

XIII. MAGYAR MECHANIKAI KONFERENCIA MAMEK, 2019 Miskolc, 2019. augusztus 27-29.

IDŐKÉSÉSSEL TERHELT JÁRMŰMODELL PREDIKCIÓ ALAPÚ SZABÁLYOZÁSA

Vörös Illés¹, Várszegi Balázs² és Takács Dénes³

^{1,2}Budapesti Műszaki és Gazdaságtudományi Egyetem, Műszaki Mechanikai Tanszék 1111, Budapest, Műegyetem rakpart 5. illes.voros@mm.bme.hu, varszegi@mm.bme.hu ³MTA-BME Gépek és Járművek Dinamikája Kutatócsoport 1111, Budapest, Műegyetem rakpart 5. takacs@mm.bme.hu

Absztrakt: Cikkünkben az egynyomvonalú járműmodell (bicikli modell) oldalirányú szabályozásával foglalkozunk időkésés jelenlétében. A késleltetett állapotvisszcsatolást két predikciós eljárással egészítjük ki, majd az így kapott három különböző szabályozási eljárást hasonlítjuk össze. A predikció alapú szabályozásokban a késéssel terhelt mért jelből valamilyen modell alapján kiszámolunk egy becslést a jármű pillanatnyi állapotára, és a szabályozást ez alapján végezzük el. Az első predikciós modellben a késés ideje alatt egyenes vonalú mozgást, míg a második modellben állandó sugarú köríven való haladást tételezünk fel a pillanatnyi állapotok becsléséhez. A szabályozási módszereket stabilitási térképeken és numerikus szimulációkkal hasonlítjuk össze, valamint vizsgáljuk a rendszer érzékenységét a prediktív modell paramétereinek hibájára.

Kulcsszavak: Járműszabályozás, időkésés, prediktív szabályozás

1. BEVEZETÉS

A gépjárművek egyre magasabb szintű automatizálása kapcsán megkerülhetetlen probléma a jármű oldalirányú pozíciószabályozása. Különböző vezetést támogató rendszerek, mint pl. a sávtartó és sávváltó funkciók alapvető építőeleme a jármű megbízható oldalirányú pozicionálása [1]. Ezen rendszerek működéséhez a jármű sávon belüli helyzetének meghatározása jellemzően kamera alapú módszerekkel történik, mivel a jelenlegi közúti infrastruktúra elsősorban a vizuális információközlésen alapszik. A képfeldolgozó algoritmusok számítási költsége azonban jellemzően magas, a legtöbb kereskedelmi forgalomban lévő megoldás számára jelentős időt vesz igénybe a környezeti információk feldolgozása. Ez nem elhanyagolható késleltetést visz a rendszerbe, ami rontja a szabályozás hatékonyságát [2, 3, 4].

Az időkésés kompenzálása végett két predikciós eljárást mutatunk be, amelyek a jármű késéssel terhelt, múltbeli pozíciójának ismeretében becsülik meg a pillanatnyi pozíciót, majd a szabályozás ezen becslés alapján végezhető el. A cikk első részében a vizsgált járműmodellt mutatjuk be, majd az egyszerű, késleltetett állapotvisszacsatolás lineáris stabilitásvizsgálatát ismertetjük. A prediktív eljárások bemutatására és stabilitásvizsgálatára ezután kerül sor. A szabályozási megoldásokat stabilitási térképek és numerikus szimulációk segítségével hasonlítjuk össze, valamint vizsgáljuk a prediktív modellek paraméterhibával szembeni robusztusságát is.

2. JÁRMŰMODELL

A vizsgálatokhoz az egynyomvonalú járműmodell (bicikli modell) egy egyszerűsített (ún. kinematikai) verzióját alkalmazzuk, amelyben pontszerű, merev kerék-talaj kontaktot feltételezünk (lásd 1. ábra). Ezáltal a jármű mozgását pusztán kinematikai kényszerek írják le: egyrészről a jármű két tengelyénél (F és R pontok) a sebességvektorok iránya minden időpillanatban párhuzamos a kerekek síkjával. Ez a hátsó tengely esetén a jármű hossztengelyének az iránya, míg az első tengelynél a kormányszög δ_s írja elő a sebességvektor irányát. Másrészről a jármű hosszirányú sebességét állandó (V) nagyságúnak feltételezzük, amit szintén kinematikai kényszer formájában adunk meg.

