 1)zh, (9)

PP =
rc

N
(N − 1)(x+ z) +

rc

N
− c−G+ pq(N − 1)yb, (10)

where (N − 1)(x+ z) denotes the expected numbers of contributors among the
N − 1 co-players, and B(N − 1)z gives the expected fine on a defector. The
detailed analysis of the equilibrium point is shown in theorem 3.1.

The system described by (4) has at most five equilibria (x, y, z) = (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 1−
α, α), and (1−β−µ, µ, β). Here we introduce the abbreviation α = rc/N−c−G+pq(N−1)b

(B+b−h)(N−1)pq−B(N−1) ,

β = c−rc/N
(1−pq)B(N−1)+pqh(N−1) , and µ = G

pq(N−1)b . It is easy to obtain the three

vertex fixed points of the above system, namely, (0, 0, 1), (1, 0, 0), and (0, 1, 0).
In the following, we analyze the boundary and interior equilibria of the system
in detail.

We first investigate the interior equilibrium points in the simplex S3. Solving
PC = PD results in z = β. Similarly, by solving PC = PP , we have y = µ. Thus,
there is an interior equilibrium point (1 − β − µ, µ, β) when µ < 1, β < 1, and
1− β − µ > 0.

Then we investigate the fixed points on each edge of the simplex S3. On the
edge C−D we have z = 0, resulting in ẏ = y(1−y)(PD−PC) = y(1−y)(c− rc

N ) >
0. As a result, the systems evolves from C towards D state.
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On the C − P edge we have y = 0, resulting in ẋ = x(1 − x)(PC − PP ) =
x(1−x)G > 0. Thus the direction of the dynamics goes from P toward C state.

On the D−P edge we have y+ z = 1, and the replicator system changes to
ż = z(1− z)(PP − PD). Solving PP = PD results in z = α. Thus there exists a
boundary equilibrium point (0, 1− α, α) when 0 < α < 1.

3.2. Stability analysis of equilibria

Here we set that

{f(x, y) = x[(1− x)(PC − PP )− y(PD − PP )], (11)

g(x, y) = y[(1− y)(PD − PP )− x(PC − PP )].

(12)Then the Jacobian matrix of the system is

J =
∂f(x, y)

∂x

∂f(x, y)

∂y

∂g(x, y)

∂x

∂g(x, y)

∂y
, (13)

where{
∂f(x, y)

∂x
= [(1− x)(PC − PP )− y(PD − PP )] + x[−(PC − PP ) (14)

+(1− x) ∂
∂x (PC − PP )− y ∂

∂x (PD − PP )], (15)

∂f(x, y)

∂y
= x[(1− x) ∂∂y (PC − PP )− (PD − PP )− y ∂

∂y (PD − PP )], (16)

∂g(x, y)

∂x
= y[(1− y) ∂

∂x (PD − PP )− (PC − PP )− x ∂
∂x (PC − PP )], (17)

∂g(x, y)

∂y
= [(1− y)(PD − PP )− x(PC − PP )] + y[−(PD − PP ) (18)

+(1− y) ∂∂y (PD − PP )− x ∂
∂y (PC − PP )].

(19)
In the following, we study the stabilities of equilibria based on whether the

system has an interior equilibrium point.

3.2.1. The system (4) has an interior equilibrium point

When β < 1, µ < 1, and β + µ < 1, there exists an interior fixed point,
namely, (x, y, z) = (1− β − µ, µ, β). In the following we discuss the stability of
this fix point.

When (1− pq)B + pqh− pqb < 0, the existing interior fixed point is stable.
(1) For 0 < α < 1, there is a boundary equilibrium point with z = α on

the D − P edge. Thus the system has five fixed points in the parameter space,
namely, (0, 0, 1), (1, 0, 0), (0, 1, 0), (0, 1− α, α), and (1− β − µ, µ, β).

For (x, y, z) = (0, 0, 1), the Jacobian is

J = G00− (1− pq)B(N − 1)− pq(N − 1)h− rc

N
+ c+G, (20)

5



thus the fixed equilibrium is unstable since G > 0.
For (x, y, z) = (1, 0, 0), the Jacobian is

J = −G− (c+G− rc

N
)0c− rc

N
, (21)

thus the fixed equilibrium is unstable since r < N .
For (x, y, z) = (0, 1, 0), the Jacobian is

J =
rc

N
− c0− (G− pq(N − 1)b)

rc

N
− c−G+ pq(N − 1)b, (22)

thus the fixed equilibrium is a saddle point and unstable since rc
N − c − G +

pq(N − 1)b > 0.
For (x, y, z) = (0, 1− α, α), the Jacobian is

J = a110a21a22, (23)

where a11 = G− pq(N − 1)yb, a21 = y(1− y)[pq(N − 1)h+ (1− pq)(N − 1)B]−
y[G− pq(N − 1)yb], and a22 = y(1− y)(N − 1)[(1− pq)B+ pqh− pqb], thus the
fixed equilibrium is unstable since G− pq(N − 1)yb > 0.

