
ON MULTIPLICATIVE DECOMPOSITIONS OF
POLYNOMIAL SEQUENCES, III

L. HAJDU AND A. SÁRKÖZY

Abstract. In two earlier papers we studied the multiplicative
decomposability of polynomial sequences {f(x) : x ∈ Z, f(x) > 0}.
Here we extend this problem by considering also sequences which
can be obtained from sequences of this type by changing ”not too
many” elements of them. In particular, we prove the multiplicative
analogue of a theorem of Szemerédi and the second author (related
to a problem of Erdős).

1. Introduction

In [4] and [5] we studied multiplicative decompositions of polynomial
sequences of positive integers, and this paper is the third (and last) one
in this series.

First we recall some notations, definitions and results from [4] and
[5]. A,B, C, . . . denote (usually infinite) sets of non-negative integers
and their counting functions are denoted by A(X), B(X), C(X), . . . so
that e.g.

A(X) = |{a : a ≤ X, a ∈ A}|.
The set of the positive integers is denoted by N.

Definition 1.1. Let G be an additive semigroup and A,B, C subsets
of G with

(1.1) |B| ≥ 2, |C| ≥ 2.

If

(1.2) A = B + C (= {b+ c : b ∈ B, c ∈ C})
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then (1.2) is called an additive decomposition or briefly a-decomposition
of A, while if a multiplication is defined in G and (1.1) and

(1.3) A = B · C (= {bc : b ∈ B, c ∈ C})
hold then (1.3) is called a multiplicative decomposition or briefly m-
decomposition of A.

In [9] and [10] H. H. Ostmann introduced some definitions concerning
additive properties of sequences of non-negative integers and studied
some related problems. The most interesting definitions are:

Definition 1.2. A finite or infinite set A of non-negative integers is
said to be a-reducible if it has an additive decomposition

A = B + C with |B| ≥ 2, |C| ≥ 2.

If there are no sets B, C with these properties then A is said to be a-
primitive or a-irreducible.

(More precisely, Ostmann used the terminology ”reducible”, ”primi-
tive”, ”irreducible” without the prefix a-. However, since we will study
both additive properties and their multiplicative analogues thus to dis-
tinguish between them we will use a prefix a- in the additive case and
a prefix m- in the multiplicative case.)

Definition 1.3. Two sets A,B of non-negative integers are said to be
asymptotically equal if there is a number K such that A∩ [K,+∞) =
B ∩ [K,+∞) and then we write A ∼ B.

Definition 1.4. An infinite set A of non-negative integers is said to
be totally a-primitive if every A′ with A′ ∼ A is a-primitive.

Example 1.1. It is easy to see that if

A = {a1, a2, . . . } (with a1 < a2 < . . . )

is an infinite set of non-negative integers with

lim
n→+∞

(an+1 − an) = +∞,

then A is totally a-primitive. Thus in particular, the sequence

(1.4) M2 = {0, 1, 4, 9, . . . , n2, . . .}
of squares is totally a-primitive.

Erdős conjectured that much more is true:

Conjecture 1.1. If we change o(X1/2) elements of the set (1.4) up to
X, then the new set is always totally a-primitive.
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The second author and Szemerédi [13] proved this conjecture in the
following slightly weaker form:

Theorem A. If ε > 0 and we change o
(
X1/2 2−(3+ε) logX log logX

)
ele-

ments of the set (1.4) up to X, then we get a totally a-primitive set.

(We presented a short survey of other related papers in [4]. In par-
ticular, the a-primitivity of certain special sets is studied in [11], [14]
and [16].)

Observe that Definition 1.2 can be extended from non-negative in-
tegers to any additive semigroup G (all we have to do is to replace
”non-negative integers” by ”elements of G”). One might like to also
extend this definition to multiplicative semigroups by replacing ”addi-
tive decomposition” by ”multiplicative decomposition”. However, some
caution is needed here. Namely, if both addition and multiplication are
defined in the given set and it contains both an additive null element
0 and a multiplicative unit element 1 (like in cases of the non-negative
integers or Fp), then every subset A with |A| ≥ 2 and containing 0 has
a trivial multiplicative decomposition

A = {0, 1} · A

which satisfies both (1.1) and (1.3). The simplest way to aviod trivial
decompositions of this type is to restrict ourselves to sets not containing
0. Then in the two most important special cases the multiplicative
analogues of Definitions 1.2 and 1.4 are:

Definition 1.5. If A is a finite or infinite set of positive integers or
A ⊂ F∗

p(= Fp \ {0}) then it is said to be m-reducible if it has a multi-
plicative decomposition

A = B · C with |B| ≥ 2, |C| ≥ 2

(where B ⊂ N, C ⊂ N or B ⊂ F∗
p, C ⊂ F∗

p, respectively). If there are no
such sets B, C then A is said to be m-primitive or m-irreducible.

(In particular, the m-primitivity of certain special sets is studied in
[3] and [12].)

Definition 1.6. An infinite set A ⊂ N is said to be totally m-primitive
if every A′ ⊂ N with A′ ∼ A is m-primitive.

In Part I we started out from the multiplicative analogue of our
remark on the totally a-primitivity of the sequence (1.4). By Definition
1.5, the notions of m-reducibility and m-primitivity are restricted to
positive integers, thus we have to delete 0 from the set M2 and to
consider instead the set M+

2 = {1, 4, 9, . . . , x2, . . . }. However, this set
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is trivially m-reducible since we have M+
2 = M+

2 ·M+
2 . Thus to get a

non-trivial problem on squares, we have to shift them:

Problem 1. Is it true that the set

M′
2 = {0, 1, 4, 9, . . . , x2, . . .}+ {1} = {1, 2, 5, 10, . . . , x2 + 1, . . .}

of shifted squares is m-primitive?

In [4] we proved that the answer to this question is affirmative in
a much stronger form: if the counting function of a subset of M′

2 in-
creases faster than logX, then the subset must be totally m-primitive:

Theorem B. If

R = {r1, r2, . . .} ⊂ M′
2, r1 < r2 < . . . ,

and

lim sup
X→∞

R(X)

logX
= ∞,

then R is totally m-primitive.

We also proved that Theorem B is nearly sharp:

Theorem C. There is an m-reducible subset R ⊂ M′
2 and a number

X0 such that for X > X0 we have

R(X) >
1

log 51
logX.

