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THE STRUCTURE OF RANDOM AUTOMORPHISMS OF

COUNTABLE STRUCTURES

UDAYAN B. DARJI, MÁRTON ELEKES, KENDE KALINA, VIKTOR KISS,

AND ZOLTÁN VIDNYÁNSZKY

Abstract. In order to understand the structure of the “typical” element of

an automorphism group, one has to study how large the conjugacy classes

of the group are. When typical is meant in the sense of Baire category, a

complete description of the size of the conjugacy classes has been given by

Kechris and Rosendal. Following Dougherty and Mycielski we investigate the

measure theoretic dual of this problem, using Christensen’s notion of Haar

null sets. When typical means random, that is, almost every with respect to

this notion of Haar null sets, the behavior of the automorphisms is entirely

different from the Baire category case. In this paper, we generalize the theo-

rems of Dougherty and Mycielski about S∞ to arbitrary automorphism groups

of countable structures isolating a new model theoretic property, the Cofinal

Strong Amalgamation Property. As an application we show that a large class

of automorphism groups can be decomposed into the union of a meager and a

Haar null set.

1. Introduction

The study of typical elements of Polish groups is a flourishing field with a large
number of applications. The systematic investigation of typical elements of auto-
morphism groups of countable structures was initiated by Truss [19]. He conjectured
that the existence of a co-meager conjugacy class can be characterized in model the-
oretic terms. This question was answered affirmatively by Kechris and Rosendal
[15]. They, extending the work of Hodges, Hodkinson, Lascar and Shelah [13]
also investigated the relation between the existence of co-meager conjugacy classes
in every dimension and other group theoretic properties, such as the small index
property, uncountable cofinality, automatic continuity and Bergman’s property.

The existence and description of typical elements frequently have applications
in the theory of dynamical systems as well. For example, it is easy to see that the
automorphism group of the countably infinite atomless Boolean algebra is isomor-
phic to the homeomorphism group of the Cantor set, which is a central object in
dynamics. Thus, from their general results Kechris and Rosendal deduced the ex-
istence of a co-meager conjugacy class in the homeomorphism group of the Cantor
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set. A description of an element with such a class was given by Glasner and Weiss
[9] and from a different perspective by Bernardes and the first author [2].

Thus, it is natural to ask whether there exist measure theoretic analogues of
these results. Unfortunately, on non-locally compact groups there is no natural
invariant σ-finite measure. However, a generalization of the ideal of measure zero
sets can be defined in every Polish group as follows:

Definition 1.1 (Christensen, [3]). Let G be a Polish group and B ⊂ G be Borel.
We say that B is Haar null if there exists a Borel probability measure µ on G such
that for every g, h ∈ G we have µ(gBh) = 0. An arbitrary set S is called Haar null
if S ⊂ B for some Borel Haar null set B.

It is known that the collection of Haar null sets forms a σ-ideal in every Polish
group (see [4] and [16]) and it coincides with the ideal of measure zero sets in locally
compact groups with respect to every left (or equivalently right) Haar measure.
Using this definition, it makes sense to talk about the properties of random elements
of a Polish group. A property P of elements of a Polish group G is said to hold
almost surely or almost every element of G has property P if the set {g ∈ G :
g has property P} is co-Haar null.

Since we are primarily interested in homeomorphism and automorphism groups,
and in such groups conjugate elements can be considered isomorphic, we are only
interested in the conjugacy invariant properties of the elements of our Polish groups.
Hence, in order to describe the random element, one must give a complete descrip-
tion of the size of the conjugacy classes with respect to the Haar null ideal. The
investigation of this question has been started by Dougherty and Mycielski [8] in
the permutation group of a countably infinite set, S∞. If f ∈ S∞ and a is an
element of the underlying set then the set {fk(a) : k ∈ Z} is called the orbit of a
(under f), while the cardinality of this set is called orbit length. Thus, each f ∈ S∞

has a collection of orbits (associated to the elements of the underlying set). It is
easy to show that two elements of S∞ are conjugate if and only if they have the
same (possibly infinite) number of orbits for each possible orbit length.

Theorem 1.2 (Dougherty, Mycielski, [8]). Almost every element of S∞ has infin-
itely many infinite orbits and only finitely many finite ones.

Therefore, almost all permutations belong to the union of a countable set of
conjugacy classes.

Theorem 1.3 (Dougherty, Mycielski, [8]). All of these countably many conjugacy
classes are non-Haar null.

Thus, the above theorems give a complete description of the non-Haar null conju-
gacy classes and the (conjugacy invariant) properties of a random element. The aim
of our paper is to initiate a systematic study of the size of the conjugacy classes
of automorphism groups of countable structures. Our work is centered around
questions of the following type:

Question 1.4. Let A be a countable (first order) structure.

(1) What properties of A ensure that (an appropriate) generalization of the
theorem of Dougherty and Mycielski holds for Aut(A)?

(2) Describe the (conjugacy invariant) properties of almost every element of
Aut(A): Which conjugacy classes of Aut(A) are non-Haar null? How many
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non-Haar null conjugacy classes are there? Is almost every element of
Aut(A) contained in a non-Haar null class?

In this paper we answer the first question, see Section 3 and Theorem 4.14.
One can prove that in S∞ the collection of elements that have no infinite orbits

is a co-meager set. This shows that the typical behavior in the sense of Baire
category is quite different from the typical behavior in the measure theoretic sense.
In particular, S∞ can be decomposed into the union of a Haar null and a meager
set. It is well known that this is possible in every locally compact group, but the
situation is not clear in the non-locally compact case. Thus, the below question of
the first author arises naturally:

Question 1.5. Suppose that G is an uncountable Polish group. Can it be written
as the union of a meager and a Haar null set?

We investigate this question for various automorphism groups, and solve it for a
large class, see Corollary 5.1.

The paper is organized as follows. First, in Section 2 we summarize facts and no-
tations used later, then in Section 3 we give a detailed description of our results. For
the sake of the transparency of the topic we also include in this section the results
of two upcoming papers [6] and [5]. Section 4 contains our main theorem, while in
Section 5 we apply the general result to prove a theorem about Haar null-meager
decompositions. After this, in Section 6 we investigate the possible cardinality of
non-Haar null conjugacy classes of (locally compact and non-locally compact) Pol-
ish groups. Finally, we conclude with listing a number of open questions in Section
7.

2. Preliminaries and notations

We will follow the notations of [14]. For a detailed introduction to the theory
of Polish groups see [1, Chapter 1], while the model theoretic background can be
found in [12, Chapter 7]. Nevertheless, we summarize the basic facts which we will
use.

As usual, a countable structure A is a first order structure on a countable set
with countably many constants, relations and functions. The underlying set will
be denoted by dom(A). The automorphism group of the structure A is denoted
by Aut(A) which we consider as a topological (Polish) group with the topology of
pointwise convergence. Isomorphisms between topological groups are considered to
be group automorphisms that are also homeomorphisms. The structure A is called
ultrahomogeneous if every isomorphism between its finitely generated substructures
extends to an automorphism of A. The age of a structure A is the collection of
the finitely generated substructures of A. An injective homomorphism between
structures will be called an embedding. A structure is said to be locally finite if
every finite set of elements generates a finite substructure.