For (x, y, z) = (1−β−µ, µ, β), we define the equilibrium point as (x∗, y∗, z∗)
hereafter, thus the elements in the Jacobian matrix are written as{

∂f

∂x
(x∗, y∗) = x∗[(1− x∗)

∂

∂x
(PC − PP )− y∗ ∂

∂x
(PD − PP )], (24)

∂f

∂y
(x∗, y∗) = x∗[(1− x∗)

∂

∂y
(PC − PP )− y∗ ∂

∂y
(PD − PP )], (25)

∂g

∂x
(x∗, y∗) = y∗[(1− y∗)

∂

∂x
(PD − PP )− x∗ ∂

∂x
(PC − PP )], (26)

∂g

∂y
(x∗, y∗) = y∗[(1− y∗)

∂

∂y
(PD − PP )− x∗ ∂

∂y
(PC − PP )],

(27)where {
∂

∂x
(PC − PP ) = 0, (28)

∂

∂y
(PC − PP ) = −pq(N − 1)b, (29)

∂

∂x
(PD − PP ) = (N − 1)[pqh+ (1− pq)B], (30)

∂

∂y
(PD − PP ) = (N − 1)[pqh+ (1− pq)B − pqb].

(31)Then we define that p = ∂f
∂x (x∗, y∗)∂g∂y (x∗, y∗) − ∂f

∂y (x∗, y∗) ∂g∂x (x∗, y∗) and

q = ∂f
∂x (x∗, y∗) + ∂g

∂y (x∗, y∗). Thus we have

p =
∂f

∂x
(x∗, y∗)

∂g

∂y
(x∗, y∗)− ∂f

∂y
(x∗, y∗)

∂g

∂x
(x∗, y∗)
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= x∗y∗(1− x∗ − y∗)[
∂

∂x
(PC − PP )

∂

∂y
(PD − PP )

− ∂

∂y
(PC − PP )

∂

∂x
(PD − PP )]

= x∗y∗(1− x∗ − y∗)(N − 1)2pqb[pqh+ (1− pq)B]

> 0, (32)

and

q =
∂f

∂x
(x∗, y∗) +

∂g

∂y
(x∗, y∗)

= x∗(1− x∗)
∂

∂x
(PC − PP ) + y∗(1− y∗)

∂

∂y
(PD − PP )

− x∗y∗[
∂

∂x
(PD − PP ) +

∂

∂y
(PC − PP )]

= (N − 1)[(1− pq)B + pqh− pqb]y∗(1− y∗ − x∗). (33)

Thus in the case of (1 − pq)B + pqh − pqb < 0, the interior fixed point is
stable.

(2) For α ≤ 0 or α ≥ 1, the boundary equilibrium point of the D − P edge
does not exist. Thus the system has four fixed points in the parameter space.
The stability of (0, 0, 1), (1, 0, 0), and (1−β−µ, µ, β) will not change, compared
with the case of 0 < α < 1. If α ≥ 1, the fixed point (0, 1, 0) is unstable since
the largest eigenvalue of J(0, 1, 0) is positive. If α < 0, the fixed point (0, 1, 0)
is stable. Particularly, for α = 0 we can prove that this fixed point is stable by
using the center manifold theorem66,67 (see Theorem.3.2.1).

When rc
N − c−G+ pq(N − 1)b = 0, the fixed point (0, 1, 0) is stable.

