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Abstract. In an earlier paper we studied the multiplicative de-
composability of polynomial sequences {f(x) : x ∈ Z, f(x) > 0}
for polynomials of second degree with integer coefficients. Here we
study the decomposability of polynomial sequences of this form for
polynomials f(x) of degree greater than 2.

1. Introduction

This paper is the continuation of the paper [7]. In [7] we used the
following notations and definitions and we proved the following results:

A,B, C, . . . denote (usually infinite) sets of positive integers, and their
counting functions are denoted by A(x), B(x), C(x), . . . so that e.g.

A(x) = |{a : a ≤ x, a ∈ A}|.

The set of the positive integers will be denoted by N.
In [7] we defined both additive and multiplicative decompositions of

sequences of non-negative integers, and we presented a short survey of
the papers [3, 4, 5, 8, 9, 10, 11, 12, 13, 14, 15] written on decomposition
problems. Here we recall only the definitions related to multiplicative
decompositions.

Definition 1.1. A finite or infinite set A of positive integers is said
to be multiplicatively reducible or briefly m-reducible if it has a multi-
plicative decomposition

A = B · C with |B| ≥ 2, |C| ≥ 2. (1.1)

If there are no sets B, C with these properties then A is said to be m-
primitive or m-irreducible.

2010 Mathematics Subject Classification. 11N25, 11N32, 11D41.
Key words and phrases. Multiplicative decomposition, shifted powers, polyno-

mial values, binomial Thue equations, separable Diophantine equations.
Research supported in part by the NKFIH grants K115479 and K119528, and

by the projects EFOP-3.6.1-16-2016-00022 and EFOP-3.6.2-16-2017-00015 of the
European Union, co-financed by the European Social Fund.

1



2 L. HAJDU AND A. SÁRKÖZY

Definition 1.2. Two sets A,B of positive integers are called asymptot-
ically equal if there is a number K such that A∩[K,+∞) = B∩[K,+∞)
and then we write A ∼ B.

Definition 1.3. An infinite set A of positive integers is said to be
totally m-primitive if every set A′ of positive integers with A′ ∼ A is
m-primitive.

In [7] we started out from the following problem:

Problem 1. Is it true that the set

M′ = {0, 1, 4, 9, . . . , x2, . . .}+ {1} = {1, 2, 5, 10, . . . , x2 + 1, . . .}
of shifted squares is m-primitive?

(Note that the set M+ = {1, 4, 9, . . . , x2, . . .} has a trivial multi-
plicative decomposition M+ = M+ · M+, thus in order to formulate
a non-trivial problem on the m-decomposability of sets related to the
squares, we have to consider the set M′ of the shifted squares.)

In [7] we proved that the answer to the question in Problem 1 is
affirmative in a much stronger form. Namely, we proved that if the
counting function of a subset of M′ increases faster than log x, then
the subset must be totally m-primitive:

Theorem A. If

R = {r1, r2, . . .} ⊂ M′, r1 < r2 < . . . ,

and R is such that

lim
x→+∞

sup
R(x)

log x
= +∞,

then R is totally m-primitive.

Next we proved that Theorem A is nearly sharp:

Theorem B. There is an m-reducible subset R ⊂ M′ and a number
x0 such that for x > x0 we have

R(x) >
1

log 51
log x.

Finally, we considered the case of general quadratic polynomials:

Theorem C. Let f be a polynomial with integer coefficients of degree
2 having positive leading coefficient, and set

Mf = {f(x) : x ∈ Z} ∩ N.
Then Mf is totally m-primitive if and only if f is not of the form
f(z) = a(bz + c)2 with integers a, b, c, a > 0, b > 0.
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In this paper our goal is to study the analogous problems for poly-
nomials of degree greater than 2.

2. Infinite subsets of the shifted k-th powers are totally
m-primitive

For k ∈ N, k > 2 write

Mk = {0, 1, 2k, 3k, . . . , xk, . . .}
and

M′
k = Mk + {1} = {1, 2, 2k + 1, 3k + 1, . . . , xk + 1, . . .} (2.1)

First we will study

Problem 2. Is it true that for k ∈ N, k ≥ 2 the set M′
k of shifted

k-th powers defined in (2.1) is totally m-primitive?

Note that in the special case k = 2 we proved in [7] that the answer
to this question is affirmative in a much sharper form (see Theorem
A in the Introduction). Here we will prove that for k > 2 an even
stronger statement holds:

Theorem 2.1. If k ∈ N, k > 2,

R = {r1, r2, . . .} ⊂ M′
k, r1 < r2 < . . . (2.2)

and
R is infinite, (2.3)

then R is totally m-primitive.

(So that for k > 2 Theorem B has no analogue: there are no excep-
tional subsets of M′

k.)