A countable set K of finitely generated structures of the same language is called
a Fräıssé class if it satisfies the hereditary (HP), joint embedding (JEP) and amal-
gamation properties (AP) (see [12, Chapter 7]). We will need the notion of the
strong amalgamation property: A Fräıssé class K satisfies the strong amalgamation
property (SAP) if for every B ∈ K and every pair of structures C,D ∈ K and em-
beddings ψ : B → C and χ : B → D there exist E ∈ K and embeddings ψ′ : C → E
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and χ′ : D → E such that

ψ′ ◦ ψ = χ′ ◦ χ and ψ′(C) ∩ χ′(D) = (ψ′ ◦ ψ)(B) = (χ′ ◦ χ)(B).

For a Fräıssé class K the unique countable ultrahomogeneous structure A with
age(A) = K is called the Fräıssé limit of K. If G is the automorphism group of a
structure A, we call a bijection p a partial automorphism or a partial permutation
if it is an automorphism between two finitely generated substructures of A such
that p ⊂ g for some g ∈ G.

As mentioned before, S∞ stands for the permutation group of the countably
infinite set ω. It is well known that S∞ is a Polish group with the pointwise
convergence topology. This coincides with the topology generated by the sets of
the form [p] = {f ∈ S∞ : p ⊂ f}, where p is a finite partial permutation.

Let A be a countable structure. By the countability of A, every automorphism
f ∈ Aut(A) can be regarded as an element of S∞, and it is not hard to see that in
fact Aut(A) will be a closed subgroup of S∞. Moreover, the converse is also true,
namely every closed subgroup of S∞ is isomorphic to the automorphism group of
a countable structure.

Let G be a closed subgroup of S∞. The orbit of an element x ∈ ω (under G)
is the set G(x) = {y ∈ ω : ∃g ∈ G (g(x) = y)}. For a set S ⊂ ω we denote the
pointwise stabiliser of S by G(S), that is, G(S) = {g ∈ G : ∀s ∈ S (g(s) = s)}. In
case S = {x}, we write G(x) instead of G({x}).

As in the case of S∞, for a countable structure A, an element a ∈ dom(A) and
f ∈ Aut(A) the set {fk(a) : k ∈ Z} is called the orbit of a and denoted by Of (a),
while the cardinality of this set is called orbit length. The collection of the orbits of
f , or the orbits of f is the set {Of (a) : a ∈ dom(A)}. If S ⊂ dom(A) we will also
use the notation Of (S) for the set

⋃
a∈S Of (a).

We will constantly use the following fact.

Fact 2.1. Let A be a countable structure. A closed subset C of Aut(A) is compact
if and only if for every a ∈ dom(A) the set {f(a), f−1(a) : f ∈ C} is finite.

We denote by B∞ the countable atomless Boolean algebra, by (Q, <) or Q the
rational numbers as an ordered set. Let us use the notation R (or (V,R)) for
the countably infinite random graph, that is, the unique countable graph with the
following property: for every pair of finite disjoint sets A,B ⊂ V there exists v ∈ V
such that (∀x ∈ A)(xRv) and (∀y ∈ B)(y¬Rv).

Let us consider the following notion of largeness:

Definition 2.2. Let G be a Polish topological group. A set A ⊂ G is called compact
catcher if for every compact K ⊂ G there exist g, h ∈ G so that gKh ⊂ A. A is
compact biter if for every compact K ⊂ G there exist an open set U and g, h ∈ G
so that U ∩K 6= ∅, and g(U ∩K)h ⊂ A.

The following easy observation is one of the most useful tools to prove that a
certain set is not Haar null.

Fact 2.3. If A is compact biter then it is not Haar null.

Proof. Suppose that this is not the case and let B ⊃ A be a Borel Haar null set
and µ be a witness measure for B. Then, by the regularity of µ, there exists
a compact set K ⊂ G such that µ(K) > 0. Subtracting the relatively open µ
measure zero subsets of K we can suppose that for every open set U if U ∩K 6= ∅



THE STRUCTURE OF RANDOM AUTOMORPHISMS OF COUNTABLE STRUCTURES 5

then µ(U ∩K) > 0. But, as A is compact biter, so is B, thus for some open set U
with µ(U ∩K) > 0 there exist g, h ∈ G so that g(U ∩K)h ⊂ B. This shows that µ
cannot witness that B is Haar null, a contradiction. �

Note that the proof of Theorem 1.3 by Dougherty and Mycielski actually shows
that every non-Haar null conjugacy class is compact biter and the unique non-
Haar null conjugacy class which contains elements without finite orbits is compact
catcher.

It is sometimes useful to consider right and left Haar null sets: a Borel set B is
right (resp. left) Haar null if there exists a Borel probability measure µ on G such
that for every g ∈ G we have µ(Bg) = 0 (resp. µ(gB) = 0). An arbitrary set S is
called right (resp. left) Haar null if S ⊂ B for some Borel right (resp. left) Haar
null set B. The following observation will be used several times.

Lemma 2.4. Suppose that B is a Borel set that is invariant under conjugacy. Then
B is left Haar null iff it is right Haar null iff it is Haar null.

Proof. Let µ be a measure witnessing that B is left Haar null. We check that it
also witnesses the Haar nullness of B. Indeed, let g, h ∈ G arbitrary, µ(gBh) =
µ(ghh−1Bh) = µ(ghB) = 0. The proof is analogous when B is right Haar null.

�

3. Description of the results

We start with defining the crucial notion for the description of the orbits of
a random element of an automorphism group. Informally, the following definition
says that our structure is free enough: if we want to extend a partial automorphism
defined on a finite set, there are only finitely many points for which we have only
finitely many options.

Definition 3.1. Let G be a closed subgroup of S∞. We say that G has the finite
algebraic closure property (FACP ) if for every finite S ⊂ ω the set {b : |G(S)(b)| <
∞} is finite.

The following model theoretic property of Fräıssé classes turns out to be essen-
tially a reformulation of the FACP for the automorphism groups of the limits.

Definition 3.2. Let K be a Fräıssé class. We say that K has the cofinal strong
amalgamation property (CSAP) if there exists a subclass of K cofinal under embed-
dability, which satisfies the strong amalgamation property, or more formally: for
every B0 ∈ K there exists a B ∈ K and an embedding φ0 : B0 → B so that the strong
amalgamation property holds over B, that is, for every pair of structures C,D ∈ K
and embeddings ψ : B → C and χ : B → D there exist E ∈ K and embeddings
ψ′ : C → E and χ′ : D → E such that

ψ′ ◦ ψ = χ′ ◦ χ and ψ′(C) ∩ χ′(D) = (ψ′ ◦ ψ)(B) = (χ′ ◦ χ)(B).

A Fräıssé limit A is said to have the cofinal strong amalgamation property if
age(A) has the CSAP.

Generalizing the results of Dougherty and Mycielski we show that the FACP
is equivalent to some properties of the orbit structure of a random element of the
group.
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Theorem 4.14. Let A be a locally finite Fräıssé limit. Then the following are
equivalent:

(1) almost every element of Aut(A) has finitely many finite orbits,
(2) Aut(A) has the FACP ,
(3) A has the CSAP.

Moreover, any of the above conditions implies that almost every element of A has
infinitely many infinite orbits.

Note that every relational structure and also B∞ is locally finite, moreover, it
is well known that the ages of the structures R, (Q, <) and B∞ have the strong
amalgamation property which clearly implies the CSAP (it is also easy to directly
check the FACP for these groups). Hence we obtain the following corollary.

