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Abstract

Let d ≥ 3 be fixed andG be a large randomd-regular graph onn vertices. We show that if

n is large enough then the entry distribution of every almost eigenvectorv of G (with entry sum

0 and normalized to have length
√
n) is close to some Gaussian distributionN(0, σ) in the weak

topology where0 ≤ σ ≤ 1. Our theorem holds even in the stronger sense when many entries are

looked at simultaneously in small random neighborhoods of the graph. Furthermore, we also get the

Gaussianity of the joint distribution of several almost eigenvectors if the corresponding eigenvalues

are close. Our proof uses graph limits and information theory. Our results have consequences for

factor of i.i.d. processes on the infinite regular tree.

1 Introduction

Let d ≥ 3 and letG(n, d) denote the randomd-regular graph onn vertices (see e.g. the monograph

[10]). Equivalently, we can think ofG(n, d) as a random model of symmetric0 − 1 matrices in

which the row sums are conditioned to bed. It is expected that the spectral properties ofG(n, d)

are closely related to random matrix theory; however, many questions in the area are still open. It is

well known that the spectral measure ofG(n, d) converges to the so called Kesten–McKay measure

in the weak topology asn goes to infinity. This gives an approximate semicircle law ifd is large.

A famous result by J. Friedman solves Alon’s second eigenvalue conjecture showing thatG(n, d)

is almost Ramanujan [22]. Much less is known about the scaledeigenvalue spacing and about the

structure of the eigenvectors. Recent results in the area include [12, 33] on the second eigenvalue;

[6, 7, 19, 20] on eigenvalue spacing, local semicircle law and functional limit theorems; [2, 15, 26]

on the delocalization of the eigenvectors.

In the present paper we study approximate eigenvectors or shortly: almost eigenvectorsof

G(n, d) i.e. vectors that satisfy the eigenvector equation(A − λI)v = 0 with some small error.
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Almost eigenvectors are not necessarily close to proper eigenvectors. They are much more gen-

eral objects. For example any linear combination of eigenvectors with eigenvalues in the interval

[λ − ε, λ + ε] is an almost eigenvector with error depending onε. In general a vector is an almost

eigenvector if and only if its spectral measure is close to a Dirac measure in the weak topology.

We show that despite of this generality, almost eigenvectors ofG(n, d) have a quite rigid struc-

ture if n is big. Our main result implies that every almost eigenvector (with entry sum 0 and nor-

malized to have length
√
n) has an entry distribution close to some Gaussian distribution N(0, σ)

in the weak topology where0 ≤ σ ≤ 1. Note that ifσ = 0, then theℓ2-weight of the vector is

concentrated on a small fraction of the vertices. Such vectors are called localized. Our main result

holds even in a stronger sense where joint distributions areconsidered using the local structure of

the graph. In some sense our result is best possible since there are examples for both localized and

delocalized almost eigenvectors (see chapter 3). Note thatproper eigenvectors are conjectured to be

delocalized.

The issue of eigenvector Gaussianity goes back to random matrix theory. It is not hard to show

that in the GUE (Gaussian Unitary Ensemble) random matrix model every eigenvector has a near

Gaussian entry distribution. It is much harder to analyze the random model when the elements of the

matrix are chosen from a non Gaussian distribution. Nevertheless Gaussianity of the eigenvectors is

proved under various conditions for generalized Wigner matrices [13, 37] and also for various other

models (see e.g. [9] and [8, 34] for recent surveys). Sparsermodels are harder to analyze [30]. This

paper deals with the sparsest case, where the matrix is the adjacency matrix of a randomd-regular

graph with some fixedd. In this case there is a stronger meaning of eigenvector Gaussianity. For

example it is natural to ask about the Gaussianity of the joint distribution of the entries at the two

endpoints of a randomly chosen edge in the graph. More generally one can look at the joint distri-

bution of the entries in random balls of radiusr. Our Gaussianity results for almost eigenvectors

are established in this strong sense. Furthermore, it makessense to study the joint distribution of

the entries of several almost eigenvectors. More precisely, ak-tuple of almost eigenvectors can be

interpreted as a function from the vertices toRk. This function evaluated at a randomly chosen

vertex gives a probability distribution onRk that we define as the joint distribution of the entries. It

is an interesting question whether such joint distributions are Gaussian. We prove this ifk is fixed,

n is large and the eigenvalues corresponding to the almost eigenvectors are close to each other.

Moreover, we also prove this result when the joint distribution of many eigenvectors is considered

in random neighborhoods.

The proof of our main theorem is based on the so-called local-global graph limits [11, 28].

However, to keep the paper self-contained, we use a slightlysimplified framework (see section

5) optimized for this particular problem. We relate the properties of random regular graphs to

random processes on the infinited-regular treeTd. Most of the work is done in this convenient
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limiting framework. An invariant process onTd is a joint distribution of random variables{Xv}v∈Td

labeled by the vertices ofTd such that it is invariant under the automorphism group ofTd. A special

class of invariant processes, calledtypical processes, was introduced in [3]. Roughly speaking, an

invariant process is typical if it can be obtained as the Benjamini–Schramm limit of colored random

regular graphs. There is a correspondence between the properties of typical processes onTd and the

properties of large randomd-regular graphs.

Our main theorem is equivalent to the statement that if a typical process satisfies the eigenvector

equation at every vertex ofTd and has finite variance (at every vertex), then the process isjointly

Gaussian. Note that such Gaussian eigenvector processes onTd are completely characterized and

there is a unique one for each possible eigenvalue. A key ingredient in our proof is a general

entropy inequality for typical processes. It implies that typical eigenvector processes obey another

inequality involving differential entropy. From here we finish the proof using heat propagation on

the space of typical eigenvector processes combined with DeBrujin’s identity for Fisher information.

Gaussianity will follow from the fact that heat propagationconverges to a Gaussian distribution.

A well studied subclass of typical processes is the class of factor of i.i.d. processes. These

processes appeared first in ergodic theory but they are also relevant in probability theory, combina-

torics, statistical physics and in computer science. Not every typical process is factor of i.i.d.; this

follows from the results of Gamarnik and Sudan [25]; see alsoRahman and Virág [36]. Despite of

recent progress in the area [4, 5, 14, 18, 16, 24, 27, 28, 31, 32, 35], a satisfying understanding of

factor of i.i.d. processes is only available in the cased = 2 [23], which is basically equivalent to the

framework of classical ergodic theory ofZ actions. Our results imply that if an invariant process

(with finite variance) is in the weak closure of factor of i.i.d. processes and satisfies the eigenvector

equation then the process is Gaussian. This answers a question of B. Virág.

Outline of the paper. In Chapter 2, we formulate the main results for finite randomd-regular

graphs. Chapter 3 and 4 contain general statements about invariant processes, eigenvector processes,

entropy and almost eigenvectors. Chapter 5 provides the translation of our main result to the infinite

setting using typical eigenvector processes on the infinited-regular tree. In Chapter 6, we prove

a necessary condition for a process to be typical in the form of an entropy inequality. In Chapter

7 we reduce the limiting form of the main theorem to a special family of eigenvector processes

called smooth eigenvector processes. Chapter 8 gives a differential entropy inequality for smooth

eigenvector processes. In Chapter 9, we calculate the eigenvalues of special submatrices of the

covariance matrices of eigenvector processes corresponding to balls around vertices and edges on

the tree. In Chapter 10, we use the results from Chapter 9 to prove that among smooth typical

eigenvector processes the Gaussian minimizes the differential entropy formula from Chapter 8. On

the other hand, in Chapter 11, we show that the Gaussian eigenvector process maximizes the same

formula. Moreover, we finish the proof of the main result in Chapter 11.
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2 The main theorem

In this chapter we state the main theorem first in a simpler butweaker form and later in the strong

form. An ε-almost eigenvector of a matrixA ∈ Rn×n with eigenvalueλ is a vectorv ∈ Rn such

that‖v‖2 = 1 and‖Av− λv‖2 ≤ ε. To every vectorv in Rn we associate a probability distribution

distr(v) onR obtained by choosing a uniform random entry fromv. If ‖v‖2 = 1, then the second

moment ofdistr(v) is 1/n. Thus, to avoid degeneracy in this case, it is more natural toconsider

distr(
√
nv) whose second moment is1. We will compare probability distributions onR using an

arbitrary but fixed metrization of the weak convergence of probability measures. Our theorem in a

weak form says the following

Theorem 1 (Weak form of main theorem) For everyε > 0 there are constantsN, δ such that if

G is a randomd-regular graph onn ≥ N vertices, then with probability at least1− ε the following

holds. We have that everyδ-almost eigenvectorv of G (with entry sum0) has the property that

distr(
√
nv) is at mostε-far from some Gaussian distributionN(0, σ) in the weak topology where

0 ≤ σ ≤ 1.

Note that ifdistr(
√
nv) is close to the degenerate distributionN(0, 0) then most of theℓ2 weight

of v is concentrated ono(n) points. Such vectors are called localized. In general, ifσ is smaller

than,1 then some of theℓ2 weight is concentrated ono(n) vertices and the rest is Gaussian.

To formulate our main theorem in the strong form we need some more notation. Recall thatTd

denotes the infinited-regular tree ando is a distinguished vertex calledroot in Td. We will denote

the vertex setV (Td) of Td by Vd. For two vertices in a graph we writev ∼ w if they are connected

to each other. Let[n] denote the set{1, 2, . . . , n} and letG be ad-regular graph on the vertex set[n].

We denote byHom∗(Td, G) the set of all covering maps fromTd toG. In other wordsHom∗(Td, G)

is the set of mapsφ : Vd → V (G) such that for every vertexv ∈ Vd the neighbors ofv are mapped

bijectively to the neighbors ofφ(v). The setHom∗(Td, G) has a natural probability measure. We

first choose the image ofo uniformly at random inV (G). Then we recursively extend the mapφ

to larger and larger neighborhoods ofo in a random (conditionally independent) way preserving the

local bijectivity. It is easy to see that this probability distribution is independent from the choice of

o.