A jármű pozícióját a síkban 3 darab általános koordináta írja le: x és y az R pont koordinátáit jelöli, míg ψ -vel a jármű irányát adjuk meg az x tengelyhez képest. Ezek segítségével a három kinematikai kényszert a következő

egyenletek írják le:

$$\dot{x}\sin(\psi + \delta_{\rm s}) - \dot{y}\cos(\psi + \delta_{\rm s}) - f\dot{\psi}\cos\delta_{\rm s} = 0, -\dot{x}\sin\psi + \dot{y}\cos\psi = 0, \dot{x}\cos\psi + \dot{y}\sin\psi = V,$$
(1)

ahol f a tengelytávot jelöli. A kényszeregyenletekből a koordináták idő szerinti deriváltjait kifejezve jutunk el a jármű mozgását leíró mozgásegyenletekhez:

$$\dot{x}(t) = V\cos\psi(t), \quad \dot{y}(t) = V\sin\psi(t), \quad \psi(t) = \frac{V}{t}\tan\delta_{\rm s}(t).$$
(2)

1. ábra. Síkbeli bicikli modell pontszerű kontaktot feltételezve a kerekeknél.

A következőkben a mozgásegyenleteket átírjuk a lineáris állapottér modellnek megfelelő $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}$ alakra. Mivel, mint később látni fogjuk, az alkalmazott szabályozások esetén x úgynevezett ciklikus koordináta és nem befolyásolja a lineáris stabilitást, a hozzá tartozó egyenletet a továbbiakban leválasztjuk, így az állapotvektor kételemű lesz: $\mathbf{x} = \begin{bmatrix} y & \psi \end{bmatrix}^{\mathrm{T}}$. A vizsgált egyensúlyi helyzet az x tengely mentén történő egyenes vonalú egyenletes mozgás, amit az $\mathbf{x}^* = \begin{bmatrix} 0 & 0 \end{bmatrix}^{\mathrm{T}}$ koordináták írnak le. A rendszerbe a kormányszögön keresztül avatkozunk be, így a bemeneti vektor egy skalárra egyszerűsödik ($\mathbf{u} = \delta_{\mathrm{s}}$). Összességében az \mathbf{x}^* körül linearizált mozgásegyenlet:

$$\begin{bmatrix} \dot{y} \\ \dot{\psi} \end{bmatrix} = \underbrace{\begin{bmatrix} 0 & V \\ 0 & 0 \end{bmatrix}}_{\mathbf{A}} \begin{bmatrix} y \\ \psi \end{bmatrix} + \underbrace{\begin{bmatrix} 0 \\ \frac{V}{f} \end{bmatrix}}_{\mathbf{B}} \delta_{\mathbf{s}} \,. \tag{3}$$

3. POZÍCIÓSZABÁLYOZÁS ÁLLAPOTVISSZACSATOLÁSSAL

A fenti triviális egyensúlyi helyzet stabilizálásához a kormányszöget a jármű oldalirányú pozíciójának és szöghelyzetének visszacsatolásával állítjuk elő. A szabályozóelemek bevezetésével azonban megjelenik a rendszerben az időkésés, és a lineáris rendszeregyenlet a következő alakúra módosul: $\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t - \tau)$. A τ -val jelölt időkésés tartalmazza többek között a szenzorok késését, az adatfeldolgozáshoz és szabályozáshoz szükséges számítási időt, valamint a kormánymű tehetetlenségéből adódó késleltetést. Ezzel a kormányszög a következő formában áll elő:

$$\delta_{\rm s}(t) = \mathbf{K}\mathbf{x}(t-\tau) = -P_y y(t-\tau) - P_\psi \psi(t-\tau), \qquad (4)$$

ahol $\mathbf{K} = \begin{bmatrix} -P_y & -P_\psi \end{bmatrix}$ tartalmazza a szabályozó erősítési tényezőit. Az összehasonlítások során erre a szabályozási módszerre PP szabályozóként fogunk hivatkozni.