In [5] we studied the analogous problems for shifted k-th powers with
k > 2. Write Mk = {0, 1, 2k, 3k, . . . , xk, . . .} and

(1.5) M′
k = Mk + {1} = {1, 2, 2k + 1, 3k + 1, . . . , xk + 1, . . .}.

We proved:

Theorem D. If k > 2,

R = {r1, r2, . . . } ⊂ M′
k, r1 < r2 < . . . ,

and R is infinite, then R is totally m-primitive.

(So for k > 2, Theorem C has no analogue: there are no exceptional
subsets of M′

k.)
In both [4] and [5] we also studied the totally m-primitivity of more

general polynomial sets {f(x) : x ∈ Z, f(x) > 0} (where f(x) ∈ Z[x]).
So far we have studied the sets of squares and shifted squares, and

also their subsets obtained by deleting many (but not ”too many”)
elements of them. But what happens if instead of dropping elements,
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we add new elements to these sets? The most interesting set obtained
in this way is certainly the set of all powers xk with k ≥ 2:

(1.6) P = {1, 22, 23, 32, 24, 52, 33, 25, . . . , xk, . . . }.

(Note that this set contains X1/2 + O(1) squares up to X, and (1 +
o(1))X1/3 further powers are added.)

Theorem 1.1. The set P in (1.6) is totally m-primitive.

Proof. Let P ′ be any set of positive integers with P ′ ∼ P . Then there
exists a positive integer X0 such that

P ∩ [X0,∞) = P ′ ∩ [X0,∞).

Suppose to the contrary that

P ′ = A · B with A,B ⊂ N and |A|, |B| ≥ 2.

Let p be any prime with p > X0. Then p2 ∈ P ′, and we have one of
the following:

i) p ∈ A ∩ B,
ii) 1 ∈ A, p2 ∈ B,
iii) p2 ∈ A, 1 ∈ B.

In case i) take any prime q with q > X0 and p ̸= q. As q2 ∈ P ′, we
get that one of q, q2 belongs to A ∪ B. However, then one of pq, pq2 is
in P ′, a contradiction. Thus i) cannot hold, and by symmetry we may
assume that p /∈ B.

If p /∈ A, then by symmetry again we may assume that we are in
case ii). On the other hand, if p ∈ A, then 1 /∈ B, otherwise p ∈ P ′

would hold. So in any case, we may assume that we are in case ii).
Observe that this implies that if q > X0 is any prime with p ̸= q, then
q /∈ A, q /∈ B. (Indeed, otherwise one of q, p2q would belong to P ′.)
Hence as q2 ∈ P ′, we have q2 ∈ A ∪ B. We show that q2 /∈ A, and
then necessarily q2 ∈ B. Assume to the contrary that q2 ∈ A. Take a
prime r > X0 different from p, q. As 1 ∈ A and p2 ∈ B, we know that
r /∈ A∪B. However, as r3 ∈ P ′, this implies that r3 ∈ A∪B. But then
one of p2r3, q2r3 is in P ′ - a contradiction. So q2 ∈ B must hold. Hence
for any prime q with q > X0 and q ̸= p we obtain q2 ∈ B \A. We show
that p2 ∈ B \ A also holds. As p2 ∈ B, we only need to check that
p2 /∈ A. This can be done with a similar argument as above. Indeed,
assuming p2 ∈ A, if r is a prime with r > X0 and r ̸= p then r3 ∈ P ′

(as r /∈ A ∪ B by p2r /∈ P ′), whence r3 ∈ A ∪ B implying p2r3 ∈ P ′ - a
contradiction again. Thus we conclude that

{p2 : p prime, p > X0} ⊂ B \ A.
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Note that this together with 1 ∈ A implies that neither A nor B
contains any prime. Now we show that all the powers of primes above
X0 belong to B \ A. We proceed by induction. Assume that for some
i ≥ 3 we have

{pi−1 : p prime, p > X0} ⊂ B \ A.

(This holds with i = 3.) Suppose that for some prime q with q > X0 we
have qi /∈ B \A. Hence if qi ∈ B then also qi ∈ A. On the other hand,
if qi /∈ B, then since none of q, . . . , qi−1 belongs to A, by qi ∈ P ′ we get
qi ∈ A. That is, in any case, we have qi ∈ A. Take any prime r > X0

with r ̸= q, and observe that by the induction hypothesis ri−1 ∈ B
holds. Thus we get ri−1qi ∈ P ′, which is a contradiction. Thus our
claim follows, and we obtain

∞∪
i=2

{pi : p prime, p > X0} ⊂ B \ A.

Let now a ∈ A with a > 1. (As |A| ≥ 2, such an a must exist.) Let

a = pα1
1 . . . pαℓ

ℓ

be the prime factorization of a, and put

α = max
1≤i≤ℓ

αi.

Take any prime p > X0 different from p1, . . . , pℓ. As pα+1 ∈ B, we get
that apα+1 ∈ P ′ should hold. However, this is a contradiction, and the
statement follows. �

It is also a natural question to ask: what happens if we start out
from the set M′

k of the shifted k-th powers (k ≥ 2) and we combine
deletion and addition of many but ”not too many” elements? Is it
true that the sets obtained in this way are always totally m-primitive?
(Observe that this is not so with Mk in place of M′

k since the set Mk

itself is m-reducible: Mk = Mk ·Mk.) We conjecture that the answer
to this question is affirmative in the following strong form:

Conjecture 1.2. If k ≥ 2 and we change o(X1/k) elements of the set
M′

k in (1.5) up to X, then the new set is always totally m-primitive.

(Note that this is the multiplicative analogue of Erdős’s Conjecture
1.1.) This paper is devoted to the study of this problem. As in the
case of Conjecture 1.1, this conjecture in its original form seems to be
beyond reach but we will be able to prove a result (Theorem 2.1 below)
which is just slightly weaker.
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We mention that this main result of ours will imply that the set of
shifted powers

P ′ = P+{1} = {2, 22+1, 23+1, 32+1, 24+1, 52+1, 33+1, 25+1, . . . , xk+1, . . . }

is totally m-primitive. One might wonder whether this assertion could
be obtained ”directly” through the theory of diophantine equations.
Following our approach (see Section 3), assuming that P ′ is not totally
m-primitive, we could get equations of the form

(1.7) Axn −Bym = C

with A,B,C fixed, however, with all x, y, n,m being variables. In gen-
eral, not any finiteness result is known for the solutions of this equation.
By a classical conjecture of Pillai, equation (1.7) has only finitely many
solutions for any A,B,C with ABC ̸= 0. However, the conjecture is
confirmed only for the case A = B = C = 1, when (1.7) is the Catalan
equation having the only solution

(x, y, n,m) = (3, 2, 2, 3).