Corollary 3.3. In Aut(R),Aut(Q, <) and Aut(B∞) almost every element has
finitely many finite and infinitely many infinite orbits.

As a corollary of our results, in Section 5 we show that a large number of groups
can be partitioned in a Haar null and a meager set.

Corollary 5.1. Let G be a closed subgroup of S∞ satisfying the FACP and suppose
that the set F = {g ∈ G : Fix(g) is infinite} is dense in G. Then G can be
decomposed into the union of an (even conjugacy invariant) Haar null and a meager
set.

Corollary 5.2. Aut(R), Aut(Q, <) and Aut(B∞) (and hence Homeo(2N)) can be
decomposed into the union of an (even conjugacy invariant) Haar null and a meager
set.

However, these results are typically far from the full description of the behavior
of the random elements. We continue with summarizing our results from [5] and
[6] about two special cases, Aut(Q, <) and Aut(R), where we gave a complete
description of the Haar positive conjugacy classes.

3.1. Summary of the random behavior in Aut(Q, <) and Aut(R). In order
to describe our results about Aut(Q, <) we need the concept of orbitals (defined
below, for more details on this topic see [10]). Let p, q ∈ Q. The interval (p, q)
will denote the set {r ∈ Q : p < r < q}. For an automorphism f ∈ Aut(Q, <), we
denote the set of fixed points of f by Fix(f).

Definition 3.4. The set of orbitals of an automorphism f ∈ Aut(Q, <), O∗
f , con-

sists of the convex hulls (relative to Q) of the orbits of the rational numbers, that
is

O∗
f = {conv({fn(r) : n ∈ Z}) : r ∈ Q}.

It is easy to see that the orbitals of f form a partition of Q, with the fixed
points determining one element orbitals, hence “being in the same orbital” is an
equivalence relation. Using this fact, we define the relation < on the set of orbitals
by letting O1 < O2 for distinct O1, O2 ∈ O∗

f if p1 < p2 for some (and hence for all)
p1 ∈ O1 and p2 ∈ O2. Note that < is a linear order on the set of orbitals.

It is also easy to see that if p, q ∈ Q are in the same orbital of f then f(p) >
p ⇔ f(q) > q, f(p) < p ⇔ f(q) < q and f(p) = p ⇔ f(q) = q ⇒ p = q. This
observation makes it possible to define the parity function, sf : O∗

f → {−1, 0, 1}.

Let sf (O) = 0 if O consists of a fixed point of f , sf (O) = 1 if f(p) > p for some
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(and hence, for all) p ∈ O and sf (O) = −1 if f(p) < p for some (and hence, for all)
p ∈ O.

Theorem 3.5. (see [6])
For almost every element f of Aut(Q, <)

(1) for distinct orbitals O1, O2 ∈ O∗
f (see Definition 3.4) with O1 < O2 such

that sf (O1) = sf (O2) = 1 or sf (O1) = sf (O2) = −1, there exists an orbital
O3 ∈ O∗

f with O1 < O3 < O2 and sf (O3) 6= sf (O1),

(2) (follows from Theorem 4.14) f has only finitely many fixed points.

These properties characterize the non-Haar null conjugacy classes, i. e., a conju-
gacy class is non-Haar null if and only if one (or equivalently each) of its elements
has these properties.

Moreover, every non-Haar null conjugacy class is compact biter and those non-
Haar null classes in which the elements have no rational fixed points are compact
catchers.

This yields the following surprising corollary (for the details see [6]):

Corollary 3.6. There are continuum many non-Haar null conjugacy classes in
Aut(Q, <), and their union is co-Haar null.

Note that it was proved by Solecki [18] that in every non-locally compact Polish
group that admits a two-sided invariant metric there are continuum many pairwise
disjoint non-Haar null Borel sets, thus the above corollary is an extension of his
results for Aut(Q, <) (see also the case of Aut(R) below). We would like to point
out that in a sharp contrast to this result, in Homeo+([0, 1]) (that is, in the group
of order preserving homeomorphisms of the interval) the random behavior is quite
different (see [7]), more similar to the case of S∞: there are only countably many
non-Haar null conjugacy classes and their union is co-Haar null.

The characterization of non-Haar null conjugacy classes of the automorphism
group of the random graph appears to be similar to the characterization of the
non-Haar null classes of Aut(Q, <), however their proofs are completely different.

Theorem 3.7. (see [5]) For almost every element f of Aut(R)

(1) for every pair of finite disjoint sets, A,B ⊂ V there exists v ∈ V such that
(∀x ∈ A)(xRv) and (∀y ∈ B)(y¬Rv) and v 6∈ Of (A ∪B), i. e., the union
of orbits of the elements of A ∪B,

(2) (from Theorem 4.14) f has only finitely many finite orbits.

These properties characterize the non-Haar null conjugacy classes, i. e., a conju-
gacy class is non-Haar null if and only if one (or equivalently each) of its elements
has these properties.

Moreover, every non-Haar null conjugacy class is compact biter and those non-
Haar null classes in which the elements have no finite orbits are compact catchers.

It is not hard to see that this characterization again yields the following corollary
(see [5]):

Corollary 3.8. There are continuum many non-Haar null classes in Aut(R) and
their union is co-Haar null.
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3.2. Various behaviors. Examining any Polish group we can ask the following
questions:

Question 3.9. (1) How many non-Haar null conjugacy classes are there?
(2) Is the union of the Haar null conjugacy classes Haar null?

Note that these are interesting even in compact groups. Table 1 summarizes our
examples and the open questions as well (the left column indicates the number of
non-Haar null conjugacy classes, while C, LC \ C and NLC stands for compact,
locally compact non-compact and non-locally compact groups, respectively). HNN
denotes the well known infinite group, constructed by G. Higmann, B. H. Neumann
and H. Neumann [11], with two conjugacy classes, while Qd stands for the rationals
with the discrete topology. The action, φ, of Z2 on Zω

3 and Qω
d is the map defined

by a 7→ −a.

The union of the Haar null classes is Haar null
C LC \ C NLC

0 – – –

n Zn HNN ???
ℵ0 ??? Z S∞

c – – Aut(Q, <); Aut(R)
The union of the Haar null classes is not Haar null
C LC \ C NLC

0 2ω Z× 2ω Zω

n Zn × (Z2 ⋉φ Zω
3 ) HNN ×(Z2 ⋉φ Zω

3 ) Zn × (Z2 ⋉φ Qω
d )

ℵ0 ??? Z× (Z2 ⋉φ Zω
3 ) S∞ × (Z2 ⋉φ Zω

3 )
c – – Aut(Q, <) × (Z2 ⋉φ Zω

3 )

Table 1. Examples of various behaviors

4. Main results

This section contains our generalization of the result of Dougherty and Mycielski
to automorphism groups of countable structures. For the sake of simplicity we will
use the following notation.

Definition 4.1. Let G be a closed subgroup of S∞ and let S ⊂ ω be a finite subset.
The group-theoretic algebraic closure of S is:

ACL(S) = {x ∈ ω : the orbit of x under G(S) is finite}.

Obviously G has the finite algebraic closure property (see Definition 3.1) if and
only if for every finite set S the set ACL(S) is finite. We start with proving a simple
observation about the operator ACL.