Az $\mathbf{x}(t) = \mathbf{C}e^{\lambda t}$ ($\mathbf{C} \in \mathbb{C}^2$, $\lambda \in \mathbb{C}$) exponenciális próbafüggvény behelyettesítésével a rendszer karakterisztikus egyenlete a következő alakú:

$$D(\lambda) := \det\left(\lambda \mathbf{I} - \mathbf{A} - \mathbf{B}\mathbf{K}e^{-\lambda\tau}\right) \equiv \lambda^2 + \frac{P_{\psi}Ve^{-\lambda\tau}}{f}\lambda + \frac{P_yV^2e^{-\lambda\tau}}{f} = 0.$$
(5)

Időkésés nélküli esetben ($\tau = 0$) a stabilitás ellenőrzéséhez elegendő a polinom alakúra egyszerűsödő karakterisztikus egyenlet együtthatóit vizsgálni. Az aszimptotikus stabilitás feltétele, hogy

$$\frac{P_{\psi}V}{f} > 0 \quad \text{és} \quad \frac{P_{y}V^{2}}{f} > 0.$$

$$\tag{6}$$

Figyelembe véve, hogy a tengelytáv f minden esetben pozitív, a fenti kritérium a következő alakra hozható:

$$P_y > 0 \text{ és } P_\psi > 0, \text{ ha } V > 0;$$
 (7)

$$P_{y} > 0$$
 és $P_{\psi} < 0$, ha $V < 0$. (8)

Tehát a (P_y, P_{ψ}) paraméter síkon előremenetben az első síknegyed, míg hátramenetben a negyedik síknegyed lesz a stabil tartomány. A karakterisztikus egyenletbe $\lambda = 0$ -át helyettesítve belátható, hogy a statikus stabilitásvesztés határa a $P_y = 0$ egyenes.

2. ábra. A PP szabályozó stabilitási térképe különböző mértékű időkésés esetén (f = 2.7 m, V = 20 m/s).

Késleltetett esetben a karakterisztikus egyenlet λ -ra nézve transzcendens és végtelen számú megoldással rendelkezik. A statikus stabilitásvesztés határa a késleltetés nélküli esethez hasonlóan $D(\lambda = 0) = P_y V^2 / f = 0$, míg a dinamikus stabilitási határt a D-szeparáció alapján határozhatjuk meg [10]. Ennek alapgondolata, hogy mivel a dinamikus stabilitásvesztés határán a karakterisztikus exponens tisztán képzetes, a karakterisztikus egyenletbe $\lambda = \pm i\omega$ helyettesítéssel (ahol $\omega \in \mathbb{R}^+$ a kialakuló rezgés körfrekvenciája) meghatározhatóak ezek a határok. A behelyettesítést elvégezve a karakterisztikus egyenlet az alábbi módon bontható szét valós és képzetes részre:

$$\operatorname{Re}\{D(\lambda = i\omega)\} = 0 \quad \to \quad \frac{P_y V^2 \cos(\omega\tau) + P_\psi V \omega \sin(\omega\tau) - f\omega^2}{f} = 0, \tag{9}$$

$$\operatorname{Im}\{D(\lambda = \mathrm{i}\omega)\} = 0 \quad \to \quad \frac{V(P_{\psi}\omega\cos(\omega\tau) - P_{y}V\sin(\omega\tau))}{f} = 0.$$
(10)

Ebből kifejezhető a D-görbék paraméteres egyenlete a (P_y, P_{ψ}) síkon:

$$P_y(\omega) = \frac{f\omega^2}{V^2}\cos(\omega\tau), \quad P_\psi(\omega) = \frac{f\omega}{V}\sin(\omega\tau).$$
(11)

A stabilitási határ a 2. ábrán látható különböző nagyságú időkésés esetén. A szürkével színezett terület $\tau = 0.2$ s időkésés esetére mutatja a stabil tartományt.

4. PREDIKCIÓ ALAPÚ SZABÁLYOZÁS

Prediktív szabályozás esetén a késleltetett jelből először előállítunk egy $y_p(t)$ és $\psi_p(t)$ predikciót a pillanatnyi állapotra, majd ezek alapján határozzuk meg a kormányszöget:

$$\delta_{\rm s}(t) = -P_y y_{\rm p}(t) - P_\psi \psi_{\rm p}(t) \,. \tag{12}$$

Az első, hasonló elven működő szabályozó a Smith-prediktor volt [5], aminek több továbbfejlesztése és általánosítása ismert [6, 7, 8]. Ezen megoldások esetén azonban a predikció egy integrál kiértékelésén alapszik, ami jellemzően csak numerikus úton végezhető el, így idő- és erőforrásigényes. A következőkben két eljárást hasonlítunk össze, amelyekben egyszerűsítő feltételezéseket teszünk a jármű mozgásával kapcsolatban (lásd 3. ábra), így a prediktált értékek jóval könnyebben előállíthatók, cserébe a predikció kevésbé lesz pontos.