LetX be a topological space andf : [n] → X be a function. We define the probability distribu-

tion distr∗(f,G) onXVd as the distributionf ◦ φ whereφ is a random covering inHom∗(Td, G).

In other wordsdistr∗(f,G) is a random lift off to Td using a random covering ofG with Td. By

regarding vectorsv ∈ Rn as functions form[n] to R it makes sense to usedistr∗(v,G).

To formulate our main theorem we need the concepts of eigenvector processes and Gaussian

waves onTd (see [21]). Aneigenvector processwith eigenvalueλ is a joint distribution{Xv}v∈Vd

of real valued random variables with variance 1 such that it is Aut(Td) invariant and satisfies the
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eigenvector equation
∑

v∼o

Xv = λXo (1)

with probability1. Note that the group invariance implies that the eigenvector equation is satisfied

at every vertex onTd. We call an eigenvector processtrivial if E(Xo) 6= 0. Notice that the triviality

of an eigenvector process implies thatλ = d. This follows by taking expectation in (1) and using

the invariance of the process. Furthermore, trivial eigenvector processes are constants in the sense

thatXv = Xw holds with probability one for every pair of verticesv, w in Vd. A Gaussian wave

is an eigenvector process whose joint distribution is Gaussian. It is proved in [21] that for every

−d ≤ λ ≤ d there is a unique Gaussian waveΨλ with eigenvalueλ.

Let us choose a fix metrization of the weak topology onR
Vd . Our main theorem on random

d-regular graphs is the following.

Theorem 2 (Main theorem) For everyε > 0 there exist constantsN, δ such that ifG is a random

d-regular graph onn ≥ N vertices then with probability at least1 − ε the following holds. For

everyδ-almost eigenvectorv of G (with entry sum0) has the property thatdistr∗(
√
nv,G) is at

mostε-far (in the weak topology) from some Gaussian waveΨλ with |λ| ≤ 2
√
d− 1.

Corollary 2.1 For everyε > 0 andk ∈ N there exist constantsN, δ such that ifG is a random

d-regular graph onn ≥ N vertices then with probability at least1−ε the following holds. For every

k-tuple ofδ-almost eigenvectorsQ = (v(1), v(2), . . . , v(k)) of G (with entry sum0) corresponding

to eigenvaluesλ1, . . . , λk with the property|λi − λj | < δ we have thatdistr∗(
√
nQ,G) is at most

ε-far (in the weak topology) from some Gaussian waveΨλ with |λ| ≤ 2
√
d− 1.

3 Preliminaries

Invariant processes

For a separable metric spaceY we denote byId(Y ) the set of Borel probability measures onY Vd

that are invariant under the automorphisms of the tree. Moreprecisely, for everyτ ∈ Aut(Td) (not

necessarily fixing the root), the probability measure onY Vd is required to be invariant under the

naturalY Vd → Y Vd map induced byτ . Note that eigenvector processes are inId(R). If µ ∈ Id(Y )

andF ⊆ Vd, then we denote byµF the marginal distribution ofµ atF . We can equivalently think

of µ ∈ Id(Y ) as a joint distribution{Xv}v∈Vd
of Y -valued random variables that is invariant under

the automorphism group ofTd. In this languageµF is the same as the joint distribution{Xv}v∈F .

If both F andY are finite thenµF is a probability distribution on the finite setY F . In this case

we denote the entropy ofµF by H(F ). By invariance ofµ the quantityH(F ) depends only on the

isomorphism class ofF .
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We will consider convergence inId(Y ) with respect to the weak topology. Since the weak

topology is metrizable we can always choose a fixed metrization of it in advance.

Almost eigenvectors

Let A ∈ Rn×n be a matrix. Anε-almost eigenvector ofA (with eigenvalueλ) is a vectorv ∈ Rn

such that‖v‖2 = 1 and‖Av − λv‖2 ≤ ε.

Lemma 3.1 LetA be the adjacency matrix of ad-regular graph onn vertices. Letλ2(A) denote the

second largest (in absolute value) eigenvalue ofA. Letv be anε-almost eigenvector with eigenvalue

λ such that the entry sum ofv is 0. Then|λ| ≤ λ2(A) + ε.

Proof. Sincev has0 entry sum, we can writev =
∑

aivi, where eachvi is a nonconstant

eigenvector ofA with eigenvalueλi. It follows that(A − λI)v =
∑

ai(λi − λ)vi, where|λi| ≤
λ2(A). Thus,ε2 ≥ ‖(A − λI)v‖22 =

∑
a2i (λi − λ)2. Suppose that|λ| ≥ λ2(A) (otherwise the

statement is trivial). Then|λi − λ| ≥ |λ| − λ2(A). Thereforeε2 ≥ (
∑

a2i )(|λ| − λ2(A))
2, which

completes the proof by using that
∑

a2i = ‖v‖22 = 1. �

As we mentioned in the introduction, we will give examples for both localized and delocalized

almost eigenvectors on essentially large girthd-regular graphs. (Note that a graph is called essen-

tially large girth if most vertices are not contained in short cycles.) The purpose of these examples

is to show that our results on the almost eigenvectors of random regular graphs are best possible in

the sense that all0 ≤ σ ≤ 1 can indeed occur in the statement.

We will need some preparation. Fork ≥ 1 andx ∈ [−1, 1] let

f(k, x) =
1√

d(d− 1)k−1
qk(x), (2)

where

qk(x) =

√
d− 1

d
Uk(x)−

1√
d(d− 1)

Uk−2(x); Uk(cosϑ) =
sin((k + 1)ϑ)

sinϑ
. (3)

(Uk(x) is the Chebyshev polynomial of the second kind.) Letgλ : Vd → R be the function defined

by

gλ(v) = f(|v|, λ/(2
√
d− 1)),

where|v| denotes the distance ofv and the rooto. It is easy to see (and well known) thatgλ satisfies

the eigenvector equation with eigenvalueλ at every vertexv (for λ ∈ [−2
√
d− 1, 2

√
d− 1]).

Now let G be ad-regular graph such that there is a vertexw ∈ V (G) with the property that

the shortest cycle containingw has length at least2n. We define the functiong′λ : V (G) → R by

g′λ(v) = f(d(w, v), λ/2
√
d− 1) if d(v, w) < n and0 otherwise. It is easy to see thatu = g′λ/‖g′λ‖2

is an almost eigenvector with eigenvalueλ with error tending to0 asn → ∞. Furthermore, if
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|V (G)| is much larger thann, thenu is close to the constant0 distribution in the weak topology.

Thus we obtain examples for completely localized almost eigenvectors ford-regular graphs (for all

λ ∈ [−2
√
d− 1, 2

√
d− 1]), which corresponds to the caseσ = 0.

We switch to the delocalized example. In [27], the authors construct eigenvector processes on

Td for everyλ ∈ [−2
√
d− 1, 2

√
d− 1] that are weak limits of factor of i.i.d. processes. These

processes have the property that they can be arbitrarily well approximated on any essential large

girth d-regular graph. It is easy to see that these approximations are almost eigenvectors that are

completely delocalized. This corresponds to the caseσ = 1. Finally, everyσ occurs by mixing

completely localized and completely delocalized almost eigenvectors corresponding to the sameλ.

4 Eigenvectors and eigenvector processes on the tree

For a vertex setF ⊆ Vd we denote byBk(F ) the neighborhood of radiusk aroundF . LetF ⊆ Vd

be a subset of the vertices of the tree, and letf ∈ RF . We say thatv satisfies the eigenvector

equation with eigenvalueλ if for everyv ∈ F with B1(v) ⊆ F we have thatλf(v) =
∑

w∼v f(w).

It is clear that for a fixedλ these vectors form a linear subspace ofR
F that we denote byWλ(F ).

We will need a formula fordimWλ(F ) for a family of special finite setsF .

GivenF , we say thatF0 ⊆ F is a basis if for allf ∈ R
F0 andλ ∈ R the subspaceWλ(F )

contains exactly one extension off toF . It is clear that ifF0 is a basis inF , thendimWλ(F ) = |F0|
for all λ ∈ R.

Lemma 4.1 LetF0 be a basis of a path-connected setF . Suppose thatv ∈ F and|F ∩B1(v)| = 2.

Furthermore, letD ⊆ B1(v) such that|D| = d − 2 andD ∩ F = ∅. ThenF0 ∪ D is a basis of

F ∪B1(v).

Proof. Let f be a function fromF0 ∪ D to R. By assumption, we have thatf |F0
extends to a

unique functionf̃ on F . Now using the eigenvector equation atv, we obtain a unique value for

B1(v) \ (D ∪ F ). Note that the connectivity ofF implies that the function constructed this way is

in Wλ(F ∪B1(v)). �

We will useC to denote the starB1(o) and we will usee to denote a distinguished edge inTd.

It is clear that ifv is a neighbor ofo, thenC \ {v} is a basis ofC. Similarly e is a basis of itself.

Using Lemma 4.1 and induction, we obtain that

dimWλ(Bk(C)) = |∂Bk(C)| = d(d− 1)k; dimWλ(Bk(e)) = |∂Bk(e)| = 2(d− 1)k (4)

holds for everyλ ∈ R andk ∈ N, where∂F denotes the boundary of a setF .

Recall that an invariant process{Xv}v∈Vd
is an eigenvector process with eigenvalueλ if it

satisfies the eigenvector equation (1) with probability1 andVar(Xv) = 1. Notice that ifF is any
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vertex set inTd, then{Xv}v∈F is supported onWλ(F ). In the rest of this chapter we investigate the

joint distribution{Xv}v∈S in a non-trivial eigenvector process whereS is one ofBk(C) or Bk(e)

for somek ∈ N. Our goal is to find uncorrelated linear combinations of the variables{Xv}v∈S with

the property that they linearly generate every random variable in {Xv}v∈S . Observe that since the

covariance matrix of{Xv}v∈S has rank at mostdim(Wλ(S)) = |∂S|, it is enough to find that many

uncorrelated linear combinations with nontrivial variance to guarantee that they generate everything.