Lemma 4.2. If a group G has the FACP then the corresponding operator ACL is
idempotent.

Proof. We have to show that for every finite set S ⊂ ω the identity ACL(ACL(S)) =
ACL(S) holds. Let S ⊂ ω be an arbitrary finite set and let x ∈ ACL(ACL(S)). We
will show that x has a finite orbit under G(S) which implies x ∈ ACL(S).
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It is enough to show that G(S)(x) is finite. Enumerate the elements of ACL(S)

as {x1, x2, . . . , xk}. The group G(S) acts on ACL(S)k coordinate-wise. Under this
group action the stabiliser of the tuple (x1, x2, . . . , xk) is G(ACL(S)). The Orbit-
Stabiliser Theorem states that for any group action the index of the stabiliser of
an element in the whole group is the same as the cardinality of its orbit. This
yields that the index [G(S) : G(ACL(S))] is the same as the cardinality of the orbit

of (x1, x2, . . . , xk). This orbit is finite because the whole space ACL(S)k is finite.
So G(ACL(S)) has finite index in G(S).

Let g1, g2, . . . , gn ∈ G(S) be a left transversal for G(ACL(S)) in G(S), then G(S) =
g1GACL(S) ∪ · · · ∪ gnGACL(S). Since G(S)(x) = g1G(ACL(S))(x) ∪ g2G(ACL(S))(x) ∪
· · · ∪ gnG(ACL(S))(x) is a finite union of finite sets, it must be finite. �

Lemma 4.3. The operator ACL is translation invariant in the following sense: if
S ⊂ ω is a finite set and g ∈ G then

ACL(gS) = gACL(S).

Proof. Let x ∈ ω be an arbitrary element, then

x and y are in the same orbit under G(S) ⇔

∃h ∈ G(S) : h(y) = x⇔ ∃h ∈ G(S) : gh(y) = g(x) ⇔

∃h ∈ G(S) : ghg−1(g(y)) = g(x) ⇔ ∃f ∈ G(gS) : f(g(y)) = g(x) ⇔

g(x) and g(y) are in the same orbit under G(gS).

So an element x has finite orbit under G(S) if and only if g(x) has finite orbit under
G(gS). �

Now we describe a process to generate a probability measure on G, a closed
subgroup of S∞ that has the FACP . This probability measure will witness that
certain sets are Haar null (see Theorem 4.13).

Our random process will define a permutation p ∈ G in stages. It depends on
integer sequences (Mi)i∈ω and (Ni)i∈ω with Mi, Ni ≥ 1.

We denote the partial permutation completed in stage i by pi. We start with
p0 = idACL(∅) and maintain throughout the following Property (i) for every i ≥ 1,
and Properties (ii) and (iii) for i ∈ ω:

(i) pi−1 ⊂ pi,
(ii) dom(pi) and ran(pi) are finite sets such that ACL(dom(pi)) = dom(pi),

ACL(ran(pi)) = ran(pi),
(iii) there is a permutation g ∈ G that extends pi.

Let O0, O1, . . . ⊂ ω be a sequence of infinite sets with the property that for every
finite set F ⊂ ω and every infinite orbit O of G(F ), the sequence (Oi)i∈ω contains
O infinitely many times. It is easy to see that such a sequence exists, since there
exists only countably many such finite sets F , and for each one, there exist only
countably many orbits of G(F ).

At stage i ≥ 1, we proceed the following way. First suppose that i is even. We
now choose a set Si ⊂ ω with |Si| = Mi such that Si ∩ ran(pi−1) = ∅. If i ≡ 0
(mod 4) we require that Si contains the least Mi elements of ω\ran(pi−1), and if i ≡
2 (mod 4) we require that Si contains the least Mi elements of O(i−2)/4 \ ran(pi−1).
Now we will extend pi−1 to a partial permutation pi such that

(1) ran(pi) = ACL(ran(pi−1) ∪ Si).
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Let us enumerate the elements of ACL(ran(pi−1) ∪ Si) \ ran(pi−1) as (x1, . . . , xj)
such that if x1, . . . , xk−1 are already chosen then we choose xk so that

(2) ACL(ran(pi−1) ∪ {x1, . . . , xk}) is minimal with respect to inclusion.

Claim 4.4. For every 1 ≤ k ≤ ℓ ≤ m ≤ j, if

(3) xm ∈ ACL(ran(pi−1) ∪ {x1, . . . , xk})

then

xℓ ∈ ACL(ran(pi−1) ∪ {x1, . . . , xk−1} ∪ {xm}) ⊂ ACL(ran(pi−1) ∪ {x1, . . . , xk}).

Thus, letting ℓ = k yields

ACL(ran(pi−1) ∪ {x1, . . . , xk−1} ∪ {xm}) = ACL(ran(pi−1) ∪ {x1, . . . , xk}).

Proof. The last containment holds, using Lemma 4.2 and (3). If ℓ = m then there
is nothing to prove. Now suppose towards a contradiction that there exists ℓ < m
violating the statement of the claim, and suppose that ℓ is minimal with k ≤ ℓ < m
and

(4) xℓ /∈ ACL(ran(pi−1) ∪ {x1, . . . , xk−1} ∪ {xm}).

Using the minimality of ℓ, {x1, . . . , xℓ−1} ⊂ ACL(ran(pi−1) ∪ {x1, . . . , xk−1} ∪
{xm}), thus an application of Lemma 4.2 and the fact that k ≤ ℓ shows that
ACL(ran(pi−1)∪{x1, . . . , xk−1}∪{xm}) = ACL(ran(pi−1)∪{x1, . . . , xℓ−1}∪{xm}).
By (4) it follows that xℓ /∈ ACL(ran(pi−1)∪{x1, . . . , xℓ−1}∪{xm}). Using this, the
fact that k ≤ ℓ and (3), ACL(ran(pi−1)∪{x1, . . . , xℓ−1}∪{xm}) $ ACL(ran(pi−1)∪
{x1, . . . , xℓ}) contradicting (2), since xℓ was chosen after {x1, . . . , xℓ−1} to satisfy
that ACL(ran(pi−1) ∪ {x1, . . . , xℓ}) is minimal. �

We will determine the preimages of (x1, x2, . . . , xj) in this order. Denote
the partial permutations defined in these sub-steps by pi,k so that ran(pi,k) =
ran(pi−1) ∪ {x1, . . . , xk} for k = 0, . . . , j. If the first k preimages are determined
then there are two possibilities for xk+1:

(a) The set of possible preimages of xk+1 under pi,k is finite, that is, the set
{g−1(xk+1) : g ∈ G, g ⊃ pi,k} is finite. Then choose one from them ran-
domly with uniform distribution.

(b) The set of possible preimages of xk+1 under pi,k is infinite. Then choose
one from the smallest Ni many possible values uniformly.

We note that the orbit of xk under the stabiliser G(ran(pi−1)) is infinite because
xk /∈ ran(pi−1) = ACL(ran(pi−1)) so

(5) possibility (b) must occur for at least x1.

Let pi = pi,j . Properties (i) and (iii) obviously hold for i. Let g ∈ G be a
permutation with g ⊃ pi. Now ran(pi) = ACL(ran(pi)) using (1) and Lemma
4.2. Then dom(pi) = g−1 ran(pi), hence using Lemma 4.3, ACL(dom(pi)) =
ACL(g−1 ran(pi)) = g−1 ACL(ran(pi)) = g−1 ran(pi) = dom(pi), showing Prop-
erty (ii). This concludes the case where i is even.