3. ábra. A jármű pillanatnyi helyzetének predikciója.

4.1. Predikció egyenesvonalú mozgást feltételezve Az egyszerűbb predikciós modell esetén feltételezzük, hogy a jármű az időkésés ideje alatt egyenes vonalú egyenletes mozgást végzett (azaz $\delta_s(t) \equiv 0$), hasonlóan az úgynevezett *preview* eljáráshoz [9]. Ez alapján a késleltetett jelből az alábbi (linearizált) prediktált értékek határozhatók meg a jármű pozíciójára:

$$y_{\mathbf{p}}(t) = y(t-\tau) + \tilde{V}\tilde{\tau}\psi(t-\tau), \quad \psi_{\mathbf{p}}(t) = \psi(t-\tau), \quad (13)$$

ahol hullámmal a szabályozóban alkalmazott modell paramétereket különböztetjük meg a tényleges értékektől. Ez alapvetően megegyezik az egyszerű állapotvisszacsatolással abból a szempontból, hogy a beavatkozó jel az $y(t-\tau)$ és $\psi(t-\tau)$ állapotok lineáris kombinációjaként áll elő. A predikció eredményeképpen viszont $\psi(t-\tau)$ tényleges erősítési tényezője így P_{ψ} helyett $P_{\psi} + P_y \tilde{V} \tilde{\tau}$. Ezt a szabályozási megoldást δ_s^0 -val fogjuk jelölni.

4. ábra. Az időkésés ideje alatt egyenesvonalú haladást (a), illetve állandó kormányszöget (b) feltételező prediktív szabályozások stabilitási térképe ($f = \tilde{f} = 2.7 \text{ m}, V = \tilde{V} = 20 \text{ m/s}$ és $\tau = \tilde{\tau}$).

A szabályozóegyenletet behelyettesítve a jármű mozgásegyenleteibe, a karakterisztikus egyenletre

$$D(\lambda) = \lambda^2 + \frac{V(P_y \tilde{\tau} V + P_\psi)}{f} \lambda e^{-\lambda \tau} + \frac{P_y V^2}{f} e^{-\lambda \tau} = 0$$
(14)

adódik. Ebből a D-görbék egyenletei

$$P_{y}(\omega) = \frac{f\omega^{2}}{V^{2}}\cos(\omega\tau),$$

$$P_{\psi}(\omega) = \frac{f\omega}{V^{2}}\left(V\sin(\omega\tau) - \tilde{\tau}\tilde{V}\omega\cos(\omega\tau)\right),$$
(15)

valamint a statikus stabilitás
vesztés határa ismét $P_y = 0$. A stabilitási térkép a 4. (a) ábrán látható.

	PP	$\delta_{ m s}^0$	$\delta^{\mathrm{c}}_{\mathrm{s}}$
P_y (1/m)	0.0022	0.0022	0.0038
$P_{\psi}(1)$	0.1250	0.1030	0.1783

1. táblázat. A szimulációk során alkalmazott erősítési tényezők

4.2. Predikció állandó sugarú köríven haladást feltételezve A második predikciós modell esetén a pillanatnyi állapot meghatározásakor feltételezzük, hogy az időkésés alatt nem változott a kormányszög. Ehhez a linearizált mozgásegyenlet megoldását használjuk fel, δ_s -t konstans paraméterként kezelve. A késleltetett állapotokat kezdeti feltételként kezelve a megoldás $\tilde{\tau}$ időpontbeli értéke:

$$y_{\rm p}(t) = y(t-\tau) + \tilde{\tau}\tilde{V}\left(\psi(t-\tau) + \frac{\tilde{V}}{2\tilde{f}}\tilde{\tau}\delta_{\rm s}\right),$$

$$\psi_{\rm p}(t) = \psi(t-\tau) + \frac{\tilde{V}}{\tilde{f}}\tilde{\tau}\delta_{\rm s}.$$
(16)