Because of y = 1− x− z, the dynamic equations (11) become

{ẋ = x[(1− x)(PC − PD)− z(PP − PD)], (34)

ż = z[(1− z)(PP − PD)− x(PC − PD)],

(35)where

PC − PD =
rc

N
− c+ (1− pq)B(N − 1)z + (N − 1)pqzh, (36)

PP − PD =
rc

N
− c−G+ pq(N − 1)(1− x− z)b

+ (1− pq)B(N − 1)z + pq(N − 1)zh. (37)

We know that (x, z) = (0, 0) is an equilibrium point of system (34). Conse-
quently the Jacobian is

A =
rc

N
− c00

rc

N
− c−G+ pq(N − 1)b. (38)

When rc
N − c−G+ pq(N − 1)b = 0, the eigenvalues of the Jacobian for the fixed

point (x, z) = (0, 0) are 0 and rc
N − c. In this condition, we study the stability
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of the equilibrium point by further using the center manifold theorem.67 To do
that, we construct a matrix M , whose column elements are the eigenvectors of
the matrix A, given as

M = 0110. (39)

Let T = M−1, then we have

TAT−1 = 000
rc

N
− c. (40)

Using variable substitution, we have

vu = Txz = 0110xz = zx. (41)

Therefore, the system (3.2.1) can be rewritten as

{v̇ = v(1− v)[ rcN − c−G+ pq(N − 1)(1− u− v)b+ (1− pq)B(N − 1)v

+pq(N − 1)vh]− vu[ rcN − c+ (1− pq)B(N − 1)v + (N − 1)pqvh], (42)

u̇ = u(1− u)[ rcN − c+ (1− pq)B(N − 1)v + (N − 1)pqvh]− vu[ rcN − c
−G+ pq(N − 1)(1− u− v)b+ (1− pq)B(N − 1)v + pq(N − 1)vh].

(43)Using the center manifold theorem,66,67 we have that v = e(u) is a center
manifold for the above system. Then the dynamics on the center manifold,
namely, the dynamics of

u̇ = u(1− u)[
rc

N
− c+ (1− pq)B(N − 1)e(u) + (N − 1)pqe(u)h]

− e(u)u[
rc

N
− c−G+ pq(N − 1)(1− u− e(u))b+ (1− pq)B(N − 1)e(u)

+ pq(N − 1)e(u)h], (44)

determine the dynamics near the equilibrium point. Assuming that e(u) =
O(u2), thus the system (44) can be expressed as

u̇ = u(1− u)(
rc

N
− c) +O(|u|3). (45)

By introducing m(u) = u(1−u)( rcN −c), we have m
′
(u) = (1−2u)( rcN −c). Since

m
′
(0) < 0, thus we obtain that u = 0 is asymptotically stable. Therefore, we

can conclude that the fixed point (u, e(u)) = (0, 0) is also stable for the reduced
system (34). Accordingly, the fixed point (0, 1, 0) is stable in the equation system
(4).

Next we study the case when (1 − pq)B + pqh − pqb = 0. Here the eigen-
values of the Jacobian matrix for the interior equilibrium point are pure imag-
inary. Besides, the boundary equilibrium point of the D − P edge does not
exist. Hence the system has four fixed points in the parameter space, namely,
(0, 0, 1), (1, 0, 0), (0, 1, 0), and (1− β − µ, µ, β). The three vertexes are unstable
since the the largest eigenvalues of the Jacobi of these three fixed points are all
positive.
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When (1−pq)B+pqh−pqb = 0, the interior fixed point is a center surround-
ing by periodic closed orbits. We introduce a new variable ε = x

x+y , which
represents the fraction of cooperators among individuals who do not contribute
to the punishment pool. This yields

ε̇ =
xy

(x+ y)2
(PC − PD) = −ε(1− ε)(PD − PC). (46)

On the other hand, ż = z(PP − P̄ ), where

P̄ = xPC + yPD + zPP

= x(PC − PD) + (1− z)(PD − PP ) + PP . (47)

Thus we have

ż = z[x(PD − PC)− (1− z)(PD − PP )]. (48)

Accordingly the equation system becomes

{ε̇ = ε(1− ε)[ rcN − c+ (1− pq)B(N − 1)z + (N − 1)pqzh], (49)

ż = z(1− z){(1− ε)[ rcN − c+ pq(N − 1)(1− z)b
+(1− pq)B(N − 1)z + pq(N − 1)zh]−G}.