This result is due to Mihăilescu [7]. (For more details about (1.7) and
Pillai’s conjecture, see e.g. [15].) So we do not see any other method to
prove that P ′ is totally m-primitive, only the one through our Theorem
2.1 below.

2. The main result and the structure of the proof

We will prove the following theorem:

Theorem 2.1. For k ≥ 2 and any ε > 0 changing

o

(
X1/k exp

(
−(log 2 + ε)

logX

log logX

))
elements of M′

k up to X (deleting some of its elements and adding
positive integers) the new set R obtained in this way is totally m-
primitive.

We remark that this theorem is the multiplicative analogue of The-
orem A (apart from the constant in the exponent). However, the only
connection between the proofs of the two theorems is that Wigert’s
theorem (appearing as Lemma 6.1 later in this paper) is used in both
proofs. Apart from this, the proof of Theorem 2.1 is more complicated
than that of Theorem A.

Proof of Theorem 2.1. It suffices to prove that every set R obtained in
the way described in the theorem is m-primitive (since then for every
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such R, every set R′ ⊂ N with R′ ∼ R also satisfies the conditions in
the theorem with R′ in place of R, thus R′ is also m-primitive).

We will prove by contradiction: assume that for some ε > 0 there
is an R of the type described in the theorem which is m-reducible, so
that R is of the form

(2.1) R = Q∪ S
with
(2.2)

Q ⊂ M′
k, |(M′

k\Q)∩[1, X]| = o

(
X1/k exp

(
−(log 2 + ε)

logX

log logX

))
,

(2.3) S ∩M′
k = ∅, S(X) = o

(
X1/k exp

(
−(log 2 + ε)

logX

log logX

))
and there are

(2.4) A ⊂ N, B ⊂ N
with

(2.5) |A| ≥ 2, |B| ≥ 2,

(2.6) R = A · B.
Then it follows trivially from the definition of M′

k and R that
(2.7)

R(X) = X1/k+o

(
X1/k exp

(
−(log 2 + ε)

logX

log logX

))
(= (1+o(1))X1/k).

In order to to deduce a contradiction from assumptions (2.1)-(2.6), we
will have to distinguish two cases. First (in Section 3) we will consider
the case when the counting function of one of the two sets A,B is ”very
large” infinitely often (which implies that the other counting function is
”very small”, thus this case can be considered asymmetric). This case
can be handled relatively easily by the methods used in [4] and [5], more
precisely, by using the theory of Pell equations and a consequence of a
classical theorem of Baker [1]. The second case is when both counting
functions A(X) and B(X) increase ”not too fast”. This (”symmetric”)
case is much more difficult. Namely, the effective estimates obtained
by Baker’s method contain constants depending on the coefficients of
the diophantine equations in question, and we need better control for
this dependence than the ones that can be deduced by Baker’s method.
To get around this difficulty, we will need tools (definitions, notation,
results and lemmas) from graph theory and the theory of continued
fractions which will be presented in Sections 4 and 5, respectively. The
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proof of Theorem 2.1 will be completed in Section 6 by using these
lemmas in Sections 4 and 5. The last section (Section 7) will contain
comments and unsolved problems.

3. Case 1: asymmetric decomposition

First we will study
CASE 1. Assume that for some ε > 0 the counting functions of the

sets A,B in (2.4) satisfy

(3.1) max{A(X), B(X)} > X1/k exp

(
−
(
log 2 +

ε

2

) logX

log logX

)
for infinitely many X ∈ N.

Consider a large integer X satisfying (3.1). We may assume without
loss of generality that

(3.2) B(X) ≥ A(X)

so that by (3.1) we have

(3.3) B(X) > X1/k exp

(
−
(
log 2 +

ε

2

) logX

log logX

)
.

Let A = {a1, a2, . . . } with (0 <)a1 < a2 < . . . . Then by (2.1)-(2.6) for
both i = 1, 2, and every

(3.4) b ∈ B ∩ {1, 2, . . . , X},
we have

(3.5) 0 < aib ≤ a2b ≤ a2X

and
aib ∈ A · B = R = Q∪ S

so that either

(3.6) aib ∈ Q ∩ {1, 2, . . . , a2X}
or

(3.7) aib ∈ S ∩ {1, 2, . . . , a2X}
holds (by (2.2) and (2.3), (3.6) and (3.7) cannot hold simultaneously).
Let B′ denote the set of the integers b satisfying (3.4) and also (3.6) for
both i = 1 and i = 2. Now we will estimate |B′|. By (2.3) and (3.3)
we have
(3.8)

|B′| =

∣∣∣∣∣{b : b ∈ B ∩ {1, 2, . . . , X}} \
2∪

i=1

{b : aib ∈ S ∩ {1, 2, . . . , a2X}}

∣∣∣∣∣ ≥
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≥ |{b : b ∈ B ∩ {1, 2, . . . , X}}|−
2∑

i=1

|{b : aib ∈ S ∩ {1, 2, . . . , a2X}}| ≥

≥ B(X)− 2S(a2X) ≥

≥ X1/k exp

(
−
(
log 2 +

ε

2

) logX

log logX

)
−2a

1/k
2 X1/k exp

(
−(log 2 + ε)

log a2X

log log a2X

)
>

> X1/k exp

(
−
(
log 2 +

2ε

3

)
logX

log logX

)
if X is large enough.

On the other hand, by (2.2) and the definition of B′, for every b ∈ B′

we have a1b ∈ Q ⊂ M′
k and a2b ∈ Q ⊂ M′

k thus there are non-negative
integers u, v with

(3.9) a1b = vk + 1

and

(3.10) a2b = uk + 1

so that

0 = a1(a2b)−a2(a1b) = a1(u
k+1)−a2(v

k+1) = a1u
k−a2v

k+(a1−a2)

whence

(3.11) a1u
k − a2v

k = a2 − a1,

and by (3.5), (3.9) and (3.10) here we have

max{|u|, |v|}k + 1 ≤ a2b+ 1 ≤ 2a2b ≤ 2a2X

whence

(3.12) max{|u|, |v|} < (2a2)
1/kX1/k.