Ezt behelyettesítve a (12) egyenletbe, az megoldható a kormányszögre:

$$\delta_{\rm s}(t) = -\frac{2\tilde{f}\left((P_y\tilde{\tau}\tilde{V} + P_\psi)\psi(t-\tau) + P_yy(t-\tau)\right)}{2\tilde{f} + \tilde{\tau}\tilde{V}(P_y\tilde{\tau}\tilde{V} + 2P_\psi)}.$$
(17)

A kapott egyenlet, a korábbi esethez hasonlóan, a késleltetett állapotok lineáris kombinációja. Erre a szabályozóra a továbbiakban δ_s^c -ként fogunk hivatkozni. A karakterisztikus egyenlet ebben az esetben

$$D(\lambda) = \lambda^2 + \frac{2\tilde{f}V(P_y\tilde{\tau}\tilde{V} + P_\psi)}{f\left(2\tilde{f} + P_y\tilde{\tau}^2\tilde{V}^2 + 2P_\psi\tilde{\tau}\tilde{V}\right)}\lambda e^{-\lambda\tau} + \frac{2\tilde{f}P_yV^2}{f\left(2\tilde{f} + P_y\tilde{\tau}^2\tilde{V}^2 + 2P_\psi\tilde{\tau}\tilde{V}\right)}e^{-\lambda\tau} = 0, \quad (18)$$

amiből a D-görbék egyenlete

$$P_{y}(\omega) = A(\omega)\omega\cos(\omega\tau),$$

$$P_{\psi}(\omega) = A(\omega)\left(V\sin(\omega\tau) - \tilde{\tau}\tilde{V}\omega\cos(\omega\tau)\right),$$
(19)

ahol

$$A(\omega) = \frac{2f\tilde{f}\omega}{f\tilde{\tau}\tilde{V}\omega\left(\tilde{\tau}\tilde{V}\omega\cos(\omega\tau) - 2V\sin(\omega\tau)\right) + 2\tilde{f}V^2}.$$
(20)

A nyereg-csomó bifurkáció határa ebben az esetben is $P_y = 0$. A stabil tartomány a 4. (b) ábrán látható. Nagyobb ω körfrekvencia értékeknél a D-görbék többször is keresztezik a vizsgált paramétertartományt, megváltoztatva a pozitív valósrészű gyökök számát az instabil zónában. Mindez azonban nem befolyásolja a számunkra érdekes stabil paramétertartomány alakját és méretét, így az átláthatóság kedvéért a D-görbéket csak $\omega = 10$ rad/s-ig ábrázoltuk.

Amennyiben nincsen (feltételezett) időkésés a rendszerben ($\tilde{\tau} = 0$), mindkét predikciós módszer a hagyományos állapotvisszacsatolás formájára egyszerűsödik. A fő előnye ezeknek az eljárásoknak, hogy a késleltetés elhanyagolható számítási kapacitás árán vehető figyelembe a szabályozóban. A 4. ábrán látható stabilitási térképek alapján ugyan az egyenes vonalú haladást feltételező predikcióval nem változik jelentősen a stabil tartomány, a δ_s^c szabályozó esetén viszont lényegesen nagyobb erősítési tényezők is megengedhetők.

5. NUMERIKUS SZIMULÁCIÓK

A szabályozási módszerek hatékonyságát numerikus szimulációk segítségével hasonlítottuk össze. Ehhez a következő paraméterértékeket használtuk: f = 2.7 m, V = 20 m/s és $\tau = 0.5$ s. A szabályozók erősítési tényezőit szemi-diszkretizáció [10] segítségével állapítottuk meg: a stabil tartományokat pontról pontra kiértékelve a szemi-diszkrét rendszer karakterisztikus multiplikátorai a választott pontban vannak a legközelebb az origóhoz. Az egyes szabályozókhoz tartozó értékek az 5. táblázatban láthatók.

A szimulációkat a nemlineáris egyenletek numerikus megoldásával végeztük el, 0.001 s időlépést alkalmazva. Kezdeti értékként az y(0) = 3.75 m és $\psi(0) = 0$ pozíciót választottuk, amivel egy sávváltási manővert modellezhetünk. A $t \in [-\tau, 0)$ intervallumban y és ψ értékét nullának vettük, mivel feltételezzük, hogy a referenciajel megváltozása (azaz a döntés, hogy sávot szeretnénk váltani) csak t = 0-ban következik be.