If i is odd we let Si ⊂ ω be the set of the least Mi elements of ω \ dom(pi−1), if
i ≡ 1 (mod 4) and the least Mi elements of O(i−3)/4 \ dom(pi−1), if i ≡ 3 (mod 4).
We extend pi−1 to a partial permutation pi such that

(6) dom(pi) = ACL(dom(pi−1) ∪ Si).
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Again, we enumerate the elements of ACL(dom(pi−1) ∪ Si) \ dom(pi−1) as
(x1, . . . , xj) such that if x1, . . . , xk−1 are already chosen then we choose xk from the
rest so that ACL(dom(pi−1) ∪ {x1, . . . , xk}) is minimal with respect to inclusion.
The proof of the following claim is analogous to the proof of Claim 4.4.

Claim 4.5. For every 1 ≤ k ≤ ℓ ≤ m ≤ j, xm ∈ ACL(dom(pi−1) ∪ {x1, . . . , xk})
implies xℓ ∈ ACL(dom(pi−1) ∪ {x1, . . . , xk−1} ∪ {xm}) ⊂ ACL(dom(pi−1) ∪
{x1, . . . , xk}). Thus, letting ℓ = k yields ACL(ran(pi−1)∪{x1, . . . , xk−1}∪{xm}) =
ACL(ran(pi−1) ∪ {x1, . . . , xk}).

We determine the images of (x1, x2, . . . , xj) in this order. Denote the partial
permutations defined in these sub-steps by pi,k so that dom(pi,k) = dom(pi−1) ∪
{x1, . . . , xk} for k = 0, . . . , j. If the first k images are determined then there are
two possibilities for xk+1:

(a) The set of possible images of xk+1 under pi,k is finite, that is, the set
{g(xk+1) : g ∈ G, g ⊃ pi,k} is finite. Then choose one from them randomly
with uniform distribution.

(b) The set of possible images of xk+1 under pi,k is infinite. Then choose one
from the smallest Ni many possible values uniformly.

Again, the orbit of xk under the stabiliser G(dom(pi−1)) is infinite because xk /∈
dom(pi−1) = ACL(dom(pi−1)) for every k, so possibility (b) must occur for at least
x1.

Let pi = pi,j . Again, Properties (i) and (iii) hold for i. Let g ∈ G be a per-
mutation with g ⊃ pi. Now dom(pi) = ACL(dom(pi)) using (6) and Lemma 4.2.
Then using Lemma 4.3, ACL(ran(pi)) = ACL(g dom(pi)) = gACL(dom(pi)) =
g dom(pi) = ran(pi), showing Property (ii). This concludes the construction for
odd i.

Now let p =
⋃

i pi. This makes sense using (i).

Claim 4.6. p ∈ G.

Proof. First we show that p ∈ S∞. Using (iii), each pi is a partial permutation,
hence injective. Using (i), p is the union of compatible injective functions, hence
p is an injective function. It is clear from the construction that {0, 1, . . . , i − 1} ⊂
dom(p4i) ∩ ran(p4i) for every i, hence p ∈ S∞.

Using (iii), we can find an element gi ∈ G such that gi ⊃ pi. It is clear that
gi → p, and since G is a closed subgroup of S∞, we conclude that p ∈ G. �

The following lemma is crucial in proving that almost every element of G has
finitely many finite and infinitely many infinite orbits.

Lemma 4.7. Suppose that the parameters of the random process M1, . . . ,Mi and
N1, . . . , Ni−1 are given along with the numbers K ∈ ω and ε > 0. Then we can
choose Ni so that for every set S ⊂ ω with |S| = K, the probability that S ∩
(dom(pi) \ dom(pi−1)) 6= ∅ if i is even, or that S ∩ (ran(pi) \ ran(pi−1)) 6= ∅ if i is
odd, is at most ε.

Proof. We suppose that i is even and prove the lemma only in this case. The proof
for the case when i is odd is analogous.

One can easily see using induction on i that if M1, . . . ,Mi−1 and N1, . . . , Ni−1

are given then the random process can yield only finitely many different pi−1 as a
result.
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Let pi−1 be one of the possible outcomes, and let (x1, x2, . . . , xj) denote the
elements of ACL(ran(pi−1) ∪ Si) \ ran(pi−1) enumerated in the same order as they
appear during the construction. Note that this only depends on pi−1 andMi. Let a1
be the index for which ACL(ran(pi−1)∪ {x1}) = ran(pi−1)∪{x1, . . . , xa1

}, such an
index exists using Claim 4.4. Hence, for everym ≤ a1, xm ∈ ACL(ran(pi−1)∪{x1}),
thus using Claim 4.4 again, it follows that

(7) x1 ∈ ACL(ran(pi−1) ∪ {xm}) for every 1 ≤ m ≤ a1.

Claim 4.8. For every such m, there is a unique positive integer km such that if q
is an extension of pi−1 with ran(q) = ran(pi−1) ∪ {xm} (such that q ⊂ g for some
g ∈ G) then |{g−1(x1) : g ∈ G, g ⊃ q}| = km.

Proof. Let H = G(ran(pi−1)∪xm), then

(8) k = |{g(x1) : g ∈ H}| = |{g−1(x1) : g ∈ H}|

is finite using (7) and the fact that H is a subgroup. It is enough to show that if q
is an extension of pi−1 with ran(q) = ran(pi−1) ∪ {xm} then |{g−1(x1) : g ∈ G, g ⊃
q}| = k.

Let g1, . . . , gk ∈ H with g−1
ℓ (x1) 6= g−1

n (x1) if ℓ 6= n. If h ∈ G is a permu-
tation with h ⊃ q then gnh ⊃ q for every 1 ≤ n ≤ k. Then using the identity
(gnh)−1(x1) = h−1(g−1

n (x1)), (gℓh)−1(x1) 6= (gnh)−1(x1) if ℓ 6= n. This shows that
|{g−1(x1) : g ∈ G, g ⊃ q}| ≥ k.

To prove the other inequality, suppose towards a contradiction that there exist
g1, . . . , gk+1 with gn ⊃ q for every n ≤ k + 1 and g−1

ℓ (x1) 6= g−1
n (x1) for every

ℓ 6= n. It is easy to see that gng
−1
1 ∈ H for every n, but the values (gng

−1
1 )−1(x1) =

g1(g
−1
n (x1)) are pairwise distinct, contradicting (8). Thus the proof of the claim is

complete. �

Now let k = max{k2, k3, . . . , ka1
}, if a1 ≥ 2, otherwise let k = 1.

Claim 4.9. If Ni >
kKj
ε then for every fixed set S ⊂ ω with |S| = K we have

P(p−1
i (xm) ∈ S) < ε

j for every 1 ≤ m ≤ a1.

