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Abstract. In this paper we consider the multiplicative decom-
posability of the set of values assumed by a quadratic polynomial.
First we show that any large set of shifted squares is multiplica-
tively primitive. Then we sharpen and extend this result in various
directions.

1. Introduction

We will need

Definition 1.1. Let G be an additive semigroup and A,B, C subsets of
G with

|B| ≥ 2, |C| ≥ 2. (1.1)

If
A = B + C (= {b+ c : b ∈ B, c ∈ C}),

then this is called an additive decomposition or briefly a-decomposition
of A, while if a multiplication is defined in G and (1.1) and

A = B · C (= {bc : b ∈ B, c ∈ C}) (1.2)

hold then (1.2) is called a multiplicative decomposition or briefly m-decomposition
of A.

In 1948 H. H. Ostmann [6, 7] introduced some definitions and addi-
tive properties of sequences of non-negative integers and studied some
related problems. The most interesting definitions are:

Definition 1.2. A finite or infinite set A of non-negative integers is
said to be reducible if it has an (additive) decomposition

A = B + C with |B| ≥ 2, |C| ≥ 2. (1.3)
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If there are no sets B, C with these properties then A is said to be
primitive or irreducible.

Definition 1.3. Two sets A,B of non-negative integers are said to be
asymptotically equal if there is a number K such that A ∩ [K,+∞) =
B ∩ [K,+∞) and then we write A ∼ B.

Definition 1.4. An infinite set A of non-negative integers is said to
be totally primitive if every A′ with A′ ∼ A is primitive.

Observe that Definition 1.2 can be extended from non-negative in-
tegers to any semigroup G, and if G is an additive semigroup then we
may speak of a-reducibility, a-primitivity and a-irreducibility, while if
a multiplication is defined in G and (1.3) is replaced by

A = B · C with |B| ≥ 2, |C| ≥ 2,

then we may speak of m-reducibility, m-primitivity and m-irreducibility.
Correspondingly, an infinite set A of non-negative integers is said to
be totally a-primitive if every A′ with A′ ∼ A is a-primitive, and an
infinite set B of positive integers is said to be totally m-primitive if
every B′ with B′ ∼ B is m-primitive.

Ostmann also formulated the following beautiful conjecture:

Conjecture 1.1. The set P of primes is totally a-primitive.

Hornfeck, Hofmann and Wolke, Elsholtz and Puchta proved par-
tial results toward this conjecture (see [4] for references), however, the
conjecture is still open. Elsholtz [2] also studied multiplicative decom-
positions of shifted sets P ′ + {a} with P ′ ∼ P .

Another related conjecture was formulated by Erdős:

Conjecture 1.2. If we change o(n1/2) elements of the set

M = {0, 1, 4, 9, . . . , x2, . . .} (1.4)

of squares up to n, then the new set is always totally a-primitive.

The second author and Szemerédi [11] proved this conjecture in the
following slightly weaker form:

Theorem A. If ε > 0 and we change o(n1/2−ε) elements of the set of
the squares up to n, then we get a totally a-primitive set.

(More precisely, this was proved in [11] with o(n1/22−(3+ε) logn/ log logn)
in place of o(n1/2−ε).)

In the papers mentioned above decompositions of certain sets of
integers have been studied. The second author [9] proposed to study
analogous problems in finite fields. He conjectured in [9] that
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Conjecture 1.3. For every prime p the set

Q = {n : n ∈ Fp,

(
n

p

)
= +1} (1.5)

of the quadratic residues modulo p is a-primitive.

Later he also conjectured [10]:

Conjecture 1.4. For every prime large enough and every c ∈ Fp, c 6= 0
the set Q′c defined by

Q′c = (Q+ {c}) \ {0} = Qc \ {0}
(where Q is defined by (1.5)) is m-primitive.

Towards both Conjectures 1.3 and 1.4 partial results have been proved
by the second author [9, 10], Shkredov [13] and Shparlinski [15], how-
ever, both conjectures are still open.

Further related references are presented in [4].
In Conjecture 1.2 and Theorem A we consider additive decompos-

ability of sets composed from the setM of squares appearing in (1.4).
In this paper our main goal is to study multiplicative decomposablity
of sets of this type. Clearly, the set M itself is m-reducible since we
have M = M ·M. Thus if we are looking for a non-trivial problem
on the m-decomposability (or rather the lack of decomposability, i.e.,
m-primitivity) of sets related to M, then we have to switch from the
study of M to the study of the set

M′ =M+ {1} = {1, 2, 5, 10, . . . , x2 + 1, . . .} (1.6)

of shifted squares. (Note that similar shifting happens in many other
problems, see e.g. [2, 10, 8].) So that in this paper we will start out
from the following problem:

Problem 1. Is it true that the set M′ of shifted squares defined in
(1.6) is m-primitive?