(50)The separability of the factors allows us to write

dz

dε
=

z(1− z)
rc
N − c+ (1− pq)B(N − 1)z + (N − 1)pqzh

(1− ε)[ rcN − c+ pq(N − 1)b]−G
ε(1− ε)

,

such that ∫ rc
N − c+ (1− pq)B(N − 1)z + (N − 1)pqzh

z(1− z)
dz

=

∫
(1− ε)[ rcN − c+ pq(N − 1)b]−G

ε(1− ε)
dε. (51)

The integral of the right-hand side is

[
rc

N
− c+ pq(N − 1)b] log(ε)−G[log(ε)− log(1− ε)]. (52)

The integral of the left-hand side is

(c− rc

N
)[log(z)− log(1− z)]− [(1− pq)B(N − 1)

+(N − 1)pqh] log(1− z). (53)

In this way, we identify the constant of motion

H(ε, z) = [
rc

N
− c+ pq(N − 1)b] log(ε)−G[log(ε)− log(1− ε)]

+ (c− rc

N
)[log(z)− log(1− z)]− [(1− pq)B(N − 1)

+ (N − 1)pqh] log(1− z). (54)
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Therefore, we have

Ḣ =
∂H

∂ε
ε̇+

∂H

∂z
ż = 0. (55)

Accordingly, the system is conservative and all constant level sets of H cor-
respond to closed curves. Besides, the interior fixed point is neutrally stable
surrounded by those closed and periodic orbits.

Last, when (1 − pq)B + pqh − pqb > 0, the existing interior fixed point is
unstable.

(1) For 0 < α < 1, there is a boundary equilibrium point on the D − P
edge. Then the system has five fixed points in the parameter space, namely,
(0, 0, 1), (1, 0, 0), (0, 1, 0), (0, 1− α, α), and (1− β − µ, µ, β).

The fixed points (0, 0, 1), (1, 0, 0), and (0, 1−α, α) are all unstable since the
largest eigenvalues of the Jacobi are all positive.

For (x, y, z) = (0, 1, 0), the Jacobian is

J =
rc

N
− c0− (G− pq(N − 1)b)

rc

N
− c−G+ pq(N − 1)b, (56)

thus this is a stable equilibrium point since rc
N − c−G+ pq(N − 1)b < 0.

(2) For α ≤ 0 or α ≥ 1, the boundary equilibrium point of the D − P
edge does not exist. Thus the system has four fixed points in the mentioned
parameter space. The stability of (0, 0, 1), (1, 0, 0), and (1−β−µ, µ, β) will not
change, compared with the case of 0 < α < 1. If α ≥ 1, the fixed point (0, 1, 0)
is unstable since the largest eigenvalue of J(0, 1, 0) is positive. If α ≤ 0, the
fixed point (0, 1, 0) is stable.

When rc
N −c−G > max{−(N−1)[(1−pq)B+pqh],−pq(N−1)b} and r < N ,

there is a stable heteroclinic cycle on the boundary of the simplex S3.
When rc

N − c − G > max{−(N − 1)[(1 − pq)B + pqh],−pq(N − 1)b}, and
r < N , we know that the three vertex equilibrium points (C,D, and P ) are
all saddle nodes, and the three edges (CD,DP , and PC) are the heteroclinic
trajectories. All of these guarantee the existence of the heteroclinic cycle on
the boundary S3. In the following, we will prove that the heteroclinic cycle is
asymptotically stable.

Based on the above analysis, we can get the eigenvalues of the Jacobian
matrix of the three vertex equilibrium points, namely, λ−P = −(N − 1)[(1 −
pq)B + pqh] − ( rcN − c − G), λ+P = G,λ−C = −G,λ+C = c − rc

N , λ
−
D = rc

N − c,

and λ+D = rc
N − c − G + pq(N − 1)b, respectively. Then we respectively define

that λP = −λ
−
P

λ+
P

, λC = −λ
−
C

λ+
C

, and λD = −λ
−
D

λ+
D

, and we have λ = λPλCλD =
rc
N −c−G+(N−1)[(1−pq)B+pqh]

rc
N −c−G+pq(N−1)b . When (1 − pq)B + pq(h − b) > 0, we have λ > 1.

Therefore the heteroclinic cycle is asymptotically stable.68

3.2.2. There is no interior equilibrium point in the system (4)

When β ≥ 1, or µ ≥ 1, or β + µ ≥ 1, the interior fixed point does not exist.
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(1) For 0 < α < 1, there is a boundary equilibrium point on the D − P
edge. Then the system has four fixed points in the parameter space, namely,
(0, 0, 1), (1, 0, 0), (0, 1, 0), and (0, 1− α, α).

The fixed points (0, 0, 1) and (1, 0, 0) are both unstable since the largest
eigenvalues of Jacobi are both positive.

For (x, y, z) = (0, 1, 0), the Jacobian is

J =
rc

N
− c0− (G− pq(N − 1)b)

rc

N
− c−G+ pq(N − 1)b, (57)

thus the fixed equilibrium is a saddle point and unstable when rc
N − c − G +

pq(N − 1)b > 0, while when rc
N − c−G+ pq(N − 1)b < 0, it is stable.