LetY = (Y1, Y2, . . . , Yn) be ann-dimensional distribution with0 mean such that the covariance

matrix is of full rank. We can always find a linear transformation T : Rn → R
n with the property

that the covariance matrix ofTY is the identity matrix. The probability distributionTY is unique

up to an orthogonal transformation onRn. We call it the standardized version ofY .

Let µ ∈ Id(R) represented by an invariant joint distribution{Xv}v∈Vd
of random variables.

Assume thatE(Xo) = 0. With every directed edge(v, w) of Td we associate a probability distribu-

tion onRd−2 defined up to an orthogonal transformation. Let{vi}d−1
i=1 be the set of neighbors ofw

different fromv. We denote byAv,w the standardized version of{Xvi −Xvd−1
}d−2
i=1 . It is easy to

see that (the orthogonal equivalence class of)Av,w does not depend on the labeling of the vectors

vi.

We introduce the symmetric relationr on directed edges ofTd such that((x, y), (v, w)) ∈ r

if and only if the unique shortest path connectingy andw contains at least one ofx andv. The

next lemma implies that if((x, y), (v, w)) ∈ r thenAx,y andAv,w are uncorrelated and so ifµ is

Gaussian thenAx,y andAv,w are independent.

Lemma 4.2 Let (v, w) be a directed edge inTd. Let{vi}d−1
i=1 be the set of neighbors ofw different

from v. LetX =
∑k

j=1 ajXuj
be a linear combination such that the shortest path connectingw

anduj containsv for every1 ≤ j ≤ k. ThenE(X(Xvi −Xvd−1
)) = 0 holds for1 ≤ i ≤ d− 2.

Proof. The condition on the verticesuj guarantees that for every fixj the distance ofuj from vi

does not depend oni. Using this and the automorphism invariance ofµ it follows thatE(Xuj
(Xvi −

Xvd−1
)) = 0 holds for every1 ≤ j ≤ k and1 ≤ i ≤ d− 2. By linearity of expected value the proof

is complete. �

Let S ⊂ Vd be eitherBk(C) or Bk(e) for somek ∈ N. Assume thatµ is an eigenvector

process. Letp ∈ S be such that it has distance at least one from the boundary∂S. Let D denote

the set of directed edges(v, w) insideS with the following three properties:(a) the unique shortest

path connectingp andw containsv, (b) p /∈ {v, w}, (c) B1(w) ⊂ S. Let Bp denote the joint

distribution(Xv −Xp)v∼p. We denote byQ(S, p, µ) the joint distribution of the random variables

{Av,w}(v,w)∈D andBp. Lemma 4.2 implies that the components ofQ(S, p, µ) are uncorrelated

multidimensional random variables. It is easy to see that if|λ| < d, then the correlation matrix

of each such multidimensional random variable is of full rank. This implies that if|λ| < d, then
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Q(S, p, µ) provides a linear basis for{Xv}v∈S. By counting dimensions, this yields the following

corollary.

Corollary 4.1 Let eitherS = Bk(C) or S = Bk(e) andµ an eigenvector process with eigenvalue

|λ| < d. Then we have that

〈supp (µS)〉R = Wλ(S).

5 Typical processes and the limiting form of the main theorem

Now we describe a limiting form of our main theorem using typical processes onTd. Typical

processes onTd were first introduced in [3] to study the properties of randomregular graphs via

ergodic theory. Here we use a slightly different definition which extends the original notion to

processes that take values in a separable, metrizable spaceY .

Definition 5.1 Let Y be separable, metrizable topological space and letµ be a Borel probabil-

ity distribution onY Vd . We say thatµ is a typical process if there is a growing sequence of natural

numbers{ni} with the following property. Assume that{Gi}ni=1 is a random graph sequence whose

elementsGi are independently chosen randomd-regular graphs onni vertices. Then with proba-

bility 1 there are mapsfi : V (Gi) → Y such that the distributionsdistr∗(fi, Gi) are converging to

µ in the weak topology.

Our main theorem in the limit setting is the following.

Theorem 3 (Limiting form of the main theorem) If µ is a nontrivial typical eigenvector process

with eigenvalueλ, then|λ| ≤ 2
√
d− 1 andµ is the Gaussian waveΨλ.

Using the fact that weak limits of factor of i.i.d processes are typical (see [3]) we obtain the next

corollary which answers a question of B. Virág.

Corollary 5.1 If µ is a nontrivial eigenvector process that is a weak limit of factor of i.i.d. processes,

thenµ is a Gaussian wave with eigenvalue|λ| ≤ 2
√
d− 1.

Note that Corollary 5.1 implies that if many eigenvector processes corresponding to the same eigen-

value are coupled in a way that the coupling is a weak limit of factor of i.i.d. processes, then its

distribution is jointly Gaussian.

We emphasize that the first part of the statement in Theorem 3,namely that|λ| ≤ 2
√
d− 1 is a

consequence of Friedman’s theorem [22]. We prove this implication in Lemma 5.1. In addition, the

main goal of this chapter is to show that Theorem 3 implies Theorem 2.

Lemma 5.1 If µ is a nontrivial typical eigenvector process with eigenvalueλ, then|λ| ≤ 2
√
d− 1.
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Proof. Our first goal is to prove that there exists a sequence ofd-regular graphs{Gi}∞i=1 and vectors

{fi : V (Gi) → R}∞i=1 such that(a) |λ2(Gi)| → 2
√
d− 1, whereλ2(G) denotes the second largest

(in absolute value) eigenvalue of a finite graphG; (b) distr∗(fi, Gi) → µ in the weak topology.

Using thatµ is typical, there exists a sequence{ni}∞i=1 of growing natural numbers such that with

probability 1, if{G′
i}∞i=1 is a sequence of independent randomd-regular graphs with|V (G′

i)| = ni,

then there exists a sequence of functions{f ′
i}∞i=1 satisfying(b). Friedman’s theorem [22] implies

that with probability 1 we can choose a further subsequence satisfying(a).

We fix an arbitraryε > 0. LetXo be a random variable with distributionµo. SinceE(X2
o ) = 1,

we can findk > 0 such thatk is a continuity point of the cumulative distribution function ofXo and

k2P(|Xo| > k) < ε. Furthermore, ifk is sufficiently large, we can also assume thatE([Xo]
2
k) ≥ 1/2

and|E([Xo]k)| ≤ ε, where[x]k = max(min(x, k),−k). Using thatdistr∗(fi, Gi) converges to the

eigenvector processµ, we obtain that ifi is large enough, then(i) k2P(distr(|fi|) > k) < 2ε; (ii)

P(distr(|(Gi−λI)fi|) ≥ ε) ≤ ε/k2; (iii) E(distr([fi]2k)) ≥ 1/3; (iv) ci = |E(distr([fi]k))| ≤ 2ε.

Note that(i) implies thatfi 6= [fi]k holds on a vertex set of density at most2ε/k2. It follows that

(Gi − λI)[fi]k 6= (Gi − λI)fi holds on a vertex of density at most(d + 1)2ε/k2. Furthermore,

we have that‖(Gi − λI)[fi]k‖∞ ≤ (d + |λ|)k. Putting all this together, we obtain that fori large

enough

‖(Gi − λI)([fi]k − ci)‖2 ≤
√
ε2ni + (2d+ 3)(ε/k2) · ni(d+ |λ|)2k2 + |d− λ|ci

√
ni

≤ √
ni

(√
ε2 + (2d+ 3)ε(d+ |λ|)2 + 2|d− λ|ε

)
.

Let vi = ([fi]k − ci)/‖[fi]k − ci‖2. Using that(iii) implies that‖[fi]k‖22 ≥ 1/3ni, we obtain

that for an appropriate choice of small enoughε and large enoughi the quantity‖(Gi − λI)vi‖2 is

arbitrarily small. Thus, by using(a) and Lemma 3.1, we get that|λ| ≤ 2
√
d− 1. �

Proposition 5.1 Theorem 3 implies Theorem 2.

We need a few notions and lemmas. LetP denote the set of Borel probability distributionsµ

on RVd which have a second moment bounded from above by1 at each coordinate. By tightness

of P , we have thatP is compact with respect to the weak topology of measures. Letm be a fixed

metrization of the weak topology onP . Let us denote byT the set of closed subsets inP , and by

dH the the Hausdorff metric onT . We have thatdH induces a compact topology onT . Let us

define the distancem∗ for d-regular graphs in the following way. IfG1 andG2 ared-regular graphs

thenm∗(G1, G2) is the infimum of the numbersδ with the property the iff1 : V (G1) → R, f2 :

V (G2) → R are arbitrary functions withE(distr(f2
1 )),E(distr(f

2
2 )) ≤ 1 then there are functions

f ′
1 : V (G2) → R, f ′

2 : V (G1) → R with E(distr(f ′2
1 )),E(distr(f ′2

2 )) ≤ 1 such that

m(distr∗(f1, G1), distr
∗(f ′

1, G2)) ≤ δ , m(distr∗(f2, G2), distr
∗(f ′

2, G1)) ≤ δ.
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We can describe the metricm∗ in terms of the metricdH as follows. For a graphG, let

S(G) = {distr∗(f,G)|f ∈ R
V (G),E(distr(f2)) ≤ 1}.

We have thatm∗(G1, G2) = dH(S(G1), S(G2)).

Definition 5.2 We say that a finited-regular graphG is ε-typical for someε > 0 if with probability

at least1−ε a randomd-regular graphG′ on |V (G)| vertices has the property thatm∗(G,G′) < ε.