Thus by (3.8) we have obtained that the number of solutions of the
diophantine equation (3.11) under condition (3.12) is at least |B′| so
that by (3.8),
(3.13)
|{(u, v) ∈ (N∪{0})2 : a1uk−a2v

k = a2−a1, max{|u|, |v|} < (2a2)
1/kX1/k}| ≥

≥ |B′| > X1/k exp

(
−
(
log 2 +

2ε

3

)
logX

log logX

)
.

Now we need two lemmas from [4] and [5] in order to give an upper
bound for the cardinality of the set estimated in (3.13).
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Lemma 3.1. Let f(z) = Kz2 + Lz + M with K,L,M ∈ Z, K(L2 −
4KM) ̸= 0, and let r, s be distinct positive integers. Then there exists
an effectively computable constant c0 = c0(K,L,M, r, s) such that∣∣{(u, v) ∈ Z2 : rf(u) = sf(v) with max{|u|, |v|} < N

}∣∣ < c0 logN

for any integer N with N ≥ 2.

Proof. This is Lemma 2.1 in [4] (where it was proved by using the
theory of general Pell type equations). �

Lemma 3.2. Let A,B,C, k be integers with ABC ̸= 0 and k ≥ 3.
Then for all integer solutions u, v of the equation

Auk +Bvk = C

we have max{|u|, |v|} < c1 where c1 = c1(A,B,C, k) is a constant
depending only on A,B,C, k.

Proof. This is Lemma 2.1 in [5] (which follows from a classical theorem
of Baker [1]). �

If k = 2, then we may apply Lemma 3.1 with f(z) = z2 + 1, r = a1,
s = a2 and N = [(2a2)

1/2X1/2]. We obtain for large X that
(3.14)
|{(u, v) ∈ (N ∪ {0})2 : a1(u2 + 1) = a2(v

2 + 1), max{|u|, |v|} < N}| ≤

≤ |{(u, v) ∈ Z2 : a1u
2 − a2v

2 = a2 − a1, max{|u|, |v|} < N}| <

< c0 logN ≤ c0 log((2a2)
1/2X1/2) < c2 logX

with some c2 = c2(a1, a2).
If k ≥ 3 then applying Lemma 3.2 with A = a1, B = −a2 and

C = a2 − a1 (so that ABC ̸= 0 holds by 0 < a1 < a2), we obtain that

(3.15) |{(u, v) ∈ (N∪{0})2 : a1uk−a2v
k = a2−a1}| < c3 (for k ≥ 3)

with some absolute constant c3 = c3(a1, a2, k).
Combining (3.14) and (3.15) we get that there is an absolute constant

c4 = c4(a1, a2, k) such that for k ≥ 2 and large enough X we have

|{(u, v) ∈ (N∪{0})2 : a1uk−a2v
k = a2−a1, max{u, v} < (2a2)

1/kX1/k}| <
< c4 logX.

But for every X large enough (in terms of a1, a2, k and ε) this inequal-
ity contradicts the inequality in (3.13) so that, indeed, Case 1 cannot
occur.
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4. A lemma on bipartite graphs

We will use the basic graph theoretic definitions and terminology
as they appear in [2] (but the notation will be modified slightly to fit
better to the notation used in the first two parts of this paper).

Definition 4.1. A graph G is said to be a bipartite graph with vertex
classes U and V if its vertex set W is of form U ∪ V with U ∩ V = ∅,
and every edge of G joins a vertex in U to a vertex in V , and then we
write G = G(U, V ). Moreover, a bipartite graph G = G(U, V ) is said to
be complete if every vertex in U is joined to every vertex in V . K(s, t)
denotes the complete bipartite graph whose vertex classes contain s and
t vertices, respectively.

Definition 4.2. The Zarankiewicz function Z(m,n; s, t) denotes the
largest possible number of edges in a bipartite graph G(U, V ) with |U | =
m, |V | = n which does not contain a subgraph K(s, t).

(K. Zarankiewicz proposed to study this function in certain special
cases in 1951.)

Lemma 4.1. For any positive integers m,n, s, t we have

Z(m,n; s, t) ≤ (s− 1)1/t(n− t+ 1)m1−1/t + (t− 1)m.

Proof. This is Theorem 10 in [2], p.113. �

We will use the following consequence of Lemma 4.1:

Lemma 4.2. Let G = G(U, V ) be a bipartite graph on the vertex classes
U = {U1, U2, . . . , Ur} and V = {V1, V2, . . . , Vs}, and denote the number
of edges of G (the size of G) by t. Assume that r = |U |, s = |V |, and
t are such that

(4.1) 2 ≤ r ≤ s ≤ t

3
,

and write

(4.2) h =

[
4

9

t2

r2s

]
.

Then G(U, V ) contains a K(2, h) subgraph, i.e. a complete bipartite
subgraph G′(U ′, V ′) so that

U ′ = {U ′
1, U

′
2} ⊂ U (with U ′

1 ̸= U ′
2),

V ′ = {V ′
1 , V

′
2 , . . . , V

′
h} ⊂ V (with V ′

i ̸= V ′
j for i ̸= j)

and both U ′
1 and U ′

2 are joined to each of V ′
1 , V

′
2 , . . . , V

′
h.
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Proof. By the definition of the Zarankiewicz function (Definition 4.2),
it suffices to prove that it follows from the assumptions in the lemma
that

(4.3) t > Z(r, s; 2, h) = Z(s, r;h, 2)

(the last equality is trivial since clearly the change of order of the vertex
classes does not change the value of the function). By using Lemma
4.1 with s, r, h and 2 in place of m,n, s and t, respectively, we get

Z(s, r;h, 2) < (h−1)1/2(r−2+1)s1−1/2+(2−1)s ≤ (h−1)1/2rs1/2+s.

Thus to prove (4.3), it suffices to show that

(h− 1)1/2rs1/2 + s < t,

or in equivalent form,

(h− 1)1/2 <
t− s

rs1/2
,

h− 1 <
(t− s)2

r2s
.

So that by (4.1), it suffices to show that

h− 1 <

(
2
3
t
)2

r2s
,

h <
4

9

t2

r2s
+ 1

which holds by (4.2). �

5. Tools from the theory of continued fractions

First we recall some basic facts on continued fractions. We will follow
the notation and presentation of [6], Chapter X.

A fraction of the form

(5.1) a0 +
1

a1 +
1

a2 +
1

. . . +
1

aN

is called continued fraction. The continued fraction in (5.1) is also
denoted by

(5.2) [a0, a1, . . . , aN ].