5. ábra. A két prediktív szabályozó prediktált (piros) és tényleges (fekete) trajektóriái.

Az 5. ábrán láthatók a prediktált és a valós trajektóriák mindkét predikciós eljárás esetére (a feltételezett \tilde{V} és $\tilde{\tau}$ értékek pontosak). Mivel a referenciajel t = 0-ban változik meg, ez az információ a $t = \tau$ időpillanatban jut csak el a szabályozókhoz. Emiatt a $t \in [0, \tau)$ intervallumban a szabályozó úgy érzékeli, hogy nincs szükség beavatkozásra, így ez idő alatt a jármű egyenesen halad előre. A kezdeti egyenes vonalú mozgás miatt a következő, $t \in [\tau, 2\tau)$ intervallumban mindkét szabályozó állandó nagyságú kormányszöget ad ki, aminek következtében ψ lineárisan változik.

A δ_s^0 szabályozó esetén, mivel a predikció során egyenes vonalú mozgást feltételez, jól látható, ahogy a szimuláció teljes ideje alatt a prediktált haladási iránya megegyezik a τ idővel korábbi tényleges ψ értékkel. Emiatt mind y_p , mind ψ_p viszonylag lassan konvergál a valós értékhez.

A δ_s^c szabályozó viszont állandó nagyságú kormányszöget feltételez a késés ideje alatt. Ez a feltételezés a $t = 2\tau$ időpillanatban igaz, ekkor a prediktálás hibája zérus. Ezután azonban a kormányszög folyamatosan kezd el változni, ami miatt $t = 2\tau$ után a prediktálás ismét hibával terhelt. Ettől függetlenül ez a predikciós módszer kellően jó ahhoz, hogy a szimuláció hátralevő részében y szempontjából elhanyagolható nagyságú predikciós hiba keletkezzen, és ψ_p is jelentősen gyorsabban konvergál, mint a δ_s^0 szabályozó esetén.

Érdemes megjegyezni, hogy a mechanikai modellünk nem tartalmazza a kormánymű dinamikáját, így a szabályozó által kiadott beavatkozó jel azonnal megjelenik a kerekeknél. Emiatt (és a mozgásegyenletet ki nem elégítő kezdeti feltétel következtében) láthatóan egy törés jelenik meg a trajektóriákban a $t = \tau$ időpillanatban, hiszen itt a kormányzott kerék zérus idő alatt vált kormányszöget.

A prediktív módszerek esetében a visszacsatolás erősítési tényezői a prediktív modellben szereplő paraméterek függvényeként állnak elő. Így ezen paraméterek pontatlansága befolyásolja a rendszerválaszt és akár stabilitásvesztéshez is vezethet. A 6. ábrán a három vizsgált szabályozó stabilitási térképei láthatók a feltételezett járműsebesség és időkésés -20%, 0% és +20%-os hibája esetén. A δ_s^c szabályozó kapcsán a tengelytávról feltételezzük, hogy pontosan ismert ($\tilde{f} = f$). A PP szabályozó ugyan nem tartalmaz prediktív modellt, de az összehasonlítás kedvéért ábrázoltuk a hozzá tartozó stabilitási térképeket is.

A δ_s^0 szabályozó esetén y tényleges erősítési tényezője marad P_y (lásd (13) egyenlet), tehát a predikciós paraméterek ezt nem befolyásolják, a stabil régió nem változik P_y irányában. ψ erősítési tényezője azonban már függ \tilde{V} -tól és $\tilde{\tau}$ -tól. Ezek csökkentésével a tényleges erősítés tart P_{ψ} -hez, így a stabil tartomány is a PP szabályozó tartományához tart (lásd (a) eset). V és τ túlbecsülése azonban vezethet stabilitásvesztéshez (amennyiben a $P_{\psi} + P_y \tilde{V} \tilde{\tau}$ erősítés túl nagyra nőne), viszont nem túl nagy hiba esetén ezt ellensúlyozza P_y 1-nél jóval kisebb értéke.