Lemma 5.2 For everyε > 0 andT ∈ T there existsn(ε) such that for allN > n(ε) there exists a

valuec satisfying

P(|dH(S(G), T )− c| > ε) < ε. (5)

Proof. The proof relies on a certain continuity property of the metric m∗ with respect to small

changes in a graph. More precisely, we show that for everyε2 if N is large enough, then for every

pair G,G′ of d-regular graphs on the vertex set[N ] satisfying|E(G)∆E(G′)| ≤ 4 we have that

m∗(G,G′) < ε2. The significance of the number4 comes from the fact thatd-regular graphs can

be transformed into each other through a sequence of operations in which two independent edges

(u1, v1), (u2, v2) are replaced by(u1, v2), (u2, v1). To prove the continuity property, we show that

if N is large enough, then the inequality

m(distr∗(f,G), distr∗(f,G′)) < ε2

holds for every functionf : [N ] → R with E(f2) ≤ 1. Let k be an arbitrary integer. Observe

that the marginal distributiondistr∗(f,G)|Bk(o) can be obtained from the distribution ofR-colored

neighborhoods of radiusk of a random vertex inG (and the analogous statement holds forG′). Since

|E(G)∆E(G′)| intersects such a neighborhood with probability tending to0 as|V (G)| → ∞, we

have that the distance betweendistr∗(f,G)|Bk(o) anddistr∗(f,G′)|Bk(o) converges to 0 in any

metrization of the weak topology ofRBk(o). This implies the desired continuity property.

We obtain by the above statement and the triangle inequalitythat if |E(G)∆E(G′)| ≤ 4 andN

is large enough, then|dH(S(G), T )− dH(S(G′), T )| < ε2. It is well-known that graph parameters

on randomd-regular graphs that satisfy this Lipschitz property are concentrated around their mean;

see [38, Theorem 2.19]. �

Lemma 5.3 For everyε > 0 there existsn(ε) such that for everyN > n(ε) with probability at

least1− ε a randomd-regular graph onN vertices isε-typical.

Proof. Let M be a finiteε/2-net inT . If G is a randomd-regular graph onN vertices, then there

existsT ∈ M with the property that

P(dH(S(G), T ) < ε/2) ≥ 1/|M |. (6)
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We apply Lemma 5.2 withε′ ≤ ε/4. Combining inequalities (5) and (6), we obtain that forε′ <

1/|M | andN large enough|c| ≤ 3/4ε. Then applying (5) again, the proof is complete. �

Now we enter the proof of Lemma 5.1.

Proof. We go by contradiction. If Theorem 2 fails then there is a growing sequence of natural

numbers{ni}∞i=1, ε > 0 and a sequence{δi}∞i=1 with limi→∞ δi = 0 such that the following holds.

If G is a randomd-regular graph onni vertices then we have with probability at leastε that there

is anδi-almost eigenvectorv of G (with entry sum0) such thatdistr∗(v,G) is at leastε-separated

from any Gaussian wave in the weak topology.

From Lemma 5.3 we obtain that there is a sequence{ε′i}∞i=1 with limi→∞ ε′i = 0 such that a

randomd-regular graph onni vertices isε′i-typical with probability at least1− ε′i for everyi. There

exists an indexj such that for alli ≥ j we haveε′i < ε. This implies that for alli ≥ j we can choose

a graphGi onni vertices such thatGi is ε′i-typical and there exists aδi-almost eigenvectorfi of Gi

(with entry sum 0) satisfying thatdistr∗(
√
nifi, Gi) is at leastε-separated from any Gaussian wave

in the weak topology.

By choosing a subsequence we can assume (by abusing the notation) thatdistr∗(
√
nifi, Gi)

weakly converges to some measureµ ∈ P . It is clear thatµ is a nontrivial eigenvector process

which is at leastε-separated from any Gaussian wave in the weak topology. To get a contradiction

it remains to show thatµ is typical.

Again by choosing a subsequence we can assume that
∑∞

i=1 ε
′
i < ∞. Let {G′

i}∞i=1 be such that

G′
i is a randomd-regular graph onni vertices and the terms of the sequence are independent. It

follows from the Borel–Cantelli lemma that almost surely all but finitely many indicesi satisfy that

m∗(G′
i, Gi) ≤ ε′i. For such indices we can findf ′

i with m(distr∗(f ′
i , G

′
i), distr

∗(
√
nifi, Gi)) ≤ ε′i.

We obtain thatdistr∗(f ′
i , G

′
i) converges toµ showing thatµ is typical. �

6 Entropy inequality for typical processes

Let X be a separable metric space; letF be a finite set and letP(F ) denote the set of probability

distributions onF equipped with the topology generated by total variation distance. A continuous

discretization ofX is a continuous functionφ : X → P(F ). If α ∈ XV is anX-coloring of a

finite or countable setV , then we denote byφ ∗ α the probability distribution onFV obtained by

independently choosing an element fromF for eachv ∈ V with distributionφ(α(v)). If µ is a

probability distribution onXV , then we denote byφ∗µ the probability distribution obtained by first

taking aµ random elementα : V → X and then in a second round of randomization we takeφ ∗ α.

The main result of this chapter is the next entropy inequality for typical processes.

Theorem 4 If µ ∈ Id(X) is a typical process andφ : X → P(F ) is a continuous discretization,
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then the processφ ∗ µ satisfies the next entropy inequality.

H(Bk(C)) − (d/2)H(Bk(e)) ≥ Eµo
(H(φ(x))).

Before proving Theorem 4 we need some preparation. Let us fix ametrization of the weak

topology onId(X). For a finited-regular graphG let ω(G) denote the infimum of the numbers

ε > 0 for which it is true that at least1− ε fraction of the vertices ofG are not contained in a cycle

of length at most⌊1/ε⌋. The quantityω(G) measures how similar the graphG is to the treeTd in

the Benjamini–Schramm metric. Throughout this chapter,G is always assumed to be finite.

The operatordistr∗ mapsX-coloredd-regular graphs(α ∈ XV (G), G) to invariant processes in

Id(X). Using this correspondence and the metric onId(X) we define the distance of anX-colored

graph(α,G) and a processµ ∈ Id(X) asω(G) plus the distance ofdistr∗(α,G) andµ in Id. Note

that if (α ∈ XV (G), G) is anX-coloredd-regular graph, then(φ∗α,G) is a probability distribution

onF -valued colorings of the vertices ofG. In this casedistr∗(φ ∗α,G) is a probability distribution

on Id(X), whileφ ∗ distr∗(α,G) is a single element inId(X).

Proposition 6.1 Letµ ∈ Id(X) be an invariant process andφ is a continuous discretization ofX .

Then for everyε > 0 there isδ > 0 such that if a coloredd-regular graph(α ∈ XV (G), G) is at

most of distanceδ fromµ, then with probability at least1 − ε we have that(φ ∗ α,G) is at most of

distanceε fromφ ∗ µ.

The proof of Proposition 6.1 relies on the next technical lemma.

Lemma 6.1 Let µ ∈ Id(X) be an invariant process. Letr ∈ N, B = Br(o) ⊂ Vd and let

β : FB → R be any automorphism invariant function. Then for everyε > 0 there isδ > 0 such that

if a coloredd-regular graph(α ∈ XV (G), G) is at most of distanceδ fromµ then with probability

at least1− ε we have that

|W |−1
∑

v∈W

β(γ|Br(v))

is at mostε-far fromE(β(φ ∗ µB)) whereγ = φ ∗ α andW = {v : v ∈ V (G), Br(v) ≃ B}.

Proof. Assume first that(α ∈ XV (G), G) is an arbitraryd-regularX-colored graph whose distance

is δ′ fromµ and letγ,W as in the statement of the lemma. For a vertexv ∈ W letYv be the random

variable with valueβ(γ|Br(v)). Let g : XB → R be the function defined byg(h) = E(β(φ ∗ h)).
We have forv ∈ W thatE(Yv) is equal tog(α|Br(v)). LetY = |W |−1

∑
v∈W Yv. It follows that

E(Y ) = |W |−1
∑

v∈W

g(α|Br(v)) =

∫

XB

g dνG, (7)

whereνG describes the probability distribution of the isomorphismclasses ofα|Br(v) wherev ∈ W

is a uniform random point. Using the fact thatg is a continuous function we obtain that ifδ′ is
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small enough then the right hand side of (7) is at mostε/2 far from
∫
XB g dµB = E(β(φ ∗ µB)).

Observe thatYv andYw are independent ifv andw have distance at least2r + 1 in G. It follows

that there are at most|B2r+1(o)||W | correlated pairs in{Yv}v∈W . We obtain that the variance of

Y is at most|B2r+1(o)|1/2|W |−1/2 max |β|. We use thatω(G) goes to0 asδ′ goes to0 and thus

|W | tends to infinity. This implies that ifδ′ is sufficiently small then the variance ofY is at most

ε2/3. Now by Chebyshev’s inequality we have thatP(|Y − E(Y )| ≥ ε/2) ≤ ε2. It follows that

P(|Y − E(β(φ ∗ µB))| ≥ ε) ≤ ε2 which completes the proof. �

We continue with the proof of Proposition 6.1.

Proof. Let δ′ be an arbitrary positive number. Let(α ∈ XV (G), G) be anX-coloredd-regular

graph of distanceδ′ fromµ. Let (γ ∈ FV (G), G) be chosen according to the probability distribution

(φ ∗ α,G). Let ε′ > 0, r = ⌊1/ε′⌋ andW = {v : v ∈ V (G), Br(v) ≃ B}. It follows from

Lemma 6.1 that there isc = c(ε′) > 0 such that ifδ′ < c then the condition of Lemma 6.1 holds

for (γ,G) simultaneously for every0− 1 valuedβ with probability at least1− ε′. (Here we use the

fact that there are finitely many such functionsβ.) If c is small enough, then it also guarantees that

|W |/|V (G)| ≥ 1 − ε′. Now it is clear that ifε′ is small enough, then these properties imply that

(γ,G) is at mostε far fromφ ∗ µ. �

For the next lemma letR(d, n) denote the number ofd-regular graphs on the vertex set[n]. In

cased is odd we will always assume that the number of vertices is even.