The numbers a0, a1, a2, . . . , aN are called partial quotiens or simply
quotients. For n ∈ {0, 1, . . . , N} the number [a0, a1, . . . , an] is called
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the n-th convergent to [a0, a1, . . . , aN ]. It can be calculated by the
following recursion:

Lemma 5.1. If pn and qn are defined by

p0 = a0, p1 = a1a0 + 1, pn = anpn−1 + pn−2 (for n ∈ {2, 3, . . . , N}),

q0 = 1, q1 = a1, qn = anqn−1 + qn−2 (for n ∈ {2, 3, . . . , N}),
then

[a0, a1, . . . , an] =
pn
qn

.

(This is Theorem 149 in [6].)
If the quotients a1, a2, . . . , aN are positive (a0 can be zero or negative)

and a0, a1, . . . , aN are all integers, then the continued fraction (5.2) is
said to be simple. From now on we will restrict ourselves to simple
continued fractions.

If a0, a1, a2, . . . are integers and a1, a2, . . . are positive, then xn =
[a0, a1, . . . , an] tends to a limit x when n → ∞, and we say that

(5.3) x = [a0, a1, . . . ],

and xn = pn
qn

= [a0, a1, . . . , an] are convergents to [a0, a1, . . . ] (see The-

orem 166 in [6]). Note that if the sequence a0, a1, a2, . . . is infinite
then x must be irrational, and if x is irrational, then it has a unique
representation in form (5.3).

Lemma 5.2. Of any two consecutive convergents p
q
to x in (5.3), one

at least satisfies ∣∣∣∣pq − x

∣∣∣∣ < 1

2q2
.

(This is Theorem 183 in [6].)

Lemma 5.3. If x is of form (5.3) (so that it is irrational) and∣∣∣∣pq − x

∣∣∣∣ < 1

2q2

then p
q
is a convergent to x.

(This is Theorem 184 in [6].)
We will also need the following lemma:

Lemma 5.4. If x is an irrational number of form (5.3) and pn
qn

is the

n-th convergent to it, then for every n ∈ N we have

qn+2 > 2qn.
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Proof. By Lemma 5.1 we have

qn+2 = an+2qn+1 + qn ≥ qn+1 + qn > 2qn.

�

(Indeed, Lemmas 5.3 and 5.4 will play an important role in the com-
pletion of the proof of our Theorem 2.1.)

6. Case 2: symmetric decomposition

In Section 3 we showed that if the set R satisfies the assumptions
in Theorem 2.1 then it cannot have decomposition of form (2.6) which
is asymmetric, i.e. it is such that inequality (3.1) of Case 1 holds. It
remains to show that there is no symmetric decomposition either, i.e.
the opposite of (3.1) cannot hold either:

CASE 2. Assume that for some ε > 0 there is a number X0 = X0(ε)
such that the sets A,B in (2.4) satisfy the inequality
(6.1)

max{A(X), B(X)} ≤ X1/k exp

(
−
(
log 2 +

ε

2

) logX

log logX

)
forX > X0(ε).

To deduce a contradiction from (2.1)-(2.6) and (6.1), first we introduce
some notations. For X ≥ 1 let H = H(X) denote the smallest positive
integer with (

4

3

)H

≥ X,

so that

(6.2) H =

⌈
logX

log 4/3

⌉
.

Write ni =
(
4
3

)i
for i = −1, 0, 1, 2, . . . and Ni = N ∩ (ni−1, ni] for

i = 0, 1, 2, . . . , and for any D ⊂ N let Di = D ∩ Ni. Then clearly we
have

(6.3) {1, 2, . . . , X} ⊂
H∪
i=0

Ni.

Denote the elements of QH by q̄1 < q̄2 < · · · < q̄w. Then by (2.2)
and (6.2), for X → ∞ we have

w = |QH | = |Q ∩ (nH−1, nH ]| = Q(nH)−Q(nH−1) =

= n
1/k
H − n

1/k
H−1 + o

(
n
1/k
H exp

(
−(log 2 + ε)

log nH

log log nH

))
=
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=

(
4

3

)H/k

−
(
4

3

)(H−1)/k

+ o

(
n
1/k
H exp

(
−(log 2 + ε)

log nH

log log nH

))
=

=

(
4

3

)(H−1)/k
((

4

3

)1/k

− 1

)
+o

(
X1/k exp

(
−(log 2 + ε)

logX

log logX

))
whence

(6.4) w = |QH | > c5X
1/k for X > X0

with some positive constant c5 depending only on k and ε.
By (2.6), for every

(6.5) q̄ℓ ∈ QH

there are a ∈ A, b ∈ B with

(6.6) ab = q̄ℓ.

Suppose that for some q̄ℓ we have

(6.7) a ∈ Ai, b ∈ Bj,

i.e.,

(6.8)

(
4

3

)i−1

< a ≤
(
4

3

)i

,

(
4

3

)j−1

< b ≤
(
4

3

)j

.

By (6.5) and (6.6) we have

(6.9) ab = q̄ℓ ∈

((
4

3

)H−1

,

(
4

3

)H
]
,

and by (6.8),

(6.10)

(
4

3

)i+j−2

< ab ≤
(
4

3

)i+j

.

It follows from (6.9) and (6.10) that

(6.11) H ≤ i+ j ≤ H + 1

whence

(6.12) j = H − i or H − i+ 1.

The index ℓ can be chosen in w(= |QH |) ways in (6.5), and for every q̄ℓ
in (6.5) there is at least one pair (a, b) satisfying (6.6) and (6.7) with
some i, j. For fixed i, j the number of these pairs is |Ai||Bj| thus we
must have

(6.13)
∑
i

∑
j

|Ai||Bj| ≥ w
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where by (6.12) clearly

(6.14) i ∈ {0, 1, 2, . . . , H}

and we have to take all the pairs i, j satisfying (6.12).
Now we will consider the maximal term |Ai||Bj| of the double sum

on the left hand side of (6.13). By (6.12) and (6.14) this double sum
has at most 2(H + 1) < 4H terms, thus this maximal term satisfies

|Ai||Bj| >
w

4H

whence, by (6.2) and (6.4), it follows that if X is large enough, then

(6.15) |Ai||Bj| > c6
X1/k

logX

with a positive constant c6 depending only on k and ε.
Write

(6.16) Ai = {ae+1, ae+2, . . . , ae+r}, Bj = {bf+1, bf+2, . . . , bf+s}

(with ae+1 < ae+2 < · · · < ae+r, bf+1 < bf+2 < · · · < bf+s). We may
assume without loss of generality that

(6.17) |Ai| = r ≤ |Bj| = s.