(Observe that this is the integer analogue of of the problem for-
mulated in Conjecture 1.4.) We will show that the answer to this
question is affirmative, and we will sharpen and extend this result in
various directions. However, in this paper we will stick to the case
when the polynomials involved (like the polynomial x2 + 1 in (1.6))
are of second degree, and both the case of higher order polynomials
and the multiplicative analogues of Theorem A will be studied in the
sequel(s) of this paper.

Throughout this paper we will use the following notations: A,B, C, . . .
will denote (usually infinite) sets of positive integers, and their counting
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functions will be denoted by A(x), B(x), C(x), . . ., so that e.g.

A(x) = |{a : a ≤ x, a ∈ A}|.
The set of the positive integers will be denoted by N.

2. Large subsets of the shifted squares are totally
m-primitive

First we will show that if the counting function of a subset of M′

increases faster than log x, then the subset must be m-primitive:

Theorem 2.1. If

R = {r1, r2, . . .} ⊂ M′, r1 < r2 < . . . , (2.1)

and R is such that

lim
x→+∞

sup
R(x)

log x
= +∞, (2.2)

then R is totally m-primitive.

Proof. We will prove by contradiction: assume that contrary to the
statement of the theorem there are R′ ⊂ N, n0, B ⊂ N, C ⊂ N such
that

R′ ∩ [n0,+∞) = R∩ [n0,+∞), (2.3)

|B| ≥ 2, |C| ≥ 2 (2.4)

and

R′ = B · C. (2.5)

We have to distinguish two cases:
Case 1. Assume that either

|B| = 2 (2.6)

or

|C| = 2;

we may assume that (2.6) holds, and let B = {b1, b2} with b1 < b2.
By (2.2) and (2.3) there are arbitrarily large integers K and N such

that

R′(N) > K logN ; (2.7)

by taking such numbers K and N large enough in terms of n0, b1 and
b2 we can achieve that

{b1, b2} · (C ∩ [0, N ]) ⊃ R′ ∩ [0, N ]

holds, and then by (2.5) and (2.7) it follows that

2C(N) ≥ R′(N) > K logN. (2.8)
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Now assume that N > n0 and write

C̃ = C ∩ (n0, N ]. (2.9)

Then by (2.8) we have

|C̃| = C(N)− C(n0) >
K

2
logN − n0 >

K

3
logN (2.10)

(if N ≥ 2 and K is large enough in terms of n0).
Consider any c ∈ C̃. Then

n0 ≤ b1n0 < b1c < b2c ≤ b2N, (2.11)

and by (2.3), (2.5) and (2.11) we have

b1c ∈ R′ ∩ (n0, b2N ] and b2c ∈ R′ ∩ (n0, b2N ]. (2.12)

It follows from (2.1), (2.3) and (2.12) that

b1c ∈M′ and b2c ∈M′,

thus there are x ∈ N, y ∈ N with

b2c = x2 + 1, b1c = y2 + 1 (2.13)

whence

0 = b1(b2c)− b2(b1c) = b1(x
2 + 1)− b2(y2 + 1) = b1x

2− b2y2− (b2− b1)

so that

b1x
2 − b2y2 = b2 − b1. (2.14)

Observe that by (2.11) and (2.13) we have

max(|x|2, |y|2) < b2c ≤ b2N

whence

max(|x|, |y|) ≤ (b2N)1/2 ≤ N (2.15)

if

N ≥ b2.

For every c ∈ C̃ the positive integers x, y defined by (2.13) satisfy
(2.14) and (2.15) so that by (2.10) we have∣∣{(x, y) ∈ Z2 : b1(x

2 + 1) = b2(y
2 + 1) with max(|x|, |y|) ≤ N}

∣∣ ≥
≥ |C̃| > K

3
logN. (2.16)

Now we will prove
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Lemma 2.1. Let f(z) = uz2+vz+w with u, v, w ∈ Z, u(v2−4uw) 6= 0,
and let k, ` be distinct positive integers. Then there exists an effectively
computable constant C0 = C0(u, v, w, k, `) such that∣∣{(x, y) ∈ Z2 : kf(x) = `f(y) with max(|x|, |y|) < N

}∣∣ < C0 logN,

for any integer N with N ≥ 2.