Lemma 6.2 Let F be a finite set andµ ∈ Id(F ). Let N(n, ε) denote the number ofd-regular

F -colored graphs on the vertex set[n] whose distance fromµ is at mostε. Assume that{ni}∞i=1 is

a growing sequence of natural numbers. Then for everyε > 0 andk ∈ N we have that

H(Bk(C)) − (d/2)H(Bk(e)) ≥ lim
ε→0

(
lim sup
i→∞

n−1
i log(N(ni, ε)/R(d, ni))

)
. (8)

Proof. First we prove the statement fork = 0. In this case we use a formula from [3] that

approximates the numberN ′(n, ε) of F -colored graphs on[n] in which the statistics of colored

1-neighborhoods isε-close toµC . We have that

N ′(n, ε) = R(d, n)H(C)(n(1+o(1))
H(e)−(dn/2)(1+o(1))

whereo(1) is a quantity which goes to0 when firstn → ∞ and thenε → 0. This implies that the

right hand side of (8) is equal to the left hand side whenN(ni, ε) is replaced byN ′(ni, ε). Now we

use that for everyε > 0 there existsε′ > 0 such thatN ′(ni, ε) ≥ N(ni, ε
′) holds for alli. This

finishes the proof of the first part.

The idea of the proof in case ofk > 0 is to generate a new process fromµ in which the color of

every vertexv ∈ Vd is replaced by the isomorphism type of the colored neighborhood ofv of radius

k. The main difficulty in this approach is that the isomorphismtype describes the neighborhood
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only up to automorphisms which leads to extra constants in the entropy formulas. To control these

constants (and to eventually get rid of them) we add some extra randomness to the process.

Let us introduce new processesµr,m on Td for everyk,m ∈ N. If r = 0, thenµ0,m denotes

theF × [m] valued process in which we generate aµ-random coloring onTd and then we add a

second coordinate from[m] to every vertex independently and uniformly. In generalµr,m denotes

the process obtained fromµ0,m by coloringv ∈ Vd with the isomorphism class of the coloring of

Br(v) in µ0,m. Let ar,m,k denote the left hand side (resp.br,m denote the right hand side) of (8)

evaluated forµr,m andk. It is easy to see thatbr,m does not depend onr. On the other hand the

independence of the two coordinates implies thatb0,m = b0,1 + logm. All together this means that

br,m = b0,1 + logm. It is clear thata0,m,k = a0,1,k + logm. From the casek = 0 we have that

ar,m,0 ≥ br,m. We can write this as

a0,1,r + (a0,m,r − a0,1,r) + (ar,m,0 − a0,m,r) ≥ b0,1 + logm

and thusa0,1,r + cr,m ≥ b0,1 holds for everym wherecr,m = ar,m,0 − a0,m,r. Since the inequal-

ity a0,1,r ≥ b0,1 is equivalent to the statement of the lemma fork = r it remains to show that

limm→∞ cr,m = 0 holds for everyr.

Let tr denote the size of the automorphism group of the rootedd − 1-regular tree of depthr.

We claim thatHµ0,m
(Br(C))−Hµr,m

(C) = d log tr + o(1) and thatHµ0,m
(Br(e))−Hµr,m

(e) =

2 log tr + o(1) asm → ∞. It is clear that this claim impliescr,m = o(1). We show the proof of

the first claim. (The proof of the second one is almost identical.) If m is large enough then in the

processµ0,m restricted toBr+1(o) all labels are different with probability converging to1. In such

a case knowing the isomorphism classes of the colored neighborhoods of radiusr − 1 of vertices

in C is equivalent with knowing the colored version ofBr+1(o) up to an isomorphism that fixesC.

The stabilizer ofC in the automorphism group ofBr+1(o) is thed-th power of the automorphism

group of the rootedd − 1 regular tree of depthr. Thus the entropy loss ofHµr,m
(C) compared to

Hµ0,m
(Br(C)) is converging tod log tr. �

Now we arrived to the proof of Theorem 4.

Proof. According to Lemma 6.2 it is enough to show that the processφ ∗ µ satisfies

lim
ε→0

(
lim sup
i→∞

n−1
i log(N(ni, ε)/R(d, n))

)
≥ Eµo

(H(φ(x)))

for some growing sequence{ni}∞i=1 of natural numbers. Forn ∈ N, ε > 0 let a(n, ε) denote the

number ofd-regular graphsG on [n] with the property that there exists anX-coloringα of [n] such

that (G,α) is of distance at mostε from µ. The fact thatµ is typical is equivalent to the fact that

there is a sequence{ni}∞i=1 such thatlimi→∞ a(ni, ε)/R(d, ni) = 1 holds for everyε > 0.

From Proposition 6.1 we obtain that for everyε2 > 0 there isε > 0 such that if a graphG has

anX coloringα of distance at mostε from µ, then with probability at least1 − ε2 we have that
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(φ ∗ α,G) is of distanceε2 from φ ∗ µ. It follows thatG has at leastexp(H(φ ∗ α,G) + o(1))

F -colorings of distance at mostε2 fromφ ∗µ. On the other hand, we have|V (G)|−1H(φ ∗α,G) =

|V (G)|−1
∑

v∈V (G)H(φ(α(v))), which converges toEµo
(H(φ(x))) asα converges toµ.

New letN(n, ε) defined as in Lemma 6.2 for the processφ ∗ µ. From the above observations

we obtain thatn−1
i log(N(ni, ε)/R(d, ni)) can be estimated from below byEµo

(H(φ(x))) − o(1)

asni goes to infinity. Then Lemma 6.2 finishes the proof. �

7 Smooth eigenvector processes

Let µ be an eigenvector process. IfF ⊆ Vd is a finite set then the distribution ofµ, when restricted

to F , is concentrated on the subspaceWλ(F ) (recall Chapter 4). We denote byDsp(F, µ) the

differential entropy ofµF measured inside this subspace using the Euclidean structure inherited

from R
F . We say thatµ is smoothif Dsp(Bk(C)) andDsp(Bk(e)) are finite for everyk. In this

chapter we reduce Theorem 3 to smooth eigenvector processes. The reduction will rely on the

following statement.

Proposition 7.1 Let {Xv}v∈Vd
be a typical eigenvector process with eigenvalueλ and{Yv}v∈Vd

the unique Gaussian waveΨλ with eigenvalueλ. Then the independent sum{Xv + aYv}v∈Vd
is

smooth fora > 0.

Proof. Let S be one ofBk(C) andBk(e). Both{Xv}v∈S and{Yv}v∈S are supported onWλ(S).

Moreover, by Corollary 4.1, we obtain that the support ofΨλ|S is equal toWλ(S). Using Lemma

12.3 inside the spaceWλ(S), we get that the differential entropy of the joint distribution {Xv +

aYv}v∈S is finite. �

Assume that Theorem 3 holds for smooth typical eigenvector processes. Using Proposition 7.1

we obtain that if{Xv}v∈Vd
is an arbitrary typical eigenvector process then{Xv + aYv}v∈Vd

is

smooth for alla > 0. In addition, by Proposition 14.1 and Proposition 14.2,{Xv + aYv}v∈Vd
is

typical. By our assumption, we obtain the Gaussianity of{Xv + aYv}v∈Vd
for all a > 0. This

implies the Gaussianity of{Xv}v∈Vd
by going to0 with a.

8 Entropy Inequality for typical eigenvector processes

In this chapter we prove the next theorem.

Theorem 5 Letµ ∈ Id(R) be a smooth typical eigenvector process. Then

Dsp(Bk(C)) − d

2
Dsp(Bk(e)) ≥ 0

holds for everyk ≥ 0 integer.
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To prove the above theorem we will need some preparation. Fora ∈ N let us define the con-

tinuous discretizationt0,a of R in the following way. Ifx > a (resp.x < −a), thent0,a(x) = a

(resp. t0,a(x) = −a) with probability1. Otherwise lett0,a(x) denote the probability distribution

that takes⌊x ∗ a⌋/a with probability1+ ⌊x ∗ a⌋− x ∗ a and takes1/a+ ⌊x ∗ a⌋/a with probability

x∗a−⌊x∗a⌋. Forσ > 0 we define the discretizationtσ,a by tσ,a(x) = t0,a(x+σN) whereN is a

random variable with standard normal distribution. We denote bytnσ,a the continuous discretization

of Rn obtained by the coordinatewise independent application oftσ,a.

Lemma 8.1 LetX be a random variable with values inRn with finite variance, i.e.E(‖X‖22) < ∞.

Then we have for every fixedσ > 0 that

H(tnσ,a(X)) = n log a+ D(X + σM) + o(1)

asa → ∞, whereM is independent ofX and has standard normal distribution onRn.

The main difficulty of the proof of Lemma 8.1 comes from the fact that the support ofX is not

necessarily compact. We have to treat a situation where we refine and increase the interval of

discretization simultaneously.

Proof. By Lemma 12.3, the finite variance ofX guarantees thatD(X + σM) exists and is a finite

quantity. LetSa = {r/a|r ∈ Zn, ‖r‖∞ ≤ a2} and letS′
a = {x|x ∈ Sa, ‖x‖∞ < a}. Forx ∈ Sa

let pa(x) denote the probability ofx in the distributiontnσ,a(X). We have that

H(tnσ,a(X)) =
∑

x∈Sa

−pa(x) log pa(x).

Let qa denote the quantityP(tnσ,a(X) ∈ Sa \ S′
a) =

∑
x∈Sa\S′

a
pa(x). The construction oftnσ,a

shows that

qa ≤ P(‖X + σM‖∞ ≥ a− a−1).

By Chebyshev’s inequality we have that

P(‖X + σM‖∞ ≥ a− a−1) = O(a−2)

and soqa = O(a−2). It follows that

∑

x∈Sa\S′
a

−pa(x) log pa(x) ≤ −qa log qa + qa log |Sa \ S′
a| ≤ −qa log qa + qa log |Sa|

= −qa log qa + qan log(2a2 + 1) = o(1).