Then by (6.15) we have

(6.18) rs > c6
X1/k

logX
,

and it follows from (6.2), (6.12) and the definition of Bj that

(6.19) Bj ⊂

[
1,

(
4

3

)H+1
]
∩ B ⊂ [1, 2X] ∩ B,

thus by (6.1),

(6.20) s = |Bj| ≤ B(2X) < X1/k exp

(
−
(
log 2 +

ε

3

) logX

log logX

)
for X large enough. By (6.15) and (6.20) we have

(6.21) r = |Ai| > c6
X1/k

logX
· 1

|Bj|
> exp

((
log 2 +

ε

4

) logX

log logX

)
for X large enough.

Now we define a bipartite graph G(U, V ) on the vertex classes U =
{U1, U2, . . . , Ur} and V = {V1, V2, . . . , Vs} so that for m ∈ {1, 2, . . . , r}
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and n ∈ {1, 2, . . . , s} the vertices Um and Vn are joined if and only if
ae+m(∈ Ai) and bf+n(∈ Bj) are such that

ae+mbf+n ∈ Q.

Moreover, define h as in (4.2):

h =

[
4

9

t2

r2s

]
,

where t denotes the number of edges of G. We will show that (4.1) in
Lemma 4.1 also holds. To prove this, we have to estimate t. Clearly
we have

(6.22) t = |{(m,n) : 1 ≤ m ≤ r, 1 ≤ n ≤ s, ae+mbf+n ∈ Q}| =
= |{(m,n) : 1 ≤ m ≤ r, 1 ≤ n ≤ s}|−

|{(m,n) : 1 ≤ m ≤ r, 1 ≤ n ≤ s, ae+mbf+n /∈ Q}| =
= rs− |{(m,n) : 1 ≤ m ≤ r, 1 ≤ n ≤ s, ae+mbf+n ∈ S}|.

If 1 ≤ m ≤ r and 1 ≤ n ≤ s, then as in (6.8)-(6.12), by (6.2) we have

(6.23) ae+mbf+n ≤
(
4

3

)H+1

≤ 2X.

It follows that writing d(n) =
∑
d|n

1 we have

(6.24) |{(m,n) : 1 ≤ m ≤ r, 1 ≤ n ≤ s, ae+mbf+n ∈ S}| =

=
∑

1≤z≤2X

z∈S

|{(m,n) : 1 ≤ m ≤ r, 1 ≤ n ≤ s, ae+mbf+n = z}| ≤

≤
∑

1≤z≤2X

z∈S

|{m : 1 ≤ m ≤ r, ae+m | z}| ≤

≤
∑

1≤z≤2X

z∈S

d(z) ≤
∑

1≤z≤2X

z∈S

max
z≤2X

d(z) = S(2X) max
z≤2X

d(z).

Now we need the following lemma:

Lemma 6.1. If ε > 0, X > X0(ε) then we have

max
z≤X

d(z) < exp

(
(log 2 + ε)

logX

log logX

)
.

Proof. This is a classical theorem of Wigert [17]. (See [8], p.56 for a
slightly sharper form of this estimate which, however, would not lead
to a significant improvement on our main theorem.) �
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It follows from (2.3), (6.24) and Lemma 6.1 that

(6.25) |{(m,n) : 1 ≤ m ≤ r, 1 ≤ n ≤ s, ae+mbf+n ∈ S}| =

= o

(
X1/k exp

(
−(log 2 + ε)

logX

log logX

))
exp

((
log 2 +

ε

2

) logX

log logX

)
=

= o

(
X1/k exp

(
−ε

2

logX

log logX

))
.

By (6.18), (6.22) and (6.25) we have

(6.26) t = rs− o

(
X1/k exp

(
−ε

2

logX

log logX

))
= (1 + o(1))rs.

If X is large enough then (4.1) in Lemma 4.1 holds by (6.17), (6.20),
(6.21) and (6.26). Note that by (4.2), (6.21) and (6.26) we also have

(6.27)

h =

[
4

9

t2

r2s

]
=

(
4

9
+ o(1)

)
t

r
=

(
4

9
+ o(1)

)
s ≥

(
4

9
+ o(1)

)
r >

>
1

3
exp

((
log 2 +

ε

4

) logX

log logX

)
for large X.

So that the graph G = G(U, V ) defined above satisfies all the as-
sumptions in Lemma 4.2, thus the lemma can be applied, and we get
that there are vertices Ui1 , Ui2 , Vj1 , Vj2 , . . . , Vjh with

i1 < i2, j1 < j2 < · · · < jh

so that both Ui’s are joined with each of the Vj’s. Then by the definition
of the graph this means that if we write ā1 = ae+i1 , ā2 = ae+i2 , b̄1 =
bf+j1 , b̄2 = bf+j2 , . . . , b̄h = bf+jh then we have

(6.28) ā1 < ā2, b̄1 < b̄2 < · · · < b̄h,

for µ = 1, 2 and ν = 1, 2, . . . , h

(6.29) āµb̄ν ∈ Q(⊂ M′
k) (for µ = 1, 2, ν = 1, 2, . . . , h),

and by āµ ∈ Ai and b̄ν ∈ Bj we also have

(6.30)

(
4

3

)i−1

< āµ ≤
(
4

3

)i

and

(
4

3

)j−1

< b̄ν ≤
(
4

3

)j

whence

(6.31)

(
4

3

)i+j−2

< āµb̄ν ≤
(
4

3

)i+j

(for µ = 1, 2, ν = 1, 2, . . . , h).
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By (6.28) and (6.29) there are pairwise different positive integers x1, x2, . . . , xh

and y1, y2, . . . , yh, respectively, such that

(6.32) ā1b̄ℓ = ykℓ + 1, ā2b̄ℓ = xk
ℓ + 1 (for ℓ = 1, 2, . . . , h)

and

(6.33) x1 < x2 < · · · < xh, y1 < y2 < · · · < yh.

It follows from (6.32) that

ā1ā2b̄ℓ = ā2(y
k
ℓ + 1) = ā1(x

k
ℓ + 1)

whence

(6.34) ā1x
k
ℓ − ā2y

k
ℓ = ā2 − ā1 (for ℓ = 1, 2, . . . , h).