Proof. This is immediate for m = 1, since k ≥ 1, and the preimage of x1 is chosen
from Ni many elements using (5). Now let m > 1, using Claim 4.8 and the fact that
k ≥ km, it follows that for every y ∈ ω, |{g−1(x1) : g ∈ G, g ⊃ pi−1, g(y) = xm}| ≤
k, hence for the set R = {g−1(x1) : g ∈ G, g ⊃ pi−1, g

−1(xm) ∈ S}, |R| ≤ kK. In
order to be able to extend pi−1 to pi with p−1

i (xm) ∈ S, we need to choose p−1
i (x1)

from R. Since during the construction of the random automorphism, p−1
i (x1) is

chosen uniformly from a set of size Ni >
kKj
ε , we conclude that P(p−1

i (xm) ∈ S) ≤

P(p−1
i (x1) ∈ R) ≤ |R|

Ni

< ε
j . �

For the rest of the proof, we need to repeat the above argument until we reach
j. If a1 < j, let a2 be the index satisfying ACL(ran(pi−1) ∪ {x1, . . . , xa1+1}) =
ran(pi−1) ∪ {x1, . . . , xa2

}, such an index exists using Claim 4.4 as before. Again,
we can set a lower bound for Ni so that the for every a1 < m ≤ a2, P(p−1

i (xm) ∈
S) < ε

j . Repeating the argument, we can choose Ni so that P(p−1
i (xm) ∈ S) < ε

j

for every 1 ≤ m ≤ j, thus P(p−1
i ({x1, . . . , xj}) ∩ S 6= ∅) < ε. Completing the proof

of the lemma. �

Now we prove a proposition from which our main result will easily follow.
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Proposition 4.10. Let G ≤ S∞ be a closed subgroup. If G has the FACP then
the sets

F = {g ∈ G :g has finitely many finite orbits},

C = {g ∈ G :∀F ⊂ ω finite ∀x ∈ ω (if G(F )(x) is infinite

then it is not covered by finitely many orbits of g)}

are co-Haar null.

The set C could seem unnatural for the first sight. However, from the above fact
about the set C not only our main theorem will be deduced, but this fact also plays
a crucial role in proving Theorem 3.7 (see [5]).

Proof. We first show the following lemma.

Lemma 4.11. The sets F and C are conjugacy invariant Borel sets.

Proof. The fact that F is conjugacy invariant follows form the fact that conjugation
does not change the orbit structure of a permutation.

To show that C is conjugacy invariant, let c ∈ C, h ∈ G, we need to show that
h−1ch ∈ C. Let F ⊂ ω be finite and x ∈ ω so that |G(F )(x)| = ℵ0. Note that

G(h(F ))(h(x)) = hG(F )h
−1(h(x)) = hG(F )(x), hence the first set is also infinite. By

c ∈ C there exists an infinite set {xn : n ∈ ω} ⊂ G(h(F ))(h(x)) so that for n 6= n′

the points xn and xn′ are in different c orbits. But then the points {h−1(xn) : n ∈
ω} ⊂ G(F )(x) are in pairwise distinct h−1ch orbits, as desired.

To show that F is Borel, notice that the set of permutations containing a given
finite orbit is open for every finite orbit. Thus for any finite set of finite orbits the
set of permutations containing those finite orbits in their orbit decompositions is
open: it can be obtained as the intersection of finitely many open sets. Thus for
every n ∈ ω the set of permutations containing at least n finite orbits is open: it
can be obtained as the union of open sets (one open set for each possible set of n
orbits). Thus S∞ \ F is Gδ: it is the intersection of the above open sets. Hence F
is Borel.

Now we show that C is also Borel. It is enough to show that if H ⊂ ω is
arbitrary then the set H∗ = {g ∈ G : finitely many orbits of g cannot cover H} is
Borel, since C can be written as the countable intersection of such sets. And H∗

can be easily seen to be Borel for any H , since its complement, {g ∈ G : ∃n ∀m ∈
H ∃k ∃i < n (gk(i) = m)} is Gδσ, hence H∗ is Fσδ. �

To prove the proposition, we use the above construction to generate a random
permutation p. We set Mi = 2i for every i ≥ 1 and we define (Ni)i≥1 recur-
sively. If N1, . . . , Ni−1 are already defined, then, as before, the random process
can yield only finitely many distinct pi−1. Hence, there is a bound mi depend-
ing only on N1, . . . , Ni−1 such that | dom(pi)| = | ran(pi)| ≤ mi, since | ran(pi)| =
|ACL(ran(pi−1) ∪ Si)| if i is even and | dom(pi)| = |ACL(dom(pi−1) ∪ Si)| if i is
odd, which is independent of Ni. Now we use Lemma 4.7 to choose Ni so that the
conclusion of the lemma is true with K = mi and ε = 1

2i .
Using Lemma 2.4 and the fact that the sets F and C are conjugacy invariant, it

is enough to show that

(9) P(ph has finitely many finite orbits) = 1
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and

(10) P(finitely many orbits of ph do not cover O) = 1

for every h ∈ G, every finite F ⊂ ω and every infinite orbit O of G(F ), since there
exist only countably many such orbits. So let us fix h ∈ G and an infinite orbit
O ⊂ ω of G(F ) for some finite F ⊂ ω for the rest of the proof.

For a partial permutation q, a partial path in q, is a sequence (y, q(y), . . . , qn(y))
with n ≥ 1, qn(y) /∈ dom(q) and y /∈ ran(q). Note that pih is considered a partial
permutation with dom(pih) = h−1(dom(pi)) and ran(pih) = ran(pi).

During the construction of the random permutation, an event occurs when
the partial permutation is extended to a new element at some stage regardless
of whether it happens for possibility (a) or (b). Suppose that during an event, the
partial permutation p′ is extended to p′′ = p′ ∪ (x, y). We call this event bad if
the number of partial paths decreases or h−1(x) = y. Note that an event is bad if
the extension connects two partial paths of p′h or it completes an orbit (possibly a
fixed point).

Claim 4.12. Almost surely, only finitely many bad events happen.

Proof. Let i be fixed and suppose first that it is even. It is easy to see that a bad
event can only happen at stage i if a preimage is chosen from h(ran(pi−1)), that
includes the case when a fixed point is constructed. Note that | ran(pi)| ≤ mi, thus
the probability of choosing a preimage from this set is at most 1

2i , using Lemma
4.7.

We proceed similarly if i is odd. Then to connect partial paths or complete orbits,
an image has to be chosen from the set h−1(dom(pi−1)). Since | dom(pi)| ≤ mi,
the probability of choosing from this set is at most 1

2i .
Using the Borel–Cantelli lemma, the number of i such that a bad event happens

at stage i is finite almost surely. The fact that only a finite number of bad events
can happen at a particular stage completes the proof of the claim. �

Since a finite orbit can only be created during a bad event, (9) follows immedi-
ately from the claim. Thus F is co-Haar null.

Now we prove that C is also co-Haar null by showing (10). Let n0, n1, . . . ∈ ω be
a sequence with n0 < n1 < . . . and Oni

= O for every i ∈ ω. Let ci be the number
of partial paths of p4ni+2h intersecting O. It is enough to show that the sequence
(ci)i∈ω is unbounded almost surely, since using Claim 4.12, only finitely many of
such partial paths can be connected in later stages, hence infinitely many orbits of
ph will intersect O, almost surely.

At stage 4ni + 2, p4ni+1 is extended to p4ni+2 with ran(p4ni+2) \ ran(p4ni+1) ⊃
S4ni+2, |S4ni+2| = M4ni+2 = 24ni+2 and S4ni+2 ⊂ O(4ni+2−2)/4 = Oni

= O. Hence,
it is enough to prove that apart from a finite number of exceptions, the elements
of ran(p4ni+2) \ ran(p4ni+1) are in different partial paths in p4ni+2h, almost surely.

