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Abstract 

Let ,X=   be a metric space and let ε  be a positive real number. Then 

a function :f X Y→  is defined to be an ε -map if and only if for all 

y Y∈ , the diameter of ( )1f y−  is at most ε . In Theorem 10 we will give a 

new proof for the following well known fact: if   is totally bounded, then 
for all ε  there exists a finite number n and a continuous ε -map 

: nf Xε →   (here n  is the usual n-dimensional Euclidean space en-
dowed with the Euclidean metric). If ε  is “small”, then fε  is “almost in-
jective”; and still exists even if   has infinite covering dimension (in this 
case, n depends on ε , of course). Contrary to the known proofs, our proof 
technique is effective in the sense, that it allows establishing estimations for n 
in terms of ε  and structural properties of  . 
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1. Introduction 

It is a classical question in topology, that what kind of topological spaces   
can be embedded into finite dimensional Euclidean spaces (endowed with the 
usual Euclidean topology). To motivate the present paper, first we recall some 
well known results in related investigations. 

A classical characterization theorem can be recalled as follows. The covering 
dimension of   is finite if and only if there exists n∈  such that for every 
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open covering C of   there exists an open covering C′  that refines C and 
each point of X belongs to at most 1n +  elements of C′  (the smallest n satis-
fying this property is defined to be the dimension of  ; if there are no such n, 
then   is defined to be infinite dimensional). Clearly, if   can be embedded 
into a finite dimensional Euclidean space, then   is metrizable. By a classical 
theorem, for a compact, metrizable space   the followings are equivalent: 

(1)   is finite dimensional (say, its dimension is n); 
(2)   is homeomorphic to a subspace of a finite dimensional (more con-

cretely, 2 1n + -dimensional) Euclidean space  
(for a proof we refer to e.g. Corollary 50.9 of [1]). Recall, that for a positive real 
number ε , a function :f X Y→  is defined to be an ε -map if and only if for 
all y Y∈  the diameter of ( )1f y−  is at most ε . Thus, if ε  is “small” then an 
ε -map is “almost injective”. The usual proof for the harder direction of the 
above equivalence is based on showing that if the dimension of   is n∈ , 
then for all ε , the set of continuous ε -mappings of   into 2 1n+  is dense 
and open; then the Baire category theorem implies the existence of a continuous 
embedding of   into 2 1n+ . 

Further, as explained in Theorem 2.2 of [2], for a compact, metrizable space 
 , the above (1) and (2) are also equivalent with  

(3) for all positive ε ,   admits an ε -map to an n-dimensional simplicial 
complex. 
In fact, Theorem 2.2 of [2] provides several statements equivalent with the above 
(1), (2) and (3) and recalls further notions of dimensions of topological spaces. 
All of these dimensions are equivalent for compact metric spaces. For further 
details on related notions and results we refer to the rather comprehensive sur-
vey article [2] and to the references therein. 

Recall e.g. from [3], that the metric space   is defined to be totally bounded 
if and only if for all positive ε ∈  there exists a finite collection of ε -balls of 
  that covers X. Further,   is compact if and only if it is totally bounded and 
complete (that is, every Cauchy sequence of   is convergent). 

The main result of the present paper is Theorem 10 where we show, that 
(i) if   is totally bounded, then for all 0ε > , there exists a continuous ε

-mapping of   into a finite dimensional Euclidean space n , further 
(ii) estimations for n are also provided in terms of ε  and structural proper-

ties of  . 
We should make the following remarks: item (i) above is well known. Thus, 

“almost injective” functions still exist, even if   is infinite dimensional—of 
course, if   is infinite dimensional, then n depends on ε . The known proofs 
are existential, they cannot provide any upper bound for n. However our proof 
for (i) is effective in the sense, that (as stated in (ii) above), based on it, one can 
establish estimations on n in terms of ε  and structural properties of  . 

The structure of the paper is rather simple: we close this section by fixing our 
notation and Section 2 contains the proofs. As we mentioned, our main goal is 
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to prove Theorem 10. 
Notation 
Our notation is mostly standard, but the following list may help. 
Throughout   denotes the set of natural numbers. In addition,   and +  

denotes the set of real numbers, and the set of positive real numbers, respective-
ly. 