A δ_s^c szabályozó esetén y és ψ erősítése is függ a predikciós paraméterektől (lásd (17) egyenlet). V és τ alábecsülésével ebben az esetben is a PP szabályozó stabil tartományához tartunk ($\tilde{V} = 0$ vagy $\tilde{\tau} = 0$ esetén vissza is kapjuk azt), míg túlbecsülésükkel a tényleges erősítések tartanak a nullához. Utóbbi esetben P_y és P_ψ egyre kisebb mértékben befolyásolja a tényleges erősítéseket, így egyre nagyobb tartományból választhatjuk meg őket. A sebesség vagy az időkésés kellően nagy túlbecsülése kapcsán olyan eset is előfordulhat, hogy a (P_y , P_ψ) sík mind a négy síknegyedén lesz stabil tartomány. A 4. (b) ábrán látható, a síkot átlós irányban keresztező D-görbéknek ekkor lesz jelentősége.

A 6. ábrán bemutatott kilenc esetnek megfelelő szimulációk időjele a 7. ábrán látható, míg a beállási idő értékek a 5. táblázatban vannak felsorolva. A beállási időnek azt a legkisebb t^* időpontot választottuk, amely időpont után

6. ábra. A három vizsgált szabályozó stabil tartományai a feltételezett járműsebesség, illetve időkésés különböző mértékű hibája esetén (f = 2.7 m, V = 20 m/s, $\tau = 0.5$ s).

a jármű laterális pozíciója a kezdeti feltételben megadott érték 2%-ánál abszolút értékben kisebb, azaz $\forall t > t^*$ |y(t)| < 0.02 |y(0)|.

Mivel mind a δ_s^c , mind a δ_s^c szabályozó lényegében megegyezik az egyszerű állapotvisszacsatolással (a predikció következtében csak az erősítési tényezők skálázódnak át), ideális esetben (e) mindhárom szabályozó válasza megegyezik (apró eltérések adódhatnak a P_y és P_{ψ} értékek kerekítéséből). Lényeges különbség a trajektóriák között csak az (a) és (i) esetekben figyelhető meg, amikor mind az időkésés, mind a sebesség hibája azonos módon hat az időkésés alatt megtett út becslésére. Azokban az esetekben, amikor ezt a távolságot alábecsüljük ((a)-(d), valamint (g)), a δ_s^0 kontroller bizonyul a leggyorsabbnak, míg az állandó kormányszöget feltételező prediktálás kis mértékben ront az egyszerű PP szabályozó teljesítményén. Az (f), (h) és (i) esetekben, amikor a késés ideje alatt megtett utat túlbecsüljük, a sima állapotvisszacsatolás jobb eredményt ér el mindkét prediktív megoldásnál.

Azt azonban fontos megjegyezni, hogy a beállási idő értéke függ attól, hogy mekkorának választjuk meg a beállásnak megfelelő egyensúlyi állapot körüli sávot. Megfelelően szűk határokat választva egyik szabályozó sem érhetne el jobb eredményt, mint az egyszerű állapotvisszacsatolás. Gyakorlati szempontból viszont már az általunk megkívánt 2%-os határ is viszonylag szigorú, és ennél (ahogy az a táblázatban is látszik) előfordulhat, hogy némely paraméterkombináció javít az elméleti optimum értékén. Az is látszik, hogy a δ_s^0 szabályozó esetén nagyobb szórást figyelhetünk meg a beállási idő kapcsán, a δ_s^c szabályozó jóval kevésbé érzékeny $\tilde{\tau}$ és \tilde{V} hibájára.

6. Összefoglalás

A vizsgált predikciós módszerekkel az időkésés elhanyagolható számítási kapacitás árán vehető figyelembe a szabályozás során. A prediktív modellek jellegéből adódóan ugyan dinamikailag nincs különbség a hagyományos állapotvisszacsatolás és a prediktív módszerek között, azonban a predikció hatására a késleltetett jelek tényleges erősítési tényezői átskálázódnak, ami befolyásolja a szabályozó paraméterek stabilitási térképeit. Megmutattuk, hogy a predikció pontosságát javítja, ha egyenes vonalú mozgás (δ_s^0) helyett állandó sugarú köríven való haladást (δ_s^c) tételezünk fel az időkésés ideje alatt. Ezenfelül a δ_s^c szabályozó stabil tartományai jóval nagyobbak, mint a másik két vizsgált megoldásé, így kevésbé érzékeny a szabályozó, numerikus szimulációk alapján jóval kisebb a beállási idő szórása különböző típusú hibák mellett, mint a δ_s^0 szabályozó esetén. Összességében, amennyiben az elérhető számítási kapacitás nem elegendő hagyományos prediktor alapú szabályozás (Smith-prediktor, véges

7. ábra. Numerikus szimulációk eredménye a járműsebesség, illetve időkésés különböző mértékű hibája esetén ($f = 2.7 \text{ m}, V = 20 \text{ m/s}, \tau = 0.5 \text{ s}$).