Forx = (x1, x2, . . . , xn) ∈ Rn let ga(x) =
∏n

i=1 max{1−a|xi|, 0}. For everyx ∈ S′
a we have

thatpa(x) =
∫
z∈Rn ga(z)f(x − z) wheref is the density function ofX + σM onRn. Using that

an
∫
Rn ga = 1 we have thatanpa(x) is a weighted average of the values off in anL∞-ball of radius
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1/a. It follows that for everyx ∈ S′
a there isα(x) ∈ R

n with the property that‖x−α(x)‖∞ ≤ 1/a

andanpa(x) = f(α(x)) (using thatf is continuous). Now we have that

∑

x∈S′
a

−pa(x) log pa(x) = (n log a)
∑

x∈S′
a

pa(x)− a−n
∑

x∈S′
a

f(α(x)) log f(α(x)). (9)

It follows from qa = O(a−2) that

(n log a)
∑

x∈S′

pa(x) = n(log a)(1− qa) = n log a+ o(1).

It remains to bound the second part of (9). From the equation
∫

z∈[−a+a−1,a]n
−f(z) log f(z) =

∫

z∈[0,a−1]n

∑

x∈S′
a

−f(x+ z) log f(x+ z) (10)

we obtain that there is a fixedγ ∈ [0, a−1]n such that

a−n
∑

x∈S′
a

−f(x+ γ) log f(x+ γ) (11)

is equal to the left hand side of (10). On the other hand, the left hand side of (10) is equal to

D(X + σM) + o(1). It remains to show that

a−n
∑

x∈S′
a

(
f(α(x)) log f(α(x)) − f(β(x)) log f(β(x))

)
= o(1) (12)

whereβ(x) = x+ γ. (Note thatα, β, γ all depend ona.) We will use that‖α(x)− β(x)‖∞ ≤ 2/a

holds for everyx ∈ S′
a and thusr(x) := ‖α(x) − β(x)‖2 ≤ 2

√
n/a. Let tx = f(α(x))/f(β(x)).

We have by Lemma 12.4 that for everyε > 0 if a is big enough, thentx ≥ 1− ε (resp.t−1
x ≥ 1− ε)

provided thatf(β(x)) > c (resp.f(α(x)) > c) wherec = σ−n/2 exp(−a/(32nσ2)). This implies

that for everya > 0 we can chooseε = ε(a) such thatlima→∞ ε(a) = 0 and the previous property

holds withε. We will assume thata is so large thatε(a) < 1/3.

LetT1 denote the sum of the terms in (12) wheref(β(x)) ≤ 2c and letT2 denote the sum of the

remaining terms. According to Lemma 12.4 eitherf(α(x)) < c or t−1
x ≥ 1 − ε. If f(β(x)) ≤ 2c,

then we havef(α(x)) ≤ 2c/(1 − ε) ≤ 3c in both cases. It follows thatT1 ≤ 3c log(3c)(2a2 +

1)n/an = o(1).

Now we estimateT2. From now on we assume thatf(β(x)) > 2c. By Lemma 12.4 we obtain

tx ≥ 1 − ε holds and thusf(α(x)) ≥ (1 − ε)2c > c. This implies again by Lemma 12.4 that

t−1
x ≥ 1− ε and so|1− tx| ≤ 2ε. We have that

f(α(x)) log f(α(x)) − f(β(x)) log f(β(x)) = f(α(x)) log tx − (1 − tx)f(β(x)) log f(β(x)).

Using thatf(α(x)) = anpa(x) and| log tx| ≤ − log(1− 2ε) we get that
∣∣∣∣a

−n
∑

x∈S′
a,f(β(x))>2c

f(α(x)) log tx

∣∣∣∣ ≤
∑

x∈Sa

pa(x)(− log(1− 2ε)) = − log(1− 2ε) = o(1).
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It is now clear that the following claim finishes the proof of the lemma.

Claim: a−n
∑

x∈S′
a
|f(β(x)) log f(β(x))| = O(1).

By Lemma 12.2 there isb ∈ R+ such thatf(x) < 1 whenever‖x‖∞ > b−1. LetB = [−b, b]n.

By the finiteness ofB we have that

a−n
∑

x∈S′
a∩B

−β(x) log(β(x)) =

∫

B

−f log f + o(1) (13)

and that

a−n
∑

x∈S′
a∩B

|β(x) log(β(x))| =
∫

B

|f log f |+ o(1) (14)

It follows from (13) and the property that the left hand side of (10) is equal to (11) that

a−n
∑

x∈S′
a\B

−β(x) log(β(x)) =

∫

B

−f log f + o(1). (15)

By (14) and (15) we get that

a−n
∑

x∈S′
a

|β(x) log(β(x))| =
∫

Rn

|f log f |+ o(1) = O(1). �

In the following lemma, first we calculate the entropy of the random variabletσ,a(x) for every

fixedx, and then we take the expectation of this quantity with respect to the distribution of a random

variableX .

Lemma 8.2 LetX be a real valued random variable with finite variance and withdistributionν.

ThenEν(H(tσ,a(x))) = log a+ D(N(0, σ)) + o(1) for every fixedσ > 0 asa → ∞.

Proof. Let νa denote the conditional distribution ofX when |X | < a/2 and letν′a denote the

conditional distribution when|X | ≥ a/2. We have that

Eν(H(tσ,a(x))) = P(|X | < a/2)Eνa(H(tσ,a(x))) + P(|X | ≥ a/2)Eν′
a
(H(tσ,a(x))).

By Chebyshev’s inequality we obtain thatP(|X | ≥ a/2) = O(a−2). It follows from the trivial

uniform boundH(tσ,a(x)) ≤ log(a2 +1) thatP(|X | ≥ a/2)Eν′
a
(H(tσ,a(x))) = o(1). Similarly by

P(|X | < a/2) = 1−O(a−2) we obtain that

P(|X | < a/2)Eν(H(tσ,a(x))) = Eνa(H(tσ,a(x))) + o(1).

It is now enough to prove that if|x| ≤ a/2 thenH(tσ,a(x)) = log a + D(N(0, σ)) + o(1), where

theo(1) error term does not depend onx but tends to0 asa → ∞.

Lemma 8.1 implies thatH(tσ,a(0)) = log a+D(N(0, σ)) + o(1); this is theX = 0 case. Next,

suppose thatx ∈ Sa = {r/a|r ∈ Z, ‖r‖∞ ≤ a2} and0 < x ≤ a/2. Notice that ify ∈ Sa and−a <

y < a−x, thenP(tσ,a(0) = y) = P(tσ,a(x) = y+x), because the distance of0 andx is a multiple
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of the distance of the points in the gridSa that we used for discretization. Hence the difference

H(tσ,a(x)) − H(tσ,a(0)) contains only terms corresponding to|y − x| > a/2, y ∈ Sa in the first

entropy expression (forx) and|y| > a/2, y ∈ Sa in the second one (for0). The facts thattσ,a is

supported on a set of at mosta2 +1 elements and that the probability that a Gaussian distribution is

farther from its expectation thana/2 isO(exp(−a2)/2) imply thatH(tσ,a(x))−H(tσ,a(0)) = o(1)

uniformly in 0 < x < a/2 asa → ∞, whenx ∈ Sa. A similar argument works for−a/2 < x < 0

if x is an element ofSa.

Finally, letx ∈ [−a/2, a/2]arbitrary, andx be the closest element ofSa tox. As it is well known

(e.g. as a consequence of Pinsker’s inequality), the total variation distance of N(x, σ) and N(x, σ)

is of orderO(1/a) provided|x − x| ≤ 1/a. By choosing an appropriate coupling of these two

distributions and applying the same discretization, it follows thatdTV(tσ,a(x), tσ,a(x)) = O(1/a).

Applying Theorem 17.3.3. of [17] we obtain that

|H(tσ,a(x))−H(tσ,a(x))| ≤ −dTV(tσ,a(x), tσ,a(x)) log
dTV(tσ,a(x), tσ,a(x))

a2 + 1
= o(1),

and the error term does not depend onx. This concludes the proof. �

We finish this chapter with the proof of Theorem 5. Letµσ,a denote the process in which we

pointwise discretizeµ usingtσ,a (using the notation of Chapter 5, we haveµσ,a = tσ,a ∗ µ) and let

µσ denote the process obtained fromµ by addingσ times the i.i.d normal distribution. By Lemma

8.1 and|Bk(C)| − (d/2)|Bk(e)| = 1 we obtain that

H(Bk(C), µσ,a)−
d

2
H(Bk(e), µσ,a) = log a+ D(Bk(C), µσ)−

d

2
D(Bk(e), µσ) + o(1).

By Theorem 4 and the typicality ofµ we get that

H(Bk(C), µσ,a)−
d

2
H(Bk(e), µσ,a) ≥ Eµo

(H(tσ,a(x))).

Using the previous formulas, Lemma 8.2 and the limita → ∞ we obtain that

D(Bk(C), µσ)−
d

2
D(Bk(e), µσ) ≥ D(N(0, σ) (16)

for everyσ > 0.

Let S ⊂ Vd be eitherBk(C) or Bk(e). We denote byµS,σ the probability measure obtained

by convolving the measureµS with the standard normal distribution onWλ(S) (for the definition

of Wλ(S) see chapter 4), whereλ is the eigenvalue corresponding toµ. Observe that the standard

normal distribution onRS is the independent sum of the standard normal distribution onWλ(S) and

onWλ(S)
⊥. Then by using thatdimWλ(S)

⊥ = |S| − |∂S|, we have

D(S, µσ) = Dsp(µS,σ) + (|S| − |∂S|)D(N(0, σ)).

Using this formula forS = Bk(C) andS = Bk(e) in (16) together with|∂Bk(C)| = (d/2)|∂Bk(e)|,
we obtain that

Dsp(µBk(C),σ)−
d

2
Dsp(µBk(e),σ) ≥ 0.
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If σ → 0, then we obtain the statement of Theorem 5. �

9 Eigenvalues of the covariance operator

The main goal of this section is to prove the following statement on the differential entropies of

Gaussian waves. Recall the definition ofDsp from Chapter 7. In addition, bydetsp we mean the

product of the non-zero eigenvalues of a matrix.

Theorem 6 LetΨλ be a Gaussian wave function on thed-regular tree withλ ∈ [−2
√
d− 1, 2

√
d− 1].