The proof of this fact is similar to the proof of Claim 4.12. An element y ∈ O ∩
(ran(p4ni+2)\ ran(p4ni+1)) can only be contained in a completed orbit (of p4ni+2h),
if h−1p−1

4ni+2(y) ∈ ran(p4ni+2), hence p−1
4ni+2(y) ∈ h(ran(p4ni+2)). Similarly, if

y, y′ ∈ O ∩ (ran(p4ni+2) \ ran(p4ni+1)) are in the same partial path (in p4ni+2h)
such that y is the not the first element of this path, then p−1

4ni+2(y) ∈ h(ran(p4ni+2)).
Again using Lemma 4.7, the probability of this happening at stage 4ni + 2 is at
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most 1
24ni+2 , since | ran(p4ni+2)| ≤ m4ni+2. As before, the application of the Borel–

Cantelli lemma completes the proof of (10). And thus the proof of the proposition
is also complete. �

Theorem 4.13. Let G ≤ S∞ be a closed subgroup. If G has the FACP then the
sets

F = {g ∈ G : g has finitely many finite orbits},

I = {g ∈ G : g has infinitely many infinite orbits}

are both co-Haar null. Moreover, if F is co-Haar null then G has the FACP .

Proof. The fact that F is co-Haar null follows immediately from Proposition 4.10.
Let C denote the set as in Proposition 4.10. If g ∈ C then g contains infinitely many
orbits, since otherwise finitely many orbits of g could cover ω, hence every infinite
orbit of G(F ) for some finite F ⊂ ω. It follows that the co-Haar null set C ∩ F is
contained in I, hence I is also co-Haar null. And thus the proof of the first part of
the theorem is complete.

Now we prove the second assertion. We have to show that if G does not have
the FACP then F is not co-Haar null. If G does not have the FACP then there
is a finite set S ⊂ ω such that ACL(S) is infinite. This means that all of the
permutations in G(S) have infinitely many finite orbits, hence G(S) ∩ F = ∅. The
stabiliser G(S) is a non-empty open set, thus it cannot be Haar null. Therefore the
proof of the theorem is complete. �

Now we are ready to prove the main result of this section.

Theorem 4.14. Let A be a locally finite Fräıssé limit. Then the following are
equivalent:

(1) almost every element of Aut(A) has finitely many finite orbits,
(2) Aut(A) has the FACP,
(3) A has the CSAP.

Moreover, any of the above conditions implies that almost every element of A has
infinitely many infinite orbits.

Proof. The equivalence (1) ⇐⇒ (2), and the last statement of the theorem is just
the application of Theorem 4.13 to G = Aut(A). Thus, it is enough to show that
(2) ⇐⇒ (3).

Let K = age(A). Since A is the limit of K, using that A is ultrahomogeneous
it follows that K has the extension property, that is, for every B, C ∈ K and em-
beddings φ : B → C and ψ : B → A there exists an embedding ψ′ : C → A with
ψ′ ◦ φ = ψ. Thus, the embeddings between the structures in K can be considered
as partial automorphisms of A.

((2) ⇒ (3)) Take an arbitrary B0 ∈ K and fix an isomorphic copy of it inside A.
Let B = ACL(dom(B0)) and note that by the fact that Aut(A) has the FACP B
is a finite substructure of A. We will show that over B the strong amalgamation
property holds (see Definition 3.2). In order to see this, let C,D ∈ K and let ψ :
B → C and φ : B → D be embeddings. By the extension property we can suppose
that B < C < A, B < D < A and ψ = φ = idB. By Lemma 4.2 ACL(dom(B)) = B,
hence the Aut(A)(dom(B)) orbit of every point in dom(C) \ dom(B) is infinite. By
M. Neumann’s Lemma [12, Corollary 4.2.2.] dom(C) \ dom(B) has infinitely many
pairwise disjoint copies under the action of Aut(A)(dom(B)). In particular, by the
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pigeonhole principle, there exists an f ∈ Aut(A)(dom(B)) such that f(C) ∩ D = B.
Letting E to be the substructure of A generated by dom(f(C))∪ dom(D), ψ′ = f |C
and φ′ = idD shows that SAP holds over B and hence CSAP holds as well.

((2) ⇐ (3)) Let S ⊂ dom(A) be finite. Let B0 be the substructure generated by S.
Clearly, B0 ∈ K, hence there exists a B ∈ K over which the strong amalgamation
property holds and which contains an isomorphic copy of B0. By the extension
property of A we can suppose that B and all the structures constructed later on in
this part of the proof are substructures of A containing B0.

We claim that for every b ∈ dom(A) \ dom(B) the orbit Aut(A)(dom(B))(b) is
infinite. Indeed, let C be the substructure generated by dom(B) ∪ {b}. Using the
strong amalgamation property repeatedly, first for B, C and D = C obtaining an E1,
then for B, C and D = E1 obtaining an E2 etc. for every n we can find a substructure
En of A which contains n + 1 isomorphic copies of C which intersect only in B,
and the isomorphisms between these copies fix B. Extending the isomorphisms to
automorphisms of Aut(A) shows that the orbit Aut(A)(dom(B))(b) is infinite. �

Remark 4.15. It is not hard to construct countable Fräıssé classes to show that
CSAP is neither equivalent to SAP, nor to AP. An example showing that CSAP 6⇒
SAP is age(B∞). Indeed, using a result of Schmerl [17] that states that a Fräıssé
class has the SAP if and only if its automorphism group has no algebraicity (that
is, ACL(F ) = F for every finite F ), age(B∞) cannot have the SAP.

To see that AP 6⇒ CSAP, let Z be the structure on the set Z of integers with
a relations Rn for each n ≥ 1, n ∈ N satisfying that aRnb ⇔ |a − b| = n for each
a, b ∈ Z and n ≥ 1. It can be easily checked that age(Z) satisfies AP, but Aut(Z)
does not satisfy FACP, since the algebraic closure of any two points is Z. Thus
Theorem 4.14 implies that Z cannot satisfy CSAP.

5. An application to decompositions

In this section we present an application of our results: we use Theorem 4.13 to
show that a large family of automorphism groups of countable structures can be
decomposed into the union of a Haar null and a meager set.

Corollary 5.1. Let G be a closed subgroup of S∞ satisfying the FACP and suppose
that the set F = {g ∈ G : Fix(g) is infinite} is dense in G. Then G can be
decomposed into the union of an (even conjugacy invariant) Haar null and a meager
set.

Proof. Clearly, F is conjugacy invariant, and since it can be written as F = {g ∈ G :
∀n ∈ ω ∃m > n (g(m) = m)}, F is Gδ. Using the assumptions of this corollary, it is
dense Gδ, hence co-meager. Using Theorem 4.13, it is Haar null, hence F ∪ (G \F )
is an appropriate decomposition of G. �

Corollary 5.2. Aut(R), Aut(Q, <) and Aut(B∞) can be decomposed into the union
of an (even conjugacy invariant) Haar null and a meager set.

Proof. In order to show that the set of elements in these groups with infinitely
many fixed points is dense, in each case it is enough to show that if p is a finite,
partial automorphism then there is another partial automorphism p′ extending p
such that p′ ⊃ p ∪ (x, x) with x 6∈ dom(p).