Let ,X=   be a metric space, a X∈  and let γ  be a non-negative real 
number. As usual, the open γ -ball ( ),B aγ  at a is the set 

( ) ( ){ }, : , .B a x X a xγ γ= ∈ <  

2. Proofs 

Definition 1 A family { }:iB i I∈  of γ -balls is defined to be a γ -net if and 
only if it covers X, that is, 

.i
i I

X B
∈

=


                             (1) 

Thus,   is a completely bounded metric space if and only if for all positive 
γ ∈  there exists a finite γ -net in  . In addition, as it is well known,   is 
compact if and only if it’s metric is totally bounded and complete (i.e. every 
Cauchy sequence is convergent in  ). For further details we refer to [3], as 
well. 

If   is a completely bounded metric space, then ( ),ν γ  denotes the 
smallest cardinality κ  for which there exists a κ -sized γ -net of  . 

Definition 2 Let ,X=   be a metric space, let A X⊆  and let b X∈ . 
Then the ∆ -type of b over A in   is defined to be the function 

( ) :tp b A A∆ →  , such that for all a A∈  we have 

( )( ) ( ), .tp b A a a b∆ =                       (2) 

Thus, the ∆ -type of b is just the function describing the distances of b from 
elements of A. 

By a ∆ -type over A we mean a function :p A →   which is of the form 
( )tp b A∆

  for some b X∈ . 
Keeping the notation introduced so far, we say, that c X∈  realizes the ∆

-type p in   if and only if ( )p tp c A=  . 
Remark 3 We motivate and explain the above terminology as follows. Let 

,X=   be a metric space. One can associate a relational structure to   in 
the following way. If d is a distance of  , that is, ( )d ran∈   then the binary 
relation dR  is defined to be 

( ){ }2, : , .dR a b X a b d= ∈ ≤                   (3) 

Thus, the relational structure ( ), d d ranX R
∈ 

 completely describes   and, 
at the same time, it can be treated as a model for an appropriate first order lan-
guage. Then our definition of ∆ -types is essentially the same, as atomic types of 
the first order relational structure ( ), d d ranX R

∈ 
 in the usual, model theoretic 

https://doi.org/10.4236/apm.2019.96028


G. Sági 
 

 

DOI: 10.4236/apm.2019.96028 558 Advances in Pure Mathematics 

 

sense. 
Lemma 1 Let ,X=   be a metric space, let A X⊆  be finite and let 

n A= . Then for the function : nf X →  , ( ) ( )f x tp x A∆=   we have 

( ) ( ) ( ) ( )( ), , ,x y X f x f y n x y∀ ∈ − ≤                (4) 

particularly, f is continuous. 
Proof. Enumerate { }0 1, , nA a a −= 

 and for each i n<  let :if X →  , 
( ) ( ),i if x a x=  . By a slight abuse of notation, we have 

( ) ( ) ( ) ( )0 1, , nf x tp x A f x f x∆ −= = 

               (5) 

for all x X∈ . 
Let i n<  be fixed in this paragraph. Then for any ,x y X∈  the triangle in-

equality yields 

( ) ( ) ( ), , ,i ia x a y y x≤ +                      (6) 

so we have 

( ) ( ) ( ), , , .i ia x a y y x− ≤                      (7) 

Similarly, interchanging x and y in the previous estimations, we obtain  

( ) ( ) ( ), , ,i ia y a x x y− ≤                       (8) 

and hence 

( ) ( ) ( ) ( ) ( ), , , .i i i if x f y a x a y x y− = − ≤                (9) 

Consequently, for all ,x y X∈  we have 

( ) ( ) ( ) ( )( ) ( )( )

( )( ) ( )

1 by (9) 12 2

0 0

2

,

, , ,

n n

i i
i i

f x f y f x f y x y

n x y n x y

ρ
− −

= =

− = − ≤

= =

∑ ∑

 

        (10) 

as desired.                                                          
The following notion is an approximate version of splitting introduced in [4].  
Definition 4 Let ,X=   be a metric space, let B A X⊆ ⊆ , let p be a ∆

-type over A in   and let ,ε δ  be non-negative real numbers. Then we say, 
that p is ( ),ε δ -splitting over B if and only if there exist 0 1,c c A∈  such that 
for all b B∈  we have 

( ) ( )0 1, ,b c b c δ− <                        (11) 

but whenever a realizes p, we have 

( ) ( )0 1, , .a c a c ε− ≥                       (12) 

Keeping the notation introduced in the above definition, intuitively 
( )p tp a A∆=   is ( ),ε δ -splitting over B if and only if there exist 0 1,c c A∈  

such that 0c  and 1c  are “indiscernible from the viewpoint of B modulo δ ”, 
but a “distinguishes them modulo ε ”. 