Proof. Throughout the proof, C1, C2, . . . will denote effectively com-
putable constants depending only on u, v, w, k, `.

Write k` = dt2 where d is square-free. Then by a simple calculation
the equation kf(x) = `f(y) can be rewritten as

X2 − dY 2 = c (2.17)

with

X = 2kux+ kv, Y = 2uty + vt, c = k(k − `)(v2 − 4uw).

Observe that in case of d = 1 both X − Y and X + Y are divisors
of c, hence as c 6= 0, equation (2.17) allows only C1 solutions in X, Y
in this case. This clearly yields that there are at most C2 pairs (x, y)
with kf(x) = `f(y) whenever d = 1. Thus we may assume that d > 1.
Then (2.17) is a (general) Pell type equation. As it is well-known (see
e.g. Theorem 1 on p. 118 of [1] or Corollary A.6 on p. 25 of [14]), if
(X, Y ) is a solution to equation (2.17) then we have

X +
√
dY = µεs and X −

√
dY = νεm.

Here s,m ∈ Z and ε is a generator of the subgroup of units of Z[
√
d]

having norm +1. Further, µ, ν belong to some fixed finite subset Γ of
Z[
√
d] such that |Γ| < C3, and for all γ ∈ Γ we have NQ(

√
d)/Q(γ) = c

and |γ| > C4. Note that the first assertion follows e.g. from Theorem
5 and its proof on p. 90 of [1], and for the last assertion we also need
Theorem A.3 of [14] on p. 26 (which is in fact a theorem of Landau [5]),
and also the equality min(|γ|, |γ̄|) = |c|/max(|γ|, |γ̄|) for any γ ∈ Γ.

Here γ̄ is the conjugate of γ over Q(
√
d). We may further assume that

|ε| > 1. Then, as it is well-known (see e.g. results of Schinzel [12]
being valid in much more general settings) we have |ε| ≥ (1 +

√
5)/2.

Observe that by taking conjugates, this implies that

X +
√
dY = τεn or X −

√
dY = τεn

is valid with some τ ∈ Γ and non-negative integer n. For any fixed
τ ∈ Γ, write (Xn, Yn) for the solution corresponding to n, and (xn, yn)
for the values we get from the inverse of the substitutions after (2.17).
Then we have

(1 +
√
d) max(|Xn|, |Yn|) > C4((1 +

√
5)/2)n,
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which easily yields that apart from at most C5 pairs (xn, yn) also

max(|xn|, |yn|) > C6((1 +
√

5)/2)n.

This shows that for these values of n, N > max(|xn|, |yn|) implies
n < C7 logN . Since the number of possible values of τ is bounded by
C3, the lemma follows. �

We may apply this lemma with

f(z) = z2 + 1,

k = b1, ` = b2 since then the conditions in the lemma hold. We obtain
that there exists an effectively computable constant C1 = C1(b1, b2)
such that∣∣{(x, y) ∈ Z2 : b1(x

2 + 1) = b2(y
2 + 1) with max(|x|, |y|) < N}

∣∣ <
< C1 logN. (2.18)

If we have

K > 3C1

then (2.18) contradicts (2.16) which proves that Case 1 cannot occur.
Case 2. Assume that

|B| ≥ 3 and |C| ≥ 3. (2.19)

By (2.2) and (2.19) there are infinitely many integers N such that

R(N) > 2 logN (2.20)

and

B(N) ≥ 3, C(N) ≥ 3. (2.21)

Consider an integer N large enough, in particular satisfying (2.20), and
let √

logN > 2n0. (2.22)

By (2.3) and (2.5), every

r ∈ R ∩ [n0, N ] (2.23)

can be written in the form

r = bc

with

b ∈ B ∩ [1, N ], c ∈ C ∩ [1, N ]. (2.24)

Thus the number of r’s satisfying (2.23) is at most as large as the
number of pairs (b, c) satisfying (2.24) which is B(N)C(N), and this is

B(N)C(N) ≥ |{r : r ∈ R ∩ (n0, N ]}| = R(N)−R(n0) ≥ R(N)− n0,
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whence, by (2.20) and (2.22), for N large

B(N)C(N) > logN. (2.25)

We may assume that B(N) ≤ C(N). Then it follows from (2.25) that

C(N) >
√

logN. (2.26)

Define C̃ again by (2.9). Then by (2.22) and (2.26) we have

|C̃| = C(N)− C(n0) ≥ C(N)− n0 >
1

2

√
logN. (2.27)

For every c ∈ C̃, consider the integers

bic with i = 1, 2, 3.