By the definitions of ā1 and ā2, and by (6.28), ā1, ā2 and ā2 − ā1 are
positive integers, so that

(6.35) ā1x
k − ā2y

k = ā2 − ā1

is a diophantine equation with positive coefficients, and by (6.33) and
(6.34) the pairs (x1, y1), (x2, y2), . . . , (xh, yh) are different solutions of
this diophantine equation. Dividing both sides of this equation by the
(positive) greatest common divisor of ā1 and ā2, we get the diophantine
equation

(6.36) Exk − Fyk = G

with positive integer coefficients

(6.37) E =
ā1

(ā1, ā2)
, F =

ā2
(ā1, ā2)

, G =
ā2 − ā1
(ā1, ā2)

which is equivalent to equation (6.35), and where

(6.38) E ∈ N, F ∈ N, G ∈ N

and

(6.39) (E,F ) = 1.

Moreover, by (6.34) each of the pairs (xℓ, yℓ) (with ℓ = 1, 2, . . . , h)
considered above is such that it is a solution of equation (6.36), and it
satisfies the equations in (6.32) with some b̄ℓ ∈ Bj, thus by (6.23) and
(6.32) we have

(6.40) ykℓ + 1 = ā1b̄ℓ < ā2b̄ℓ = xk
ℓ + 1 ≤ 2X for ℓ = 1, 2, . . . , h.

To deduce a contradiction from the facts above, we have to distin-
guish two cases.
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CASE 2a. Assume first that
(
F
E

)1/k
is an irrational number. Then

by the definition of h and since h ≥ 3 follows from (6.27) for large X,
the pairs (x1, y1), (x2, y2), (x3, y3) are solutions of (6.36) so that

Exk
i − Fyki = G (for i = 1, 2, 3)

whence (
xi

yi

)k

− F

E
=

G

Eyki
.

Thus

(6.41)

∣∣∣∣∣xi

yi
−
(
F

E

)1/k
∣∣∣∣∣ = G

Eyki

(
k−1∑
j=0

(
xi

yi

)j (
F

E

)(k−1−j)/k
)−1

≤

≤ G

Eyki

(
F

E

)−(k−1)/k

=
G

E

(
E

F

)(k−1)/k
1

yki
(for i = 1, 2, 3).

By (6.28), (6.30) and (6.37) we have

(6.42)
G

E

(
E

F

)(k−1)/k

=
ā2 − ā1

ā1

(
ā1
ā2

)(k−1)/k

<
ā2
ā1

− 1 <
4

3
− 1 =

1

3
.

It follows from (6.41) and (6.42) that∣∣∣∣∣xi

yi
−
(
F

E

)1/k
∣∣∣∣∣ < 1

2yki
(for i = 1, 2, 3).

We have assumed that
(
F
E

)1/k
is irrational and k ≥ 2, thus by Lemma

5.3 this inequality implies that x1

y1
, x2

y2
, x3

y3
are convergents to

(
F
E

)1/k
. By

(6.33) we have y1 < y2 < y3. Thus if
x1

y1
is, say, the n-th convergent to(

F
E

)1/k
so that x1 = pn, y1 = qn, then by Lemma 5.4 we must have

(6.43) y3 ≥ qn+2 > 2qn = 2y1.

On the other hand, by (6.31), (6.32) and (6.33) we have(
4

3

)i+j−2

< ā1b̄1 = yk1 + 1 < yk3 + 1 = ā1b̄3 <

(
4

3

)i+j

whence

(6.44)

(
4

3

)2

(yk1 + 1) > yk3 + 1.

It follows from (6.43) and k ≥ 2 that

yk3 + 1 > (2y1)
k + 1 = 2kyk1 + 1 ≥ 4yk1 + 1 ≥ 3yk1 + 2 >

(
4

3

)2

(yk1 + 1)
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which contradicts (6.44) and this proves that Case 2a cannot occur.

CASE 2b. Assume now that
(
F
E

)1/k
is a rational number, say(

F

E

)1/k

=
p

q

with

(6.45) p ∈ N, q ∈ N and (p, q) = 1,

whence
F

E
=

pk

qk
.

By (6.38), (6.39) and (6.45) it follows that

F = pk, E = qk.

Then equation (6.36) can be rewritten as

(qx)k − (py)k = G

whence

(qx− py)
(
(qx)k−1 + (qx)k−2(py) + · · ·+ (py)k−1

)
= G.

Here G is a positive integer and if x, y are positive integers then by
(6.45) both G and the second factor on the left hand side are positive
integers, thus the first factor

(6.46) D = qx− py

is also a positive integer for which we have

(6.47) D | G,

and

(6.48) (qx)k−1 + (qx)k−2(py) + · · ·+ (py)k−1 =
G

D
.

A number D satisfying (6.47) can be chosen in d(G) ways. If D is
fixed, then from (6.46) we get qx = D + py. Thus we may replace qx
in (6.48) by D + py, and then we get a polynomial of degree k − 1 in
y on the left hand side with positive coefficients. So the equation can
have at most one positive integer solution y. If D and y are fixed, then
there is 0 or 1 integer x satisfying (6.46). Thus denoting the number
of solutions of equation (6.36) by N we have

(6.49) N ≤ d(G).

As in (6.7)-(6.12) and (6.19), we have

G ≤ ā2 ∈ Ai ⊂ [1, 2X] ∩ A
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thus we have

(6.50) G ≤ 2X.

By (6.50) and Lemma 6.1 we get from (6.49) that if X is large enough
in terms of ε then we have

(6.51) N < exp

((
log 2 +

ε

5

) logX

log logX

)
(for X > X1(ε)).

On the other hand, we have seen that each of the pairs (x1, y1),
(x2, y2), . . . , (xh, yh) is a solution of (6.35) and thus also of (6.36) so
that we have

N ≥ h

where h is defined by (4.2) thus by (6.27) we have

N ≥ h =

[
4

9

t2

r2s

]
>

1

3
exp

((
log 2 +

ε

4

) logX

log logX

)
(forX > X2(ε)).

This contradicts (6.51) for X large enough, so that Case 2b cannot
occur either for large X.