The following theorems will be essential in this paper. Some variants of them 
(in different contexts) had been utilized e.g. in [5], [6] and in [7]. 
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Theorem 5 Let ,X=   be a totally bounded metric space, let a X∈ ,  

let ε +∈  and let 0
5
εδ< ≤  be arbitrary. Suppose 

0 1 MA A A⊆ ⊆ ⊆                          (13) 

is a strictly increasing sequence of subsets of { }X a−  such that for all n M<  
the type ( )1ntp a A∆ +

  is ( ),ε δ -splitting over nA . Then ( ),M ν δ≤  . 
Proof. Let ( ){ }: ,iB i ν δ<   be a δ -net of   with smallest possible car-

dinality. By our assumption on splitting, for each n M<  there exist 

1,n n n nc d A A+∈ −  such that for all nb A∈  we have 

( ) ( ), ,n nb c b d δ− <                         (14) 

but 

( ) ( ), , .n na c a d ε− ≥                        (15) 

Assume, seeking a contradiction, that ( ),M ν δ>  . By the pigeonhole prin-
ciple, there exists ( ),N ν δ≤   such that NB  (the thN δ -ball in our net) con-
tains at least two nc 's; more precisely, there exist ( )0 1 1 ,n n ν δ< ≤ +   with 

0 1
,n n Nc c B∈ . Since NB  is a δ -ball, it follows, that ( )0 1

, 2n nc c δ< . Therefore, 
by the triangle inequality, 

( ) ( ) ( ) ( )1 0 0 1 0
, , , , 2 ,n n n n na c a c c c a c δ≤ + < +             (16) 

and by symmetry, 

( ) ( )0 1
, , 2 .n na c a c δ< +                    (17) 

It follows, that 

( ) ( )0 1
, , 2 .n na c a c δ− <                    (18) 

By construction, 

( ) ( )0 1 0 1
, , ,n n n nc c c d δ− <                  (19) 

particularly, 

( )0 1
, 3 .n nc d δ<                     (20) 

Therefore, 

( ) ( ) ( ) ( )0 1 1 0 1
, , , , 3n n n n na c a d d c a d δ≤ + < +              (21) 

and similarly, 

( ) ( ) ( ) ( )1 0 0 1 0
, , , , 3 .n n n n na d a c c d a c δ≤ + < +            (22) 

It follows, that 

( ) ( )0 1
, , 3 .n na c a d δ− <                 (23) 

Combining these, we get 

( ) ( ) ( ) ( ) ( ) ( )1 1 1 0 0 1
, , , , , , 5 .n n n n n na c a d a c a c a c a d δ− ≤ − + − <       (24) 
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Since 5δ ε≤ , this contradicts to (15) above, and the proof is complete.     
Definition 6 Let ,X=   be a metric space, let a X∈  and let 

,ε δ +∈ . Then A X⊆  is defined to be an ( ),ε δ -basis for a if and only if for 
any { }B X a⊆ −  with A B⊆ , the type 

( )tp a B  

does not ( ),ε δ -split over A. 
Remark 7 
1) Clearly, if A is an ( ),ε δ -basis for a  and ε γ≤ , then A is a ( ),γ δ -basis 

for a, as well. 
2) In addition, if A is an ( ),ε δ -basis for a  and A B X⊆ ⊆  then B is an 

( ),ε δ -basis for a , as well. 
Theorem 8 Let ,X=   be a totally bounded metric space, let a X∈  

and let ε +∈ . Then there exist δ +∈  and ( ) { }A a X a⊆ −  such that 
( )A a  is an ( ),ε δ -basis for a. 

In fact, arbitrary 
5
εδ ≤  is suitable and ( )A a  can be chosen so, that 

( ) ( )( )2 ,A a ν δ≤   is satisfied, as well. 

Proof. Let 
5
εδ ≤  be an arbitrary positive real number. 