Each of these integers satisfies

bic ∈ B · C = R′

and
bic ≥ c > n0,

thus by (2.3) we have

bic ∈ R′ ∩ [n0,+∞) = R∩ [n0,+∞) ⊂ R ⊂M′,

thus there are positive integers x, y, z with

b1c = z2 + 1, (2.28)

b2c = x2 + 1, (2.29)

b3c = y2 + 1. (2.30)

It follows from these equations that

b3(x
2 + 1)− b2(y2 + 1) = b3b2c− b2b3c = 0

and
b1(x

2 + 1)− b2(z2 + 1) = b1b2c− b2b1c = 0

whence, writing
f(t) = t2 + 1, (2.31)

the positive integers x, y and z satisfy the system of equations

b3f(x) = b2f(y), b1f(x) = b2f(z). (2.32)

By (2.27), the number of these triples x, y, z defined by (2.28), (2.29)
and (2.30) is

|C̃| > 1

2

√
logN,

so that

|{(x, y, z) ∈ N3 : x, y, z satisfy (2.32)}| > 1

2

√
logN. (2.33)



ON MULTIPLICATIVE DECOMPOSITIONS OF POLYNOMIAL SEQUENCES 9

Now we will need

Lemma 2.2. Let f(t) = ut2 + vt+w with u, v, w ∈ Z, u(v2 − 4uw) 6=
0, and let k, `,m be distinct positive integers. Then there exists an
effectively computable constant C∗ = C∗(u, v, w, k, `,m) such that all
integer solutions x, y, z of the system of equations

`f(x) = kf(y), mf(x) = kf(z) (2.34)

satisfy

max(|x|, |y|, |z|) < C∗.

Proof. By a simple calculation, the system (2.34) can be rewritten as

`X2 − kY 2 = (`− k)∆, mX2 − kZ2 = (m− k)∆,

where

X = 2ux+ v, Y = 2uy + v, Z = 2uz + v, ∆ = v2 − 4uw.

Corollary 6.1 on p. 114 of [14] implies that here either max(|X|, |Y |, |Z|)
is effectively bounded in terms of u, v, w, k, `,m, or (` − k)(m − k) is
a square and `−k

m−k = `
m

. However, one can readily check that the last
assertion cannot hold. Thus the lemma follows. �

Since the polynomial f(t) in (2.31) satisfies the conditions in Lemma
2.2 and the coefficients b1, b2, b3 in (2.32) are positive integers, we may
apply Lemma 2.2 in order to estimate the size of the solutions (x, y, z)
of the system (2.32). We obtain that these solutions satisfy (2.34), thus
their number is bounded; but this fact contradicts (2.33) for N large
enough, and this completes the proof of Theorem 2.1. �

3. Theorem 2.1 is nearly sharp

Now we will prove that Theorem 2.1 is nearly sharp, more precisely,

Theorem 3.1. There is a subset R ⊂M′ and a number x0 such that
for x > x0 we have

R(x) >
1

log 51
log x. (3.1)

Proof. Denote the solutions of the Pell equation

y2 − 2z2 = 1 (3.2)

(ordered increasingly) by (y1, z1) = (3, 2), (y2, z2) = (17, 12), . . ., (yn, zn),
. . .; it is known from the theory of the Pell equations (see e.g. Section
5 of Chapter 2 of [1]) that the positive integers yn, zn are defined by

yn + zn
√

2 = (y1 + z1
√

2)n = (3 + 2
√

2)n. (3.3)
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Then define the subset R ⊂M′ by

R = {z21 + 1, . . . , z2n + 1, . . .} ∪ {y21 + 1, . . . , y2n + 1, . . .}. (3.4)