	Beállási idő (s)			Normált beállási idő (-)		
	PP	$\delta^0_{ m s}$	$\delta^{\mathrm{c}}_{\mathrm{s}}$	PP	$\delta_{ m s}^0$	$\delta_{\rm s}^{\rm c}$
(a)	6.428	5.309	6.517	1	0.826	1.014
(b)	6.428	5.726	6.457	1	0.891	1.005
(c)	6.428	6.272	6.447	1	0.976	1.003
(d)	6.428	5.726	6.457	1	0.891	1.005
(e)	6.428	6.428	6.452	1	1.000	1.004
(f)	6.428	7.250	6.517	1	1.128	1.014
(g)	6.428	6.272	6.447	1	0.976	1.003
(h)	6.428	7.250	6.517	1	1.128	1.014
(i)	6.428	8.153	6.657	1	1.268	1.036
Átlag	6.428	6.487	6.496	1	1.009	1.011
Szórás	0	0.855	0.064	0	0.133	0.010

2. táblázat. A numerikus szimulációk beállási ideje másodpercben, valamint a PP szabályozó beállási ideje szerint normálva.

spektrum hozzárendelés, stb.) alkalmazásához, a bemutatott megoldások jó alternatívái lehetnek az egyszerű állapotvisszacsatolásnak.

Köszönetnyilvánítás: A szerzők köszönetüket fejezik ki az NKFI-128422 keretében kapott támogatásért. A tanulmány alapjául szolgáló kutatást az Emberi Erőforrások Minisztériuma által meghirdetett Felsőoktatási Intézményi Kiválósági Program támogatta, a Budapesti Műszaki és Gazdaságtudományi Egyetem Mesterséges intelligencia (BME FIKP-MI) tématerületi programja keretében.

HIVATKOZÁSOK

- N. H. AMER, H. ZAMZURI, K. HUDHA, Z. A. KADIR: Modelling and control strategies in path tracking control for autonomous ground vehicles: a review of state of the art and challenges. *Journal of Intelligent & Robotic Systems* 86(2):225-254, 2017.
- [2] Q. LIU, Y. LIU, C. LIU, B. CHEN, W. ZHANG, L. LI, X. JI: Hierarchical lateral control scheme for autonomous vehicle with uneven time delays induced by vision sensors. Sensors 18(8):2544, 2018.
- [3] G. HEREDIA, A. OLLERO: Stability of autonomous vehicle path tracking with pure delays in the control loop. Advanced Robotics 21(1-2):23-50, 2007.
- [4] Y. WANG, B. M. NGUYEN, H. FUJIMOTO, Y. HORI: Vision-based integrated lateral control system for electric vehicles considering multi-rate and measurable uneven time delay issues. 2013 IEEE International Symposium on Industrial Electronics 1-6, 2013.
- [5] O. J. SMITH: Closer control of loops with dead time. Chemical Engineering Progress 53(5):217-217, 1957.
- [6] K. WATANABE, M. ITO: A process-model control for linear systems with delay. *IEEE Transactions on Automatic Control* 26(6):1261-1269, 1981.
- [7] Z. ARTSTEIN: Linear systems with delayed controls: A reduction. IEEE Transactions on Automatic Control 27(4):869-879, 1982.
- [8] A. Z. MANITIUS, A. W. OLBROT: Finite spectrum assignment problem for systems with delays. *IEEE Transactions on Automatic Control* 24(4):541-553, 1979.
- [9] D. H. WEIR, D. T. MCRUER: Dynamics of driver vehicle steering control. Automatica 6(1):87-98, 1970.
- [10] T. INSPERGER, G. STÉPÁN: Semi-Discretization for Time-Delay Systems. Springer, 2011.