Suppose, seeking a contradiction, that the consequence of the theorem is not 
true. By recursion, we define finite subsets { }nA X a⊆ −  for every natural 
number n, such that the following stipulations are satisfied: 

(i) 1n nA A +⊆ , in fact, { }1 ,n n n nA A c d+ − = ; 
(ii) ( )1ntp a A∆ +

  is ( ),ε δ -splitting over nA . 
Let 0A = ∅  and suppose mA  has already been defined for all m n≤  such 

that stipulations (i) and (ii) are satisfied. Then, by our indirect assumption, there 
exists { }B X a⊆ −  with nA B⊆  such that ( )tp a B∆

  is ( ),ε δ -splitting 
over nA . This means, that there exist ,n nc d B∈  such that for all nb A∈  we 
have 

( ) ( ), ,n nb c b d δ− <                      (25) 

but 

( ) ( ), , .n na c a d ε− ≥                     (26) 

Let { }1 ,n n n nA A c d+ = 
. Then stipulations (i), (ii) remain true. In this way, 

one can define , ,n n nA c d  for all ( )1 ,n ν δ≤ +  ; this contradicts to Theorem 5. 
Thus, the proof is complete: ( )A a  can be chosen to be some nA  (note, that 
an inspection shows, that each nA  has cardinality at most 2n and  

( )2 2 ,n ν δ≤  ).                                                     
Lemma 2 Let ,X=   be a totally bounded metric space, let 

0 1 2, , ,a a a b X∈  and let ,ε δ +∈ . If A is an ,
3
ε δ 

 
 

-basis for 0 1,a a  and 2a , 

moreover 0 1,a a  and 2a  are pairwise distinct and ( ),
3ia b ε

<  for all 
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{ }0,1,2i∈ , then A is an ( ),ε δ -basis for b. 

Proof. Assume, seeking a contradiction, that A is an ,
3
ε δ 

 
 

-basis for 0 1,a a  
and 2a , but not an ( ),ε δ -basis for b. Then there exist { },c d X b∈ −  such 
that for all u A∈  we have 

( ) ( ), ,u c u d δ− <                        (27) 

but 

( ) ( ), , .b c b d ε− ≥                        (28) 

By assumption, 0 1,a a  and 2a  are pairwise distinct. It follows, that there ex-
ists { }0,1,2i∈  such that { },ia c d∉ , that is, { }, ic d X a∈ − . 

Observe, that 

( ) ( ) ( ), , ,i ia c a b b c≤ +                      (29) 

and hence 

( ) ( ) ( ), , , .
3i ia c b c a b ε

− ≤ <                    (30) 

Similarly, 

( ) ( ) ( ), , ,i ib c b a a c≤ +                      (31) 

and hence 

( ) ( ) ( ), , , .
3i ib c a c b a ε

− ≤ <                    (32) 

Combining these estimations, we get 

( ) ( ), , .
3ia c b c ε

− <                      (33) 

Completely similarly, one also can conclude, that 

( ) ( ), , .
3ia d b d ε

− <                     (34) 

Observe moreover, that ( ) ( ), ,
3i ia c a d ε

− <   because A is an ,
3
ε δ 

 
 

-basis for ia . But then, 

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
, ,

, , , , , ,

3
3

i i i i

b c b d

b c a c a c a d a d b d

ε

−

≤ − + − + −

< ⋅

 

           (35) 

contradicting to (28).                                                 
Theorem 9 Let ,X=   be a totally bounded metric space. Then for each  

ε +∈  there exists a finite set A X⊆  such that A is an ,
15
εε 

 
 

-basis for all 

a X∈ . 

In fact, we have 6 , ,
15 6

A ε εν ν   ≤ ⋅ ⋅   
   
  . 
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Proof. Let C X⊆  be an 
6
ε

-net of   with ,
6

C εν  =  
 
 . Let 

{ }0 : , 2
6

C b C B b bε  = ∈ − ≤  
  

                  (36) 

and let 1 0C C C= − . Enumerate 1C  as 1 1, : .
6iC B b i Cε  = <  

  
 For each 

1i C<  there exist pairwise different ,0 ,1 ,2, , ,
6i i ib b b ia a a B b ε ∈  

 
. By Theorem 8, 

for each 1i C<  and 3j <  there exists an ,
3 15
ε ε 

 
 

-basis ( ),ib jA a  for ,ib ja  

with ( ), 2 ,
15ib jA a εν  ≤  

 
 . Similarly, again by Theorem 8, for each 0b C∈  

and for each ,
6

a B b ε ∈  
 

 there exists an ,
3 15
ε ε 

 
 

-basis ( )A a  for a with 

( ) 2 ,
15

A a εν  ≤  
 
 . Finally, let 

( ) ( )
1

0

,
, 3, ,

6

.
ib j

i C jb C a B b

A A a A a
ε < < ∈ ∈  

 

= 

 

             (37) 

We claim, that A satisfies the conclusion of the theorem. By construction, 
clearly 

2 , 3 , ,
15 6

A ε εν ν   ≤ ⋅ ⋅ ⋅   
   
                 (38) 

as desired. In addition, let b A∈  be arbitrary. Then there exists b C′∈  such 

that ,
6

b B b ε ′∈  
 

. 