Then it follows from (3.2) that

2(z2n + 1) = y2n + 1,

thus we have

{1, 2} · {z21 + 1, z22 + 1, . . . , z2n + 1, . . .} = R (3.5)

so that R is m-reducible.
Moreover, by (3.3) we have

yn+1 + zn+1

√
2 = (y1 + z1

√
2)n+1 = (y1 + z1

√
2)(y1 + z1

√
2)n =

= (y1 + z1
√

2)(yn + zn
√

2) = (y1yn + 2z1zn) + (y1zn + ynz1)
√

2

whence
yn+1 = y1yn + 2z1zn = 3yn + 4zn (3.6)

and
zn+1 = y1zn + z1yn = 2yn + 3zn. (3.7)

yn and zn are positive and their coefficients in the last sum in (3.6) are
greater than in (3.7), thus we have

yn+1 > zn+1 (for n = 0, 1, . . .). (3.8)

Then it follows from (3.6) and (3.8) that

yn+1 < 7yn,

thus we get by induction that

yn < 7n for n = 1, 2, . . . ,

whence
y2n + 1 < 50n for n = 1, 2, . . . .

If for some n and x we have

50n ≤ x, (3.9)

then, by (3.4),

{y21 + 1, y22 + 1, . . . , y2n + 1} ⊂ R ∩ (0, x],

thus
R(x) ≥ n. (3.10)

(3.9) holds with

n =

[
log x

log 50

]
(3.11)

so that for large x (3.1) follows from (3.10) and (3.11). �
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We remark that the construction presented in the proof of Theorem
3.1 can be generalized. There we started out from the Pell equation
y2 − 2z2 = 1. If we consider a positive integer k > 1 for which the
equation

y2 − kz2 = k − 1

has non-trivial solution (e.g. this holds for k = 5 when y = 3, z = 1 is
a solution), and we denote its positive integer solutions (in increasing
order) by (y1, z1), (y2, z2), . . ., then we have

{1, k} · {z21 + 1, z22 + 1, . . . , z2n + 1, . . .} =

= {z21 + 1, . . . , z2n + 1, . . .} ∪ {y21 + 1, . . . , y2n + 1, . . .} ⊂ M′

so that the set

{z21 + 1, . . . , z2n + 1, . . .} ∪ {y21 + 1, . . . , y2n + 1, . . .}
is m-reducible, and its counting function increases faster, than c log x.

4. General polynomials of second degree

In this section we investigate the m-decomposability of of the set of
the values assumed by general quadratic polynomials. Though we could
also discuss this situation in the generality of the previous sections, we
shall restrict ourselves to the investigation of the main property of
totally m-primitivity. So we prove the following

Theorem 4.1. Let f be a polynomial with integer coefficients of degree
two having positive leading coefficient, and set

Mf = {f(x) : x ∈ Z} ∩ N.
Then Mf is totally m-primitive if and only if f is not of the form
f(z) = a(bz + c)2 with integers a, b, c, a > 0, b > 0.

Proof. Assume first that f is of the form f(z) = a(bz+c)2 with a, b, c ∈
Z, a > 0, b > 0. Then one can readily check that e.g.

Mf = {1, (b+ 1)2} ·Mf .

Suppose next thatMf is not totally m-primitive. To describe those
f for which this is the case, we can closely follow the proof of Theorem
2.1, even with some simplifications. Let n0 ∈ N and A,B, C ⊂ N such
that Mf ∩ [n0,+∞) = A ∩ [n0,+∞), |B| ≥ 2, |C| ≥ 2 and A = B · C.
We may assume that B(n) ≤ C(n) for infinitely many n ∈ N. Let
b1, b2 ∈ B with b1 6= b2, and let N ∈ N to be specified later. For all
c ∈ C with c ≤ N we have

b1c = f(x) and b2c = f(y) (4.1)
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with some x, y ∈ Z. Observe that we have max(|x|, |y|) < C1

√
N ,

where C1 is a constant depending only on b1, b2 and f . If N is chosen
such that C(N) ≥ B(N), and also N is large enough in terms of n0,

then we clearly have C(N) ≥
√
A(N) ≥ C2

4
√
N with some constant

C2 depending only on n0 and f . Then equation (4.1) yields that

b2f(x)− b1f(y) = 0

has C2
4
√
N solutions in (x, y) ∈ Z2 with max(|x|, |y|) < C1

√
N . Now

if N is chosen to be large enough, by Lemma 2.1 this shows that the
above Pell type equation must be degenerate. That is, writing f(z) =
uz2 + vz+w, as u 6= 0, we must have v2− 4uw = 0. This immediately
gives that f has a double rational root, say p/q with gcd(p, q) = 1,
q > 0, and f(z) = u(z − p/q)2. Then q2 | u, and writing u = aq2 we
get f(z) = a(qz − p)2. Hence the theorem follows. �
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