Proof. We will prove by contradiction: assume that contrary to the
statement of the theorem there are R′ ⊂ N, n0, B ⊂ N and C ⊂ N such
that

R′ ∩ [n0,+∞) = R∩ [n0,+∞), (2.4)

|B| ≥ 2, |C| ≥ 2 (2.5)

and
R′ = B · C. (2.6)

By (2.3) and (2.4),
R′ is also infinite. (2.7)

It follows trivially from (2.6) and (2.7) that either B or C is infinite; we
may assume that

C is infinite. (2.8)
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Let B = {b1, b2, . . .} with b1 < b2 < . . . (by (2.5), B has at least two
elements). Write

C ′ = C ∩ [n0,∞);

by (2.8),

C ′ is also infinite. (2.9)

Now consider any c ∈ C ′. Then

n0 ≤ b1n0 ≤ b1c < b2c, (2.10)

and by (2.4), (2.6) and (2.10) we have

b1c ∈ R′ ∩ [n0,∞) and b2c ∈ R′ ∩ [n0,∞). (2.11)

It follows from (2.2), (2.4) and (2.11) that

b1c ∈ M′
k and b2c ∈ M′

k, (2.12)

thus there are x = x(c) ∈ N, y = y(c) ∈ N with

b2c = xk + 1, b1c = yk + 1

whence

0 = b1(b2c)− b2(b1c) = b1(x
k + 1)− b2(y

k + 1),

so that

b1x
k − b2y

k = b2 − b1. (2.13)

Clearly, if c and c′ are different elements of C ′, then x = x(c′) and
y = y(c′) are different solutions of the equation (2.13). Thus by (2.9),

(2.13) has infinitely many solutions. (2.14)

Now we need the following lemma which is a simple consequence of
a classical theorem of Baker [1], concerning Thue equations.

Lemma 2.1. Let A,B,C, k be integers with ABC ̸= 0 and k ≥ 3.
Then for all integer solutions x, y of the equation

Axk +Byk = C (2.15)

we have max(|x|, |y|) < c1, where c1 = c1(A,B,C, k) is a constant
depending only on A,B,C, k.

We may apply Lemma 2.1 with A = b1, B = −b2, C = b2 − b1 since
then by 0 < b1 < b2 and k ≥ 3 the conditions in the lemma hold. Then
we obtain that (2.13) may have only finitely many solutions, which
contradicts (2.14) and this completes the proof of Theorem 2.1. �
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3. General polynomials of degree greater than 2

In this section we will prove the analogue of Theorem C for polyno-
mials of degree greater than 2:

Theorem 3.1. Let f ∈ Z[x] with deg(f) ≥ 3 having positive leading
coefficient, and set

A := {f(x) : x ∈ Z} ∩ N.
Then A is not totally m-primitive if and only if f(x) is of the form
f(x) = a(bx + c)k with a, b, c, k ∈ Z, a > 0, b > 0, k ≥ 3. Further,
if f(x) is of this form, then A can be written as A = AB with B =
{1, (b+ 1)k}.

Proof. We will need a lemma, which is Lemma 2.1 in [7], and it concerns
the number of solutions of general Pell-type equations up to N .

Lemma 3.1. Let f(z) = uz2+vz+w with u, v, w ∈ Z, u(v2−4uw) ̸= 0,
and let n, ℓ be distinct positive integers. Then there exists an effectively
computable constant c2 = c2(u, v, w, n, ℓ) such that∣∣{(x, y) ∈ Z2 : nf(x) = ℓf(y) with max(|x|, |y|) < N

}∣∣ < c2 logN,

for any integer N with N ≥ 2.

We will also need a result about equations of type f(x) = g(y). In
fact, what we need is the special case when g(y) is of the form g(y) =
tf(y). Our next statement, which is new and may be of independent
interest, concerns this situation.

Proposition 3.1. Let f ∈ Z[x] with deg(f) ≥ 3 and t ∈ Q with t ̸= ±1.
Suppose that the equation f(x) = tf(y) has infinitely many solutions
in integers x, y. Then f(x) is of the form f(x) = a(g(x))m with some
a ∈ Z and g(x) ∈ Z[x] with deg(g) = 1 or 2.

To prove the above proposition, we need a deep result of Bilu and
Tichy [2]. To formulate this, first we need to introduce some notation.

Let α, β be nonzero rational numbers, µ, ν, q > 0 and r ≥ 0 be
integers, and let v(x) ∈ Q[x] be a nonzero polynomial (which can be
constant). Write Dµ(x, δ) for the µ-th Dickson polynomial, defined by

Dµ(x, δ) =

⌊µ/2⌋∑
i=0

dµ,ix
µ−2i with dµ,i =

µ

µ− i

(
µ− i

i

)
(−δ)i.