If 0b C′∈  then by construction, A contains an ,
3 15
ε ε 

 
 

-basis ( )A b  for b, 

which is also an ,
15
εε 

 
 

-basis for b because of Remark 7 (1). Hence, by Remark 

7 (2), A is an ,
15
εε 

 
 

-basis for b. 

If 1b C′∈ , then ib b′ =  for some 1i C< . By construction, for all 3j <  we  

have ( ),,
6ii b jb a ε

< . Therefore, by the triangle inequality, for all 3j <  we 

have 

( ) ( ) ( ), ,, , , .
6 6 3i ib j i i b jb a b b b a ε ε ε

≤ + ≤ + =               (39) 

Hence, by Lemma 2, ( ),3 ib jj
A a

<
 is an ,

15
εε 

 
 

-basis for b. Since 

( ),3 ib jj
A A a

<
⊇


, it follows from Remark 7 (2), that A is an ,
15
εε 

 
 

-basis for  

b, as well. Since b was arbitrary, the proof is complete.                      
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Lemma 3 Let ,X   be a metric space and let ,ε δ +∈  be arbitrary.  

Assume A X⊆  is an ,
2
ε δ 

 
 

-basis for all a X∈ . If x X∈  is not isolated,  

then for all y X∈  
( ) ( )tp x A tp y A∆ ∆=   implies ( ),x yρ ε≤ . 

Proof. Since x is not an isolated point of  , there exists { },
4

z B x xε ∈ − 
 

. 

By assumption, A is an ,
2
ε δ 

 
 

-basis for z, hence 

( ) ( ), , .
2

z x z y ε
− <                      (40) 

But ( ),
4

z x ε
< , so it follows, that ( ) 3,

4
z y ε

≤ . Hence, by the triangle in-

equality, 

( ) ( ) ( ) 3, , , ,
4 4

x y x z z y ε ε ε≤ + < + =                (41) 

as desired.                                                          
Let ,X=   be a metric space, let ε +∈  and let Y be any set. As we 

mentioned in the introduction, according to the terminology of e.g. [2], a func-
tion :f X Y→  is defined to be an ε -map if and only if for all y Y∈ , the 
diameter of ( )1f y−  is at most ε , or equivalently, 

( ) ( ) ( ){ }sup , : , , .x y x y X f x f yρ ε∈ = ≤  

Now we are able to state and prove the main result of the paper: we give a new 
proof for the fact, that each totally bounded metric space admits a continuous 
ε -map into some finite dimensional Euclidean space n  (endowed with the 
usual Euclidean metric). Further, we provide upper bounds for n. 

Theorem 10 Let ,X=   be a totally bounded metric space, let ε +∈   

and let 6 , ,
30 12

N ε εν ν   = ⋅ ⋅   
   
  . 

1) if   does not contain isolated points, then there exist n N≤  and an ε
-map : nf X →   such that, for all ,x y X∈  we have  

( ) ( ) ( ),f x f y n x yρ− ≤ , particularly f is continuous.  
2) if   has countably many isolated points, then there exist 1n N≤ +  and 

a continuous ε -map : nf X →  . 
3) if   is compact, then there exist 1n N≤ +  and a continuous ε -map 
: nf X →  . 
Proof. First we show (1). By Theorem 9, there exists A X⊆  such that A is an  

,
2 30
ε ε 

 
 

-basis for all a X∈  and A N≤ . Let n A=  and let : nf X →  , 

( ) ( )f x tp x A∆=                          (42) 

for all x X∈ . Then, by Lemma 1, for all ,x y X∈  we have 

( ) ( ) ( ), .f x f y n x yρ− ≤                    (43) 
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Further, by assumption,   does not contain isolated points. Hence, by 
Lemma 3 f is an ε -map, as desired. 