For (x, y, z) = (0, 1− α, α) fixed point the Jacobian is

J = a110a21a22, (58)

where a11 = G− pq(N − 1)(1− α)b, a21 = α(1− α)[pq(N − 1)h+ (1− pq)(N −
1)B]− (1−α)[G− pq(N − 1)αb], and a22 = α(1−α)(N − 1)[(1− pq)B + pqh−
pqb], thus the fixed equilibrium is stable when pqb > max{ G

(N−1)(1−α) , (1 −
pq)B + pqh}, and it is unstable when pqb < max{ G

(N−1)(1−α) , (1− pq)B + pqh}.
Particularly, when pqb = max{ G

(N−1)(1−α) , (1 − pq)B + pqh}, we find that one

eigenvalue of the Jacobian matrix at this fixed point is zero and the other one is
negative. Accordingly, we study its stability by further using the center manifold
theorem67 as follows.

For 0 < α < 1, we know pqb 6= (1−pq)B+pqh and max{ G
(N−1)y , (1−pq)B+

pqh} = G
(N−1)y . In order to use the center manifold theorem conveniently, we

take ξ = y − 1 + α and η = z − α, then the equation system becomes{
ξ̇ = (1 + ξ − α)

{
(α− ξ)[c− rc

N − (1− pq)B(N − 1)(α+ η)

−(N − 1)pqh(α+ η)]− (α+ η)[pq(N − 1)(1 + ξ − α)b−G]
}
,

η̇ = (α+ η)
{

(1− α− η)[pq(N − 1)(1 + ξ − α)b−G]− (1 + ξ − α)[c

− rcN − (1− pq)B(N − 1)(α+ η)− (N − 1)pqh(α+ η)]
}
,

We further let M be a matrix whose columns are the eigenvectors of J(0, 1 −
α, α) which can be written as M= a11−a22 a21011 . Then we have M−1J(0, 1−
α, α)M = 00
0a22. We further take [u v]T = M−1[ξ η]T , and thus we have u = ξ/θ and
v = η − ξ/θ where we used the notation θ = a11−a22

a21
. It leads to

u̇ =
1

θ
(1− α+ uθ)

{
(α− uθ)

[
c− rc

N
− (1− pq)B(N − 1)(α+ u+ v)

− (N − 1)pqh(α+ u+ v)
]
− (α+ u+ v)

[
pq(N − 1)(1 + uθ − α)b−G

]}
.

Using the center manifold theorem, we have that v = e(u) is a center manifold.
We assume that e(u) = O(|u|2), which yields the reduced system

u̇ =
1

θ
(1− α+ uθ)

{
(α− uθ)(c− rc

N
)− (N − 1)(α+ u)

[
(α− uθ)(1− pq)B
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+ (α− uθ)pqh+ pqubθ
]}
.

By introducing m(u) = θ(1 − α + uθ)
{

(α − uθ)(c − rc
N ) − (N − 1)(α +

u)
[
(α− uθ)(1− pq)B + (α− uθ)pqh+ pqubθ

]}
, we have m

′
(u) = (α− uθ)(c−

rc
N ) − (N − 1)(α + u)

[
(α − uθ)(1 − pq)B + (α − uθ)pqh + pqubθ

]
+ ( 1

θ −
1
θα +

u)
{
− θ(c − rc

N ) − (N − 1)
[
(α − uθ)(1 − pq)B + (α − uθ)pqh + pqubθ

]
− (N −

1)(α + u)
[
− θ(1 − pq)B − θpqh + pqbθ

]}
. By calculation, we know m

′
(0) =

−(1−α)
{
c− rcN +(N−1)α 1

θ [(1−pq)B+pqh]+α(N−1)[pqb−(1−pq)B−pqh]
}
< 0,

thus we obtain that u = 0 is asymptotically stable. Therefore we also know that
the fixed point (u, e(u)) = (0, 0) is stable for the reduced system. Accordingly,
the fixed point (0, 1− α, α) is stable.

(2) For α ≤ 0 or α ≥ 1, the boundary equilibrium point of the D − P edge
does not exist. Then the system has only three fixed points in the parameter
space, namely, (0, 0, 1), (1, 0, 0), and (0, 1, 0).