Then we have

Dsp(Bk(C),Ψλ)−
d

2
Dsp(Bk(e),Ψλ) → 0 (k → ∞).

Let Σk be the covariance matrix of the joint distribution ofΨλ restricted to the ballBk(C), and

Σ′
k be the similar covariance matrix onBk(e). The differential entropy of a multivariate normal

random variable with covariance matrixΣ of rankm is given by 1
2 log

(
(2πe)m detsp Σ)

)
if we

measure differential entropy inside the support of the variable. Equation (4) and Corollary 4.1

imply that the rank ofΣk is d/2 times the rank ofΣ′
k. Hence we need to prove that

log detsp Σk −
d

2
log detsp Σ

′
k → 0 (k → ∞). (17)

Notice that ifs is an eigenvalue of bothΣk andΣ′
k, and its multiplicity in the first case isd/2

times its multiplicity in the second case, then it is canceled out in the difference. In order to find

the eigenvalues that do not cancel out, we decompose bothR|Bk(C)| andR|Bk(e)| as a union of

orthogonal subspaces that are invariant under the corresponding covariance operators.

First we need some notation. We will use the genealogical labeling of the vertices inBk(C)

and inBk(e) (in this section, we will not distinguish vertices and labels). InBk(C), the root gets

label∅, and we put the labels on the vertices such that the labels of neighbors differ only in the last

coordinate (i.e.1, 2, . . . , d are the neighbors of the root;11, 12, . . . , 1(d−1) are the further neighbors

of 1, and so on). For a vertexv the length of its label is denoted by|v|, which is its distance from∅.

For a vertexv and a sequencey, by vy we mean the vertex with the label obtained by concatenating

v andy. We say thatv is an ancestor ofw (denoted byv → w), if w = vy for somey 6= ∅. As

for Bk(e), we use a similar notation, but keeping track of symmetry with respect to the central edge

e. The endpoints ofe have labels∅ and∅′. The descendants of∅ have labels1, . . . , d − 1, their

descendants have labels11, 12, . . . , 1(d − 1), 21, . . . and so on. Similarly, the descendants of∅′

have labels1′, . . . , (d− 1)′, their descendants have labels11′, 12′, . . . , 1(d− 1)′, 21′, . . . and so on.

Note that|v| still denotes the length of the label.

We assign a linear subspace to each vertex inBk(C) \ ∂Bk(C) andBk(e) \ ∂Bk(e). Fix

v ∈ Bk(C) \ ∂Bk(C). Let Ev be the elementsα ∈ RBk(C) for which the following hold. (i)
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αw = 0 if v is not an ancestor ofw. (ii) Suppose that1 ≤ j ≤ (d − 1) andy, z are labels with

|y| = |z|. Thenαvjy = αvjz . (To put it in another way, for descendants ofv, the value ofα depends

only on the first coordinate afterv and the distance fromv.) (iii) We have
∑

y:|y|=r αvy = 0 for

r ≥ 1.

In addition, we introduce the following subspace:

G = {α ∈ R
Bk(C) : αv = αw if |v| = |w|}.

We will also refer toE ′
v (whenv ∈ Bk(e) \ ∂Bk(e)), which are linear subspaces ofRBk(e) defined

similarly. The definition of the complement subspace is somewhat different:

G′
1 = {α ∈ R

Bk(e) : αv = αw if |v| = |w|}.

G′
2 = {α ∈ R

Bk(e) : αv = αw if ∅ → v, ∅ → w, |v| = |w|; αv′ = −αv if v = ∅ or ∅ → v}.

Lemma 9.1 The following hold for the linear subspaces defined above.

(a) Ev, v ∈ Bk(C) \ ∂Bk(C) andG are invariant underΣk. Similarly,E ′
v, v ∈ Bk(e) \ ∂Bk(e)

andG′
1,G′

2 are invariant underΣ′
k.

(b) Ev, v ∈ Bk(C) \ ∂Bk(C) andG are pairwise orthogonal. Similarly,E ′
v, v ∈ Bk(e) \ ∂Bk(e)

andG′
1,G′

2 are pairwise orthogonal.

(c) R
Bk(C) = G +

∑
v∈Bk(C) Ev andRBk(e) = G′

1 + G′
2 +

∑
v∈Bk(e)

E ′
v.

Proof. Before going into the proof, we note that we will only use the property that every entry(i, j)

of Σk depends only on the distance ofi andj. (a) First observeG consists of all vectors that are

invariant under the full automorphism group ofBk(C). This property is preserved byΣk and thus

G is invariant underΣk.

Take anyα ∈ Ev. ForΣkα, property(ii) is preserved because the entries ofΣk depend only on

the distance of the two corresponding vertices (as it is the covariance matrix of an invariant random

process). Putting this together with the third property we get that(i) also holds forΣkα. Property

(iii) means orthogonality toG; using the invariance ofG, this will also be satisfied byΣkα, which

is thus inEv. Similar arguments work for the other two linear subspaces.

(b) Fix v1, v2 ∈ Bk(C). If none of them is ancestor of the other one, then the supportof any

vector ofEv1 is disjoint from the support of any vector inEv2 , which implies orthogonality. If

v1 → v2, then the value of a vector inEv1 is the same at all vertices of typev2y with |y| fixed.

Multiplying this by the values of a vector inEv2 and summing this up for differentys (of fixed

length) we get0, because of property(iii). This implies the orthogonality. The other cases are

similar; we omit the details.

(c) The dimensions of these subspaces are as follows.

dim Ev = (k − |v|+ 1)(d− 2) for ∅ 6= v ∈ Bk(C) \ ∂Bk(C);
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dim E∅ = (k + 1)(d− 1); dim G = k + 2;

dim E ′
v = (k − |v|+ 1)(d− 2) for ∅ 6= v ∈ Bk(e) \ ∂Bk(e);

dim G′
1 = k + 1; dim G′

2 = k + 1.

The following equalities are easy to check by induction onk:

1 + (k + 1)d+

k∑

j=1

d(d− 1)j−1(k + 1− j)(d − 2) = |Bk(C)|;

2(k + 1) + 2

k−1∑

j=1

(d− 1)j−1(k − j)(d− 2) = |Bk(e)|.

Hence the sum of the dimension of the linear subspacesEv andG is equal to the dimension of the

spaceRBk(C). Since the subspaces are pairwise orthogonal by part(b) of the lemma, this implies

that the sum must be equal toRBk(C). A similar argument works forBk(e). �

For the following lemma, recall the definition off(k, x) from equation (2). Furthermore, the

calculation about this recurrence relation in [1] imply that if we takeλ = 2
√
d− 1x, then the

covariance of the values at distancek in the Gaussian waveΨλ is equal tof(k, x).

Lemma 9.2 Letf(k, x) be defined by equation(2). We define

l(k, x) = 1 +

k−1∑

j=1

(d− 2)(d− 1)j−1f(2j, x).

Then the eigenvalues ofΣk corresponding toE∅ andG are as follows.

s1(k, x) = 1 +

k∑

j=1

(d− 1)jf(2j, x) +

k∑

j=1

l(j, x) with multiplicity1;

s2(k, x) =

(
1− s1(k, x) +

k∑

j=1

dl(j, x)

)
/(d− 1) with multiplicityd− 1.

The eigenvalues ofΣ′
k corresponding toG′

1 andG′
2 are as follows.

s3(k, x) =
k∑

j=1

l(j, x) + (d− 1)j−1f(2j − 1, x) with multiplicity1;

s4(k, x) =

k∑

j=1

l(j, x)− (d− 1)j−1f(2j − 1, x) with multiplicity1.

Proof. Using the notation from Chapter 4, letSk = Wλ(Bk(C)) andS ′
k = Wλ(Bk(e)). First we

considerG. Sincef(k, x) is the covariance of the values at distancek in a (nontrivial) Gaussian

wave, we have by linearity that every row ofΣk is inSk. It follows thatIm(Σk) ⊆ Sk. On the other

hand, by the previous lemma,G is invariant underΣk. Notice thatG ∩Sk is one dimensional: given

the value at the root, the common value of its neighbors is determined (even forλ = 0), and this
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can be continued. It follows thatΣk|G has rank one, and the eigenvalue corresponding toG can be

obtained by calculating the trace of the matrix ofΣk|G in an arbitrary basis. By choosing the basis

of the indicator functions of the spheres of radius0, 1, . . . , k around the root, elementary calculation

shows that this eigenvalue is equal tos1(k, x).

The three eigenvalues corresponding to the invariant subspacesE∅, G′
1 andG′

2 can be obtained

by similar arguments, by identifying the image ofΣk (or Σ′
k) restricted to the given subspace and

calculating the trace of its matrix. In the second case,E ′
∅∩Sk has dimensiond−1: 0 is assigned to the

root; the values of thed neighbors of∅ have to sum up to 0, but there are no other conditions; given

these values, all the others are uniquely determined. The only nonzero eigenvalue has multiplicity

d − 1, which makes it possible to calculate it based on the trace ofthe matrix. As for the last two

cases,G′
1 ∩ S ′

k andG′
2 ∩ S ′

k both have dimension 1 again: given the value at∅, the value at∅′ has

to be the same or the opposite. Then the eigenvalue equation and the equality conditions inG′
1 and

G′
2 uniquely determine all the other values. By choosing appropriate bases in these subspaces, it is

straightforward to obtain the eigenvalues in the lemma. �

Lemma 9.3 Using the notation of the previous lemma, for everyx ∈ [−1, 1], we have

log s1(k, x) + (d− 1) log s2(k, x)−
d

2
log s3(k, x)−

d

2
log s4(k, x) → 0 (k → ∞).