For Aut(Q, <), let x be greater than each element in dom(p) ∪ ran(p), then it is
easy to see that p ∪ (x, x) is also a partial automorphism.
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For Aut(R), let x be an element different from each of dom(p)∪ ran(p) with the
property that x is connected to every vertex in dom(p)∪ ran(p). Then it is easy to
see that p ∪ (x, x) is a partial automorphism.

For Aut(B∞), let a0 ∪ a1 ∪ · · · ∪ an−1 be a partition of 1 with the property that
dom(p)∪ran(p) is a subset of the algebra generated byA = {a0, a1, . . . , an−1}. Then
there is a permutation π of {0, 1, . . . , n−1} compatible with p, that is, p(ai) = aπ(i)
for every i. Let us write each ai as a disjoint union ai = a′i∪a

′′
i of non-zero elements.

Again, a partial permutation can be described by a permutation of the elements
{a′1, . . . , a

′
n}∪{a

′′
1 , . . . , a

′′
n}. Hence, let p′ be defined by p′(a′i) = a′π(i), p

′(a′′i ) = a′′π(i).

Then p′ is a partial automorphism extending p with a new fixed point
⋃

i<n a
′
i. �

6. Various behaviors

It turns out, that in natural Polish groups we may encounter very different
behaviors of conjugacy classes with respect to the ideal of Haar null sets (see [7],
[5], [6]). In this section we address the questions from 3.9, namely, given a Polish
group, how many non-Haar null conjugacy classes are there and decide whether the
union of the Haar null classes is Haar null. Note that these questions make perfect
sense in the locally compact case as well. In this section we construct a couple of
examples.

If (A,+) is an abelian group we will denote by φ the automorphism of A defined
by a 7→ −a.

Proposition 6.1. Let (A,+) be an abelian Polish group such that for every a ∈ A
there exists an element b with 2b = a. Observe that φ ∈ Aut(A), φ2 = idA and
(Z2 ⋉φ A, ·) can be partitioned into {0} × A and {1} × A. Moreover, in the group
Z2 ⋉φ A the conjugacy class of every element of {0} × A is of cardinality at most
2, whereas the set {1} ×A is a single conjugacy class.

Proof. Let (0, a) ∈ {0} × A and (i, b) ∈ Z2 ⋉φ A arbitrary. We claim that the
conjugacy class of (0, a) is {(0, a), (0,−a)}. If i = 0 then (0, a) and (i, b) commute,
so let i = 1. By definition

(1, b)−1 · (0, a) · (1, b) = (1, b) · (1, b+ a) = (0, b− (b+ a)) = (0,−a),

which shows our claim.
Now let (1, a), (1, a′) ∈ Z2⋉φA be arbitrary. Now for an arbitrary element (1, b)

we get

(1, b)−1 · (1, a) · (1, b) = (1, b) · (0,−b+ a) = (1, b− (−b+ a)) = (1, 2b− a),

thus, choosing b so that 2b = a′ + a we obtain

(1, b)−1 · (1, a) · (1, b) = (1, a′).

�

Corollary 6.2. Let A = Zω
3 or A = (Qd)ω, (that is, the countable infinite power

of the rational numbers with the discrete topology). Then Z2⋉φA has a non-empty
clopen conjugacy class, namely {(1, a) : a ∈ A} and every other conjugacy class has
cardinality at most 2. Hence, the union of the Haar null classes {(0, a) : a ∈ A} is
also non-empty clopen.
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Lemma 6.3. Suppose that G1 and G2 are Polish groups and A1 ⊂ G1 is Borel and
U ⊂ G2 is non-empty and open. Then A1 × U is Haar null in G1 × G2 iff A1 is
Haar null.

Proof. Suppose first that A1 is Haar null witnessed by a measure µ1. Then, if µ′ is
the same measure copied to G1 × {1}, it is easy to see that µ′ witnesses the Haar
nullness of A1 ×G2, in particular, the Haar nullness of A1 × U .

Conversely, suppose that A1×U is Haar null witnessed by the measure µ. Clearly,
as countably many translates of U cover G2, countably many translates of A1 × U
cover A1×G2, hence A1×G2 is Haar null as well, and this is also witnessed by the
measure µ. Let µ1 = projG1∗ µ, then µ1 witnesses the Haar nullness of A1. �

Proposition 6.4. If G is a Polish group with κ many non-Haar null conjugacy
classes then G × (Z2 ⋉φ Zω

3 ) has κ many non-Haar null conjugacy classes and the
union of the Haar null conjugacy classes is not Haar null.

Proof. Clearly, the conjugacy classes of G × (Z2 ⋉φ Zω
3 ) are of the form C1 × C2

where C1 is a conjugacy class in G and C2 is a conjugacy class in Z2 ⋉φ Zω
3 .

By Corollary 6.2 we have that every conjugacy class in the latter group is finite
with one exception, this exceptional conjugacy class is clopen; let us denote it
by U . Now, since the finite sets are Haar null in Z2 ⋉φ Zω

3 by Lemma 6.3, the
set of non-Haar null conjugacy classes in G × (Z2 ⋉φ Zω

3 ) is equal to {C × U :
C is a non-Haar null conjugacy class in G}, hence the cardinality of the non-Haar
null classes is κ. Moreover, the union of the Haar null conjugacy classes contains
G × ((Z2 ⋉φ Zω

3 ) \ U), which is non-empty and open, consequently it is not Haar
null.

�

Finally, we would like to recall the following well known theorem.

Theorem 6.5 (HNN extension, [11]). There exists a countably infinite group with
two conjugacy classes.

We denote such a group by HNN, and consider it as a discrete Polish group.
Combining Proposition 6.4, Corollaries 3.6, 3.8, 6.2, Lemma 6.3 and Theorems

1.3 and 6.5 we obtain Table 1 (see the end of Section 3). (Recall that C, LC \C and
NLC stand for compact, locally compact non-compact, and non-locally compact,
respectively.)

7. Open problems

We finish with a couple of open questions. In Section 6 we produced several
groups with various numbers of non-Haar null conjugacy classes. However, our
examples are somewhat artificial.

Question 7.1. Are there natural examples of automorphism groups with given
cardinality of non-Haar null conjugacy classes?

The following question is maybe the most interesting one from the set theoretic
viewpoint.

Question 7.2. Suppose that a Polish group has uncountably many non-Haar null
conjugacy classes. Does it have continuum many non-Haar null conjugacy classes?



THE STRUCTURE OF RANDOM AUTOMORPHISMS OF COUNTABLE STRUCTURES 19

The answer is of course affirmative under e.g. the Continuum Hypothesis. Since
the definition of Haar null sets is complicated (the collection of non-Haar null closed
sets can already be Σ1

1-hard and Π1
1-hard [18]), it is unlikely that this question can

be answered with an absoluteness argument.
The characterization result of Section 4 and the similarity between Theorems 3.5

and 3.7 suggest that a general theory of the behavior of the random automorphism
(similar to the one built by Truss, Kechris and Rosendal) could exist.

Problem 7.3. Formulate necessary and sufficient model theoretic conditions which
characterize the measure theoretic behavior of the conjugacy classes.

In particular, it would be very interesting to find a unified proof of the description
of the non-Haar null classes of Aut(Q, <) and Aut(R).
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127, 1364 Budapest, Hungary and Eötvös Loránd University, Institute of Mathematics,
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