The fixed point (0, 0, 1) and (1, 0, 0) are both unstable since the largest eigen-
values of corresponding Jacobi are both positive. If rcN −c−G+pq(N −1)b ≤ 0,
the fixed point (0, 1, 0) is stable, while it is a saddle point and becomes unstable
when rc

N − c−G+ pq(N − 1)b > 0.

4. Numerical examples

We now provide some numerical examples to confirm the above theoretical
analysis. We use the simplex S3 = {(x, y, z) : x, y, z ≥ 0, x+y+z = 1} to depict
the state space of above three strategies. Accordingly, the three homogeneous
states C (x = 1), D (y = 1), and P (z = 1) correspond to three corners of
the simplex S3. All of these are equilibrium points of the system (4). We first
present numerical cases when the system (4) has an interior equilibrium point.
When β < 1, µ < 1, and β + µ < 1, there is an interior fixed point. From the
theoretical analysis we know that its stability is determined by the relationship
between the expected loss of defectors [(1− pq)B+ pqh] and the expected bribe
amount received by punishers (pqb).

4.1. Stable interior equilibrium point

In the following we present a numerical example to confirm that the system
can have a stable interior equilibrium point. As shown in Fig. 1(a), we see that
there exist five equilibria in the simplex S3. The existing interior equilibrium
point is stable and all interior orbits converge to this point, irrespective of the
initial conditions. Besides, an interior equilibrium point between all defectors
and all punishers enters the edge D − P , which is unstable. Furthermore, the
direction of the evolution on the C − P edge is from P to C, and from C to D
on the C −D edge. Figure 1(b) depicts the time evolution of the frequencies of
cooperators, defectors, and punishers. We can see that all mentioned strategies
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can coexist when the system reaches the steady state. Furthermore, the fraction
of punishers is the highest, and the fraction of defectors is the lowest.

It is worth noting that all these results above are consistent with the the-
oretical results. In particular, when (1 − pq)B + pqh − pqb < 0, the interior
equilibrium point is stable. And the boundary fixed point with z = α on D−P
edge can appear when 0 < α < 1. According to our theoretical analysis, we
know that it is unstable since G−pq(N −1)(1−α)b > 0 (more detailed analysis
can be seen in Theorem 3.1 and in Subsection 3.2.1).

4.2. Hamiltonian system

In this section we provide a numerical example to confirm that the system
can become Hamiltonian. In Fig. 2(a), we see that the existing interior equilib-
rium point is a center surrounded by periodic orbits and the strategy evolution
display a limit cycle. No boundary fixed points can be detected on the three
edges. And the direction of evolution on the D − P edge is from D to P , from
P to C on the P − C edge, and from C to D on the C −D edge. Figure 2(b)
depicts that the frequencies of these three strategies display periodic oscilla-
tions in dependence of time, which is corresponding to the limit cycle shown
in Fig. 2(a). All these results are in agreement with the theoretical prediction,
namely, when (1 − pq)B + pqh − pqb = 0, the interior fixed point is neutrally
stable, and the dynamic system is Hamiltonian (see Theorem 3.2.1 of Section 3
for detailed theoretical analysis).

The cyclical evolutionary scenario can be described as follows. If most play-
ers are cooperators in the group, it is better to become a defector due to the
social dilemma. If defectors are prevalent, corrupt officials can get a lot of bribes
from a group of defectors, and thus the number of punishers increases. If most
players are punishers, the bribes from a few defectors are usually small enough
to subvert cooperators dominance over punishers, and thus cooperators spread.
If the number of cooperators increases sufficiently, then the original cooperation
dilemma returns. It is worth noting that cooperative behavior can still emerge
even in a completely corrupt environment. As we set that p = q = 1, which
means that all defectors are willing to offer a bribe to punishers, and all pun-
ishers are corrupt officials. It is inspiring to see that altruistic behavior can still
be maintained since the oscillations recurrent increase in cooperation.

4.3. Heteroclinic cycle

We provide a numerical example to confirm that the heteroclinic cycle can
exist in our system. Figure 3(a) shows that there are four unstable fixed
points in the simple S3, and all interior curves of state space converge to the
boundary of S3. Besides, the direction of the evolution on the D − P edge
is from D to P , on the P − C edge is from P to C, while on the C − D
edge is from C to D. Figure 3(b) depicts that the frequencies of the three
strategies are oscillating and the amplitudes are gradually growing, eventu-
ally forming periodic oscillations. This means that these three strategies can
be cyclically dominant in the population and thus can avoid the tragedy of
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the commons. Note that these numerical results are in agreement with the
theoretical analysis which states that the population converges to a stable
heteroclinic cycle on the boundary of S3 for (1 − pq)B + pqh − pqb > 0,
rc
N − c − G > max{−(N − 1)[(1 − pq)B + pqh],−pq(N − 1)b}, and r < N
(Theorem 3.2.1 of Section 3).