To show (2), enumerate all the isolated points of X as { }:kp k ∈ . As in (1),  

by Theorem 9 there exists A X⊆  such that A is an ,
2 30
ε ε 

 
 

-basis for all  

a X∈  and A N≤ . Let n A′ =  and let : nf X′ →  , 

( ) ( )f x tp x A∆′ =                          (44) 

for all x X∈ . Then, by Lemma 1, for all ,x y X∈  we have 

( ) ( ) ( ), .f x f y n x yρ′ ′ ′− ≤                   (45) 

Let 1n n′= + , let : n nh ′ →   be the function 

( )0 1 0 1, , , , ,0n nh x x x x′ ′− −=                  (46) 

and let : nf X →  , 

( )
( )( )

( )( )

if is not an isolated point of ,

10, ,0, if .
1 k

h f x x X
f x

h f x x p
k

 ′
= 

′ + = +


 

First we show, that f is continuous. To do so, let x X∈  and let γ +∈  be 
arbitrary. We shall show, that there exists δ +∈  such that for all ( ),y B x δ∈  
we have ( ) ( )f x f y γ− < . 

Case 1: x is isolated in  . Then there exists δ +∈  such that 
{ } ( ),x B x δ= , hence, for all ( ),y B x δ∈  we have ( ) ( )f x f y γ− < .  

Case 2: x is not isolated in  . Then, by 45, there exists δ ′  such that for all 
( ),y B x δ ′∈  we have ( ) ( ) 2f x f y γ′ ′− < . In addition, there exists k ∈   

with 1 2
1k

γ<
+

. Choose δ +′′∈  such that if l k<  then ( ),lp B x δ ′′′∉   

and finally let { }min ,δ δ δ′ ′′= . Now let ( ),y B x δ∈ . 
If y is not isolated, then 

( ) ( ) ( ) ( )
by

;f x f y f x f y
δ δ

γ
′≤

′ ′− = − <              (47) 

If y is isolated, then ly p=  for some l k≥  and hence 

( ) ( ) ( ) ( )
( )

2 2
2

2

1 < ,
2 21

f x f y f x f y
l

γ γ γ′ ′− ≤ − + + =
+

   (48) 

thus, f is continuous, as desired. 
Next we show, that f is an ε -map. To do so, assume x y X≠ ∈  are such, 

that ( ) ( )f x f y= . Observe, that by construction, for any k ∈ , the thk  iso-
lated point kp  is the unique element z X∈  such that the last coordinate of  

( )f z  is equal to 1
1k +

. Hence neither x nor y are isolated. Therefore 

( ) ( ) ( ) ( )0 ,f x f y f x f y′ ′= − = −              (49) 

hence ( ) ( )f x f y′ ′= . Combining this with the definition of f ′ , we obtain 
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( ) ( )tp x A tp y A∆ ∆=  . But then, Lemma 3 implies ( ),x yρ ε≤ . 
To show (3), we note, that (e.g. by Corollary 4.1.16 of [3]) a compact metric 

space is second countable, hence it may contain countably many isolated points, 
only. Thus, (2) implies (3).                                            

3. Concluding Remarks 

In Theorem 10 we have given a new proof for the fact, that each totally bounded 
metric space   admits a continuous ε -map into some finite dimensional 
Euclidean space n  (endowed with the usual Euclidean metric). Further, we 
provided upper bounds for n in terms of ε  and structural properties of  . 
Our proof had been obtained as follows: 
 As recalled in Remark 3, there is a well known method that associates a first 

order structure ( )   to a metric space  ; 
 if   is totally bounded, then ( )   has nice properties inspired by 

(model theoretic) stability theory, more concretely, as shown in Theorem 5, if  

ε +∈ , then each increasing chain of ,
5
εε 

 
 

-splitting ∆ -types in ( )    

should have finite length; 
 as shown in Theorem 10, using the above observation one can construct an 

appropriate continuous ε -map from   to a finite dimensional Euclidean 
space. 

The second item of the above list motivates the following problem which may 
serve as a starting point of a further investigation. 

Open problem 11 Is the converse of Theorem 5 true, as well? That is, if   
is a metric space such that, for all ε +∈  the length of any increasing chain of  

,
5
εε 

 
 

-splitting ∆ -types in ( )   is finite, then does it follow, that   is  

totally bounded? 
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