We will say that two polynomials F (x) and G(x) form a standard
pair over Q if one of the ordered pairs (F (x), G(x)) or (G(x), F (x))
appears in the table below.
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kind (F (x), G(x)) or (G(x), F (x)) parameter restriction(s)
first (xq, αxrv(x)q) 0 ≤ r < q, (r, q) = 1,

r + deg v(x) > 0
second (x2, (αx2 + β)v(x)2) -
third (Dµ(x, α

ν), Dν(x, α
µ)) (µ, ν) = 1

fourth (α
−µ
2 Dµ(x, α),−β

−ν
2 Dν(x, β)) (µ, ν) = 2

fifth ((αx2 − 1)3, 3x4 − 4x3) -

Now we state a special case of the main result of [2].

Lemma 3.2. Let f(x), g(x) ∈ Q[x] be nonconstant polynomials such
that the equation f(x) = g(y) has infinitely many solutions in ratio-
nal integers x, y. Then f = φ ◦ F ◦ λ and g = φ ◦ G ◦ κ, where
λ(x), κ(x) ∈ Q[x] are linear polynomials, φ(x) ∈ Q[x], and F (x), G(x)
form a standard pair over Q.

Now we are ready to give the

Proof of Proposition 3.1. By Lemma 3.2, we see that in our case in
any standard pair F,G corresponding to a case with infinitely many
solutions we have deg(F ) = deg(G). This immediately implies that
we have that either f(x) = φ(x) and tf(x) = φ(ax + b), or f(x) =
φ(x2) and tf(x) = φ(ax2 + b) with some polynomial φ and a, b ∈ Q.
These imply tφ(x) = φ(ax + b), or tφ(x2) = φ(ax2 + b), respectively.
Note that also in the latter case, comparing the coefficients, we have
tφ(X) = φ(aX + b). So in any case, the set of the roots of φ is closed
under the transformation z → az + b and also under z → (z − b)/a.
As t ̸= ±1, we have |a| ̸= 1. We may assume that |a| > 1; the other
case is similar. Suppose that φ has two distinct roots. Write z1, z2 for
the roots of φ which are furthest (i.e. with |z1 − z2| maximal). Then
|(az1 + b)− (az2 + b)| > |z1 − z2| yields a contradiction. That is, φ has
only one (possibly multiple) root (given by z0 = b/(1 − a)), and the
statement follows. �

Now we can complete the proof of Theorem 3.1.
Since the second part of the statement can be readily checked, we

only deal with the first part.
So suppose that A is not totally m-primitive. Then there is a set

A′ ⊂ N with A ∼ A′ such that A′ can be written as A′ = BC, where
B, C ⊂ N with |B|, |C| ≥ 2. We may assume that for infinitely many
N , we have

|{d ∈ C : d ≤ N}| ≥ |{b ∈ B : b ≤ N}|.
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Let b1, b2 ∈ B. Then, for all d ∈ C we have

b1d = f(x) and b2d = f(y) (3.1)

for some x, y ∈ Z, which depend on d. This yields that the equation
f(x) = tf(y) has infinitely many solutions in integers x, y, where t =
b1/b2. Thus it follows by Proposition 3.1 that either f(x) = a(bx+ c)k

with a, b, c ∈ Z, or f(x) = a(g(x))m where g(x) ∈ Z[x] with deg(g) = 2
and k = 2m. Since in the first case we are done, we may assume that
the second case holds. Further, we may suppose that the discriminant
of g(x) is not zero, otherwise the situation reduces to the case with
deg(g) = 1. Then by (3.1) we get b2(g(x))

m = b1(g(y))
m. This shows

that b2/b1 is a full m-th power in Q, and we obtain b∗2g(x) = b∗1g(y)
with some positive integers b∗1, b

∗
2. The last equation by Lemma 3.1

has only O(logN) solutions in (x, y) with max(|x|, |y|) < N for any N .
(Here and later on in the proof, the implied constant in O(.) depends
on b1, b2, a, b, c, k.) Hence by

|x| = O(d1/k) and |y| = O(d1/k)

we have

|{d ∈ C : d ≤ N}| ≤ |{d ∈ C : d ≤ Nk}| < O(logN)

for any N , whence

|{t ∈ BC : t ≤ N}| < O((logN)2)

for infinitely many N . However, on the other hand we have

|{a ∈ A′ : a ≤ N}| > O(N1/k)

for all N . This contradiction implies the statement. �

4. Problems and remarks

In this concluding section we propose some open problems and make
some remarks.

First we point out that some of our results can be extended over
rings of integers of algebraic number fields.