4.4. Global stability of all-D state

Next we provide a numerical example to confirm that the equation system
can converge to the all-D state with global stability when the interior equilib-
rium point is unstable. As shown in Fig. 4(a), there are five fixed points in
the simplex S3. All interior orbits coverage to the vertex D, which is a global
stable equilibrium point. In the boundary case the unstable equilibrium point
on the D − P edge reappears. Besides, defectors can always do better than
cooperators on the C −D edge, and punishers are always weaker than cooper-
ators on the remaining C − P edge. In Fig. 4(b), we show how the frequency
of the three strategies evolves in time when the initial fractions of cooperators,
defectors, and punishers are 0.8, 0.1, and 0.1, respectively. Finally the fraction
of defectors reaches one. This numerical behavior is in agreement with our the-
oretical prediction which says that the system converges on the all-D state for
rc
N − c−G+ pq(N − 1)b ≤ 0 (Subsection 3.2.1).

4.5. Boundary equilibrium point with the coexistence of defectors and punishers

Finally we present a numerical example to confirm that there exists a stable
boundary equilibrium point with the coexistence of defectors and punishers. In
Fig. 5(a), we show that the system converges to the stable boundary equilibrium
point on the D − P edge, irrespective of the initial conditions, which means
that defectors and punishers can coexist permanently in the population, while
cooperators disappear. Besides, the evolutionary direction on C − D edge is
from C to D, while it is from P to C on the C − P edge. Figure 5(b) shows
that the fraction of cooperators gradually decays to 0, even though their initial
frequency is relatively high. In parallel the fraction of punishers finally reaches
about 0.8, while the fraction of defectors saturates about 0.2. These numerical
results validate our theoretical analysis based on which as long as the interior
equilibrium does not exist, the boundary fixed point on the D − P edge is
globally stable (Subsection 3.2.2).

5. Conclusions

In this paper, we have introduced probabilistic corrupt enforcers and viola-
tors into the public goods game and investigated their consequence on the evo-
lution of cooperation and punishment in infinite well-mixed populations. As a
result, we have observed basically two different evolutionary scenarios. Namely,
the competing strategies either coexist by forming stable time-dependent frac-
tions or they dominate each other in a rock-scissors-paper game like manner.
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But for both cases the cooperative behavior can be well preserved. We have fur-
ther identified the conditions in which the two dynamic behaviors can appear.
We find that when the expected loss is less than the related bribe amount, a
stable coexistence state among these three strategists can appear. In the alterna-
tive case, when these two quantity values are identical, the replicator dynamical
system can be reduced to a Hamiltonian system. Here a center surrounded by
closed orbits appears in the interior of the simplex S3, which means that these
three strategies are mutually restrained and exhibit periodic oscillations. When
the expected loss is larger than the expected bribe amount, the interior fixed
point is unstable, and two different evolutionary dynamic behaviors can emerge,
namely, stable heteroclinic cycle and global attractor D. The former can guar-
antee that cooperators, defectors, and punishers are cyclically dominant in the
population, while the latter will lead to the tragedy of commons.

The key feature of our model is that corruption may emerge stochastically,
either from the side of violators or from corrupt enforcers. This realistic as-
sumption can be modeled in infinite well-mixed population by using replicator
equations. The study of such highly nonlinear equation systems is really chal-
lenging,69,37 but we could manage a comprehensive and systematic theoretical
analysis. We could identify all equilibrium points and characterize their stabil-
ity by appropriately linearizing the equation system. In particular, we cannot
determine the stability of an equilibrium point based only on the eigenvalues of
the Jacobian. Instead, we investigate its stability by utilizing the center mani-
fold theorem.66,67 Furthermore, we not only prove that the system can exhibit
the central limit cycle, but also theoretically confirm the existence and stability
of heteroclinic cycle.