Thus in both cases our indirect assumption leads to a contradiction
(for large X) which completes the proof of our theorem. �

7. Problems and remarks

As we remarked earlier both Conjecture 1.1 and Conjecture 1.2 seem
to be beyond reach in their original form, only slightly weaker theo-
rems of type Theorem A and Theorem 2.1 can be proved. Indeed, in
both cases we have to change the conjectured bound for the number of
elements changed up to X from o(X1/2) (in case of the squares) to

o

(
X1/2 exp

(
−c

logX

log logX

))
(and in case of the k-th powers X1/k replaces X1/2). The unwanted fac-

tor exp
(
−c logX

log logX

)
originates mostly from the application of Wigert’s

estimate (Lemma 6.1)

(7.1) max
z≤X

d(z) < exp

(
(log 2 + ε)

logX

log logX

)
,

and this upper bound is nearly sharp. One might like to improve on
Theorem A and Theorem 2.1 by showing that there are only ”few” z
values to consider for which d(z) is nearly as large as the upper bound
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in (7.1), and for almost all z the value of d(z) is closer to the average
value

1

X

∑
z≤X

d(z) = (1 + o(1)) logX.

However, even pushing this idea through would lead to the loss of a
factor logX at least, and splitting the sets A,B as in (6.7) and (6.8)
also leads to the loss of (logX)c. So that it seems that for sure one
must loose a factor (logX)c at least. There is a large gap between the

factors (logX)c and exp
(
c logX

log logX

)
, thus we might like to tighten this

gap. Already a significant achievement would be to settle the following
problem:

Problem 1. Show that Theorem A and Theorem 2.1 can be sharpened
so that one may change

o

(
X1/2 exp

(
−c

logX

log logX

))
and o

(
X1/k exp

(
−c

logX

log logX

))
elements, respectively, of the given set with an absolute constant c
smaller than log 2.

Next we propose some similar questions on multivariate polynomi-
als. In [5] we formulated some questions and problems related to to-
tally m-decomposability of sets of shifted products of powers of the
form xkyℓ+1, and more generally, of sets of values of bivariate polyno-
mials f(x, y) ∈ Z[x, y]. Now we present some remarks and pose some
questions concerning general multivariate polynomials with integral co-
efficients.

Let f(x1, x2, . . . , xn) ∈ Z[x1, x2, . . . , xn] with n ≥ 1. One may ask
when is the set

Af = {f(x1, x2, . . . , xn) : x1, x2, . . . , xn ∈ Z} ∩ N

totally m-primitive? We may assume that Af is infinite, otherwise the
question is trivial. One can make the following observation: if f is a
homogeneous form, i.e. every term of f has (total) degree D, then for
any X0 > 0 the set

(7.2) Af ∩ (X0,∞)

is m-reducible. Indeed, writing

f(x1, x2, . . . , xn) =
N∑
i=1

aix
d
(i)
1

1 x
d
(i)
2

2 . . . xd
(i)
n

n
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with some N ∈ N, a1, a2, . . . , aN ∈ Z \ {0} and d
(i)
1 , d

(i)
2 , . . . , d

(i)
n ∈ N

with
d
(i)
1 + d

(i)
2 + · · ·+ d(i)n = D

for some D ∈ N, we clearly have

Af ∩ (X0,∞) = (Af ∩ (X0,∞)) · {1, zD}
for any z ∈ N, z > X0. Also, if f is the linear combination of powers
of xi, say

f(x1, x2, . . . , xn) =
n∑

j=1

bjx
tj
j

with integers bj and positive integers tj (j = 1, . . . , n) then letting
T = lcm

1≤j≤n
tj, for any X0 > 0 and z > X0 we have

Af ∩ (X0,∞) = (Af ∩ (X0,∞)) · {1, zT}.
That is, Af ∩ (X0,∞) is m-reducible again. Moreover, if f is linear in
one of its variables, say in x1, then the set (7.2) can be m-reducible
again. Indeed, write

f(x1, x2, . . . , xn) = g(x2, . . . , xn)x1 + h(x2, . . . , xn),

and take arbitrary u2, . . . , un ∈ Z such that g(u2, . . . , un) ̸= 0. Put

g0 = g(u2, . . . , un), h0 = h(u2, . . . , un).

If g0 | h0, then letting X1 =
∣∣∣h0

g0

∣∣∣, for any z ∈ N with z > X1 we clearly

have z|g0| ∈ Af . Thus for any z ∈ N with z > max{X0, X1} we have

Af ∩ (X0,∞) = (Af ∩ (X0,∞)) · {1, z|g0|}.
Perhaps, it is possible to give a complete characterization of the polyno-
mials f that are linear in one of their variables, and for which Af ∩ N
is not totally m-primitive. More precisely, we propose the following
problem.

Problem 2. Characterize the polynomials g(x2, . . . , xn), h(x2, . . . , xn) ∈
Z[x2, . . . , xn] for which the set

{x1g(x2, . . . , xn) + h(x2, . . . , xn) : x1, x2, . . . , xn ∈ Z} ∩ N
is totally m-primitive.

Already the case n = 2 is of interest, so we formulate the following
special case of Problem 2 separately:

Problem 3. Characterize the polynomials g(y), h(y) ∈ Z[y] for which
the set

{xg(y) + h(y) : x, y ∈ Z} ∩ N
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is totally m-primitive.

In particular,

Problem 4. Is the set

{x(y2 + 2) + 1 : x, y ∈ Z} ∩ N

totally m-primitive?

Note that if we write y2 + 1 in place of y2 + 2 above then we get a
trivial problem, since then (taking x ≥ 0 and y = 0) the above set is
just N.

It would be very interesting to see a characterization of totally m-
primitivity in the general case. We do not formulate this problem more
precisely, since already finding the exact conditions may be challenging.
(Though, on the other hand, it might happen that the three cases
indicated above, in some sense cover all the possible m-reducible cases.)
For example, the range of the polynomial f(x, y) = x2 + 2xy2 + y4 is
not totally m-primitive: indeed, for any large z we have

({x2 + 2xy2 + y4 : x, y ∈ Z} ∩ N) ∩ (X0,∞) =

= (({x2 + 2xy2 + y4 : x, y ∈ Z} ∩ N) ∩ (X0,∞)) · {1, z4}.

Observe that f does not belong to any of the three families above, how-
ever, f(x, y) is obtained from a form by a simple substitution. (Namely,
we have f(x, y) = (x+ y2)2.) We still formulate a simple case as a con-
crete problem (whose solution may be the first step towards a general
theorem).

Problem 5. Let k, ℓ be positive integers greater than one. Is it true
that the set

{xk + yℓ + 1 : x, y ∈ Z, (x, y) ̸= 0}
is totally m-primitive?

Note that this problem is the additive analogue of Conjecture 1 from
[5], where polynomials of the shape xkyℓ + 1 are considered.

In case of Problems 2, 3 and 5 it could be interesting already giv-
ing possibly general sufficient conditions for totally primitivity of large
families of sets in question.
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