Remark 1. Theorem 2.1 can be extended over number fields. We do
not work out the details here, only indicate the main points. Let K be
an algebraic number field, and write OK for its ring of integers. Then
the sets

Aβ := {αk + β : α ∈ OK}
are totally m-decomposable for any k ≥ 3 and β ∈ OK \ {0}. (By this
we mean that if A′

β ⊂ OK such that the symmetric difference of Aβ

and A′
β is finite, then A′

β = BC with B, C ⊂ OK implies that either one
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of B, C has only one element, or one of these sets is {0, ε}, where ε is a
unit in OK .) Indeed, Lemma 2.1 essentially remains valid also in this
generality, see results of Győry and Papp [6], and Chapter 5 of [16] for
related results. (Of course, in this case one has to bound the size of the
solutions x, y, and the bound will depend on certain parameters of K,
as well. However, the essential fact from our viewpoint is that (2.15)
has only finitely many solutions also in x, y ∈ OK , for any A,B,C ∈
OK \ {0}.) Thus the arguments of Theorem 2.1 can easily be extended
to this more general situation. In fact, a special case remains, namely,
where

A′
β = BC with B = {0, γ}, |C| = ∞

where γ ∈ OK \{0} is not a unit. However, in this case γ should divide
all elements of A′

β, in particular (α1γ)
k+β and (α2γ+1)k+β for some

α1, α2 ∈ OK , whence γ | β and γ | β + 1 in OK . This yields that γ is
a unit in OK , which is excluded, and the argument is complete. Note
that with any unit ε ∈ OK we can write

A′
β := Aβ ∪ {0} = {0, ε} · (ε−1A′

β),

so this decomposition is trivial and must be excluded.

Next we propose a problem concerning sets which can be simulta-
neously decomposed both additively and multiplicatively. To its for-
mulation, we need to extend the notion of m-reducibility to sets of
non-negative integers. Observe that for any set A of non-negative in-
tegers with 0 ∈ A we have the trivial identity A = {0, 1} · A. So we
call a set A of non-negative integers m-reducible if it has a non-trivial
multiplicative decomposition, that is if we can write A = BC with
B, C ⊂ N ∪ {0}, |B|, |C| ≥ 2 and B ̸= {0, 1}, C ̸= {0, 1}.
Problem 1. Describe those sets A of non-negative integers which are
not totally a-primitive and not totally m-primitive at the same time.
In particular, is it true that if A has both properties, then A can be
written as

A =
t∪

i=1

{mx+ ri : x ∈ N ∪ {0}} \ T

with some integers m, r1, . . . , rt with 0 ≤ r1 < . . . < rt < m and finite
set T ⊂ N ∪ {0}? Note that if A is of the above form, then we have
A = {0, sm}+A and A = {1, sm+ 1} · A with any s > max(T ).

Remark 2. In view of our results in this paper and in [7], we know
that in case of sets of polynomial values, the answer to the question in
the above problem is affirmative.
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While Problem 1 is, perhaps, not quite hopeless, the next problem
seems to be more difficult.

Problem 2. Are there k, ℓ ∈ N with k > 1 and ℓ > 1 such that
{xkyℓ + 1 : (x, y) ∈ N2} is m-reducible? If yes, for what pairs k, ℓ ∈ N
is this set m-reducible? More generally, for f(x, y) ∈ Z[x, y] when is
{f(x, y) > 0 : (x, y) ∈ Z2} m-reducible?

Remark 3. If k = 1 or ℓ = 1 then the set {xkyℓ + 1 : (x, y) ∈ N2} is
m-reducible:

{xyℓ + 1 : (x, y) ∈ N2} = {xky + 1 : (x, y) ∈ N2} =

= {2, 3, 4, . . . } = {1, 2, 3, 4, . . . } · {2, 3, 4, . . . }.
On the other hand, it follows from Theorem A and Theorem 2.1 that if
d = (k, ℓ) > 1 then {xkyℓ + 1 : (x, y) ∈ N2} is totally m-primitive since
it is a ”large” subset of {zd + 1 : z ∈ N}. This fact seems to point to
the direction that the answer to the first question is, perhaps, ”no”:

Conjecture 1. If k, ℓ ∈ N, k > 1 and ℓ > 1 then the set {xkyℓ + 1 :
(x, y) ∈ N2} is totally m-primitive.

Here the difficulty is that in general the problem reduces to a dio-
phantine equation in 4 variables, and we know much less on equations
of this type than on equations in 2 variables. However, one might like
to prove at least non-trivial partial results:

Problem 3. Is it true that if ℓ ∈ N, ℓ is odd, and ℓ > 1 then the set
{x2yℓ + 1 : (x, y) ∈ N2} is totally m-primitive? (Note that by Remark
3 this is true if ℓ is even.) Can one decide this at least for ℓ = 3?
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