Recently, Huang et al.62 investigated the effect of corruption on the evolution
of cooperation and punishment in a hierarchical society which is divided into
civilians and cops. Our present work, however, focuses on the evolutionary dy-
namics of cooperation, defection, and punishment in an integrated society when
corruption is possible. Importantly, we consider that defectors probabilistically
bribe enforcers to avoid punishment and meanwhile pool punishers probabilisti-
cally accept a bribe from defectors, which can reflect a realistic behavior manner
of individuals in human societies. This behavior was studied in a population
where individuals play the public goods game with pool punishment,70 and thus
provide an alternative, but reasonable route to study the effects of corruption
on collective actions of cooperation. Rather unexpectedly, the introduction of
corruption can stabilize cooperation, and more interesting dynamic behaviors
can be derived which may provide some implications for designing sanctioning
strategies to support the evolution of cooperation.

We point out that although cooperative behavior can occur in a corrupt en-
vironment, the long-term existence of corruption will weaken social fairness and
justice. We should stress that our present model does not explicitly consider
a strategy chance of an anti-corruption control which could be an additional
source of cooperation support. Such kind of extension could be the scope of fu-
ture research. On the other hand, however, although powerful anti-corruption
monitoring and sanctioning have been used to resolve the corruption problem,
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the effects of such measures are either transient or uncertain.58,59,60,71,62 For
example, Muthukrishna et al.60 found that anti-corruption strategies are effec-
tive under some conditions, but can further decrease public good provisioning
when leaders are weak and the economic potential is poor even if these strate-
gies are powerful. Consequently, the task how to design efficient anti-corruption
strategies for resisting the occurrence of corruption remains an open question.
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Figure 1: The evolution of cooperation in an environment where corruption loss and bribe are
unequal. The triangle represents the state space where the actual fractions of cooperators,
defectors, and punishers are denoted ∆ = {(x, y, z) : x, y, z ≥ 0 and x + y + z = 1}. The
filled circle represents a stable fixed point whereas open circles represent unstable fixed points.
Panel (a) depicts that a stable interior equilibrium appears in the simplex S3, which means
that these three strategies coexist by maintaining a stable fraction in the population. Panel (b)
depicts time series of the frequencies of three strategies C (cooperators, black solid line), D
(defectors, blue dot line), and P (pool punishers, red dash line). After an initial transient the
frequencies of the three strategies eventually stabilizes in time. Initial conditions: (x, y, z) =
(0.8, 0.1, 0.1). Parameters: N = 5, r = 3, c = 1, G = 0.5, B = 0.5, h = 0.1, b = 0.8, q = 1, and
p = 0.8.
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Figure 2: The evolution of cooperation in a corrupt environment when loss and bribe are equal.
Panel (a) depicts that there is an interior fixed point which is surrounded by periodic orbits
in the simplex. Panel (b) depicts a representative behavior when strategies are oscillating
among C, D, and P states. Initial conditions: (x, y, z) = (0.8, 0.1, 0.1). Parameters: N = 5,
r = 3, c = 1, G = 0.5, B = 0.5, h = 0.4, b = 0.4, q = 1, and p = 1.
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Figure 3: The evolution of cooperation in a corrupt environment when bribe acceptance is
more intensive. Panel (a) depicts that the interior equilibrium point turns into a repeller,
and the interior curves of simplex S3 coverage to the boundary of S3. Panel (b) depicts
that the frequencies of these three strategies display growing periodic oscillations. Initial
conditions: (x, y, z) = (0.8, 0.1, 0.1). Parameters: N = 5, r = 3, c = 1, G = 0.5, B = 0.5,
h = 0.4, b = 0.4, q = 0.8, and p = 1. 24
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Figure 4: The evolution of cooperation in an environment when corruption loss exceeds the
expected bribe. Panel (a) depicts that the defection has an evolutionary advantage over the
other two strategies, and ultimately occupies the entire population. Panel (b) illustrates the
time evolution how strategy D prevails in the whole population. Initial conditions: (x, y, z) =
(0.8, 0.1, 0.1). Parameters: N = 5, r = 3, c = 1, G = 0.5, B = 0.5, h = 0.4, b = 0.2, q = 1, and
p = 1. 25
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Figure 5: The evolution of cooperation in a corrupt environment when bribe is overvalued by
acceptors. Panel (a) depicts that there exists a stable boundary equilibrium point on P −D
edge, and all trajectories starting from different initial conditions terminate onto this point.
Panel (b) illustrates that D and P can form a stable coexistence in the population. Initial
conditions: (x, y, z) = (0.8, 0.1, 0.1). Parameters: N = 5, r = 3, c = 1, G = 0.5, B = 0.5,
h = 0.1, b = 0.8, q = 1, and p = 1. 26