Proof. First we calculate the middle term ofs1(k, x). Using equation (2), we obtain that

T (k, x) :=

k∑

j=1

(d− 1)jf(2j, x) =

k∑

j=1

(d− 1)j√
d(d− 1)2j−1

q2j(x),

where the polynomialsq are defined by equation (3). Straightforward calculation shows that with

x = cosϑ we have

T (k, x) =
d− 1

d
U2k(x) +

d− 2

d sinϑ
Im

e3iϑ(e(2k−2)iϑ − 1)

e2iϑ − 1
− 1

d
,

if sinϑ 6= 0 ande2ϑ 6= 1. (We deal with the exceptional cases at the end of the proof.)Using this

formula, we obtain that

l(k, x) = 1− d− 2

(d− 1)d
+

d− 2

d
U2k−2(x) +

(d− 2)2

d(d− 1) sinϑ
Im

e3iϑ(e(2k−4)iϑ − 1)

e2iϑ − 1
(k ≥ 2).

Notice that the last term is bounded ink for every fixedx. From now on,O(1) will denote a quantity

which depends both onx andk such thatfor every fixedx it is bounded ink. We emphasize that in

Theorem 6 the limit is taken for fixedλ (which is equal tox ·
√
d− 1). Thus in the proofs of this

chapter we always think ofx as a fixed quantity while tending to infinity withk.

Continuing our calculations, we obtain that

s1(k, x) = 1 + T (k, x) +
k∑

j=1

l(j, x) =

(
1− d− 2

d(d− 1)
− (d− 2)2

d(d− 1) sinϑ
Im

e3iϑ

e2iϑ − 1

)
k +O(1).
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On the other hand, we have

s1(k, x)− s2(k, x) =
d

d− 1
s1(k, x) −

d

d− 1

k∑

j=1

l(j, x)− 1

d− 1
= O(1);

s1(k, x)− s3(k, x) = 1 +

k∑

j=1

(d− 1)jf(2j, x)− (d− 1)jf(2j − 1, x) = O(1);

s3(k, x) − s4(k, x) = 2
k∑

j=1

(d− 1)jf(2j − 1, x) = O(1).

To put it in another way, with

A = 1− d− 2

d(d− 1)
− (d− 2)2

d(d− 1) sinϑ
Im

e3iϑ

e2iϑ − 1

the expressionss1(k, x), s2(k, x), s3(k, x) ands4(k, x) are all in the formAk + O(1). If A > 0,

then we get that

log sj(k, x) = logA+ log k + o(1) (j = 1, 2, 3, 4),

which implies the statement of the lemma. Hence, in the rest of the proof, we check thatA > 0

holds.

First notice that1 − d−2
d(d−1) > (d−2)2

d(d−1) is satisfied for alld. In addition, by using elementary

trigonometric identities we obtain

Im
e3iϑ

sinϑ(e2iϑ − 1)
=

sinϑ− sin 3ϑ

2 sinϑ(1− cos 2ϑ)
=

1− cos 2ϑ− 2 cos2 ϑ

4 sin2 ϑ
=

sin2 ϑ− cos2 ϑ

2 sin2 ϑ
≤ 1.

Putting this together, we get the positivity ofA, which concludes the proof.

We have to deal with the remaining special cases. First, if|x| = 1, thensinϑ = 0, but we

still haveUk(cosϑ) = k + 1. This implies thatl(k, x) is a quadratic polynomial, ands1(k, x) is a

cubic polynomial (with leading coefficient1− (d− 2)2/d/(d− 1) > 0). Moreover, the differences

s1 − s2, s1 − s3, s1 − s4 are all of orderO(k2), which implies the statement of the lemma.

The last case is whene2iϑ = 1. This impliesUk(cosϑ) = 1 for all k. That is,qk(x) =

(d− 2)/
√
d(d− 1), andl(k, x) is of the formBk + O(1) for some nonzeroB. Now s1, s2, s3, s4

are all quadratic polynomials as a function ofk, while their differences are linear. It follows again

that the expression in the lemma goes to 0 ask → ∞. �

Proof of Theorem 6.As we have discussed, it is sufficient to show that (17) holds.First fix k, and

recall Lemma 9.1. Notice that for every1 ≤ r ≤ k − 1, if we take two verticesv1, v2 in Bk(C)

such that|v1| = |v2| = r, then the linear transformationΣk restricted toEv1 is isomorphic to

the linear transformationΣk restricted toEv2 (we use again that the entries of the covariance matrix

depend only on the distance of the vertices). Hence the set ofeigenvalues ofΣk corresponding to the

invariant subspacesEv1 andEv2 are the same. Furthermore, this linear transformation is isomorphic

to the linear transformationΣ′
k restricted toE ′

v, if |v| = r holds. For every1 ≤ r ≤ k − 1 we have

∣∣{v : |v| = r, v ∈ Bk(C)}
∣∣ = d

2

∣∣{v : |v| = r, v ∈ Bk(e)}
∣∣.
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This means that all eigenvalues belonging to the spacesEv andE ′
v cancel out in the expression in

(17) for |v| > 0.

Therefore only the eigenvalues corresponding toG, E ′
∅,G′

1 andG′
2 are left. These are calculated

with multiplicities in Lemma 9.2, and hence Lemma 9.3 finishes the proof by showing that the

difference goes to zero ask → ∞. �

10 Improved differential entropy inequality

In this chapter we use a combination of Theorem 5 and Theorem 6to prove an improved version of

Theorem 5 for the casek = 0. We will use the notation from Chapter 4. IfS is eitherBk(C) or

Bk(e) for somek ≥ 0 andp is in S \ ∂S, then we have for the Gaussian waveΨλ with distribution

µ that

D(Q(S, p, µ)) = D(Bp) +
∑

(v,w)∈D

D(Av,w). (18)

We obtain from (18) that the differential entropyD(Q(S, p, µ)) does not depend onp for a Gaussian

wave with distributionµ. Observe that changing the vertexp to p′ results in a linear transformation

Tp,p′ in the systemQ(S, p, µ). The invariance of the differential entropy shows by Lemma 13.1 that

Tp,p′ has determinant1.

Now applying Lemma 13.1 for an arbitrary smooth eigenvectorprocessν with eigenvalueλ we

obtain that the value ofD(Q(S, p, ν)) is independent ofp since the transformationsTp,p′ depend

only on the quadruplep, p′, λ, S and can be calculated from the eigenvector equation. For a general

smooth eigenvector processν we defineD(S, ν) as this unique differential entropy ofD(Q(S, p, ν)).

We will need the next definition.

Definition 10.1 A process{Yv}v∈Vd
in Id(X) is called2-Markov if for an arbitrary edgee the dis-

tributions{Yv}v∈W1
and{Yv}v∈W2

are conditionally independent with respect to{Yv}v∈e where

W1 andW2 are the set of vertices on the two sides ofe. (With this notationVd = W1 ∪ e ∪W2.)

Note that the2-Markov property implies that the marginal distributionYC = {Yv}v∈C deter-

mines the whole process because we can build up the distribution {Yv}v∈Vd
using iterated condi-

tionally independent couplings ofYC along edges. More precisely, if for some connected subgraph

K of Td the distribution{Yv}v∈V (K) is already constructed andw ∈ Vd is a vertex such that the

starB1(w) intersectsK in a single edgee, then the joint distribution{Yv}v∈V (K)∪B1(w) is the

conditionally independent coupling of{Yv}v∈V (K) and{Yv}v∈B1(w) with respect to{Yv}v∈e. The

invariance of the process implies that{Yv}v∈B1(w) has the same distribution asYC . By iterating

this procedure we can build up the marginal distribution on any finite connected subgraph ofTd and

thus the whole process in uniquely determined.
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Lemma 10.1 We have for everyk ≥ 1 and smooth eigenvector processν the following three in-

equalities.

D(Bk(C), ν) ≤ dD(Bk(e), ν)− (d− 1)D(Bk−1(C), ν),

D(Bk(e), ν) ≤ 2D(Bk−1(C), ν)− D(Bk−1(e), ν),

D(Bk(C), ν) − (d/2)D(Bk(e), ν) ≤ D(Bk−1(C), ν) − (d/2)D(Bk−1(e), ν).

If ν is Gaussian, then we have equality everywhere. Furthermoreif we have equality everywhere

(for everyk), thenν is 2-Markov.

Proof. The proof is based on the general fact (see Lemma 13.2) that for a joint distribution(X,Y, Z)

we have thatD(X,Z) + D(Y, Z) − D(Z) ≥ D(X,Y, Z) holds with equality if and only ifX and

Y are conditionally independent with respect toZ. To see the first inequality let us placep to the

root ofBk(C). We can coverBk(C) in a rotational symmetric way byd copies ofBk(e) in a way

that all of them containBk−1(C) and they are disjoint outside ofBk−1(C). Each copy ofBk(e)

covers a subset of the variablesAv,w andBp such that the joint differential entropy of this subset of

variables is equal toD(Bk(e), ν). Now Lemma 13.2 finishes the proof of the first inequality. The

other two inequalities can be seen in a similar way. If we haveequality everywhere for everyk, then

by lemma 13.2 we get that the joint distribution ofν on Bk(C) is the conditionally independent

coupling ofd copies ofBk(e) overBk−1(C) and the joint distribution onBk(e) is the conditionally

independent coupling of2 copies ofBk−1(C) overBk−1(e). By induction the2-markov property

follows insideBk(C) for everyk and thus for the whole process.

Letα(S, ν) denote the differenceD(Q(S, p, ν))−D(Q(S, p, µ)) whereµ is the Gaussian eigen-

vector process with the same eigenvalue asν. If we apply the same change of basis to both

D(Q(S, p, ν)) andD(Q(S, p, µ)), they change with the same additive constant by lemma 13.1 and

thusα(S, ν) remains unchanged. This shows the basis independence ofα(S, ν). In particular we

have that ifν is a smooth eigenvector process thenα(S, ν) = Dsp(S, ν)− Dsp(S, µ) and so

α(Bk(C), ν)− (d/2)α(Bk(e), ν) =

(
Dsp(Bk(C), ν) − (d/2)Dsp(Bk(e), ν)

)
−
(
Dsp(Bk(C), µ)− (d/2)Dsp(Bk(e), µ)

)
. (19)

Using Theorem 5 and Theorem 6 we get the following consequence.

Proposition 10.1 If ν is a smooth typical eigenvector process then

lim sup
k→∞

α(Bk(C), ν) − (d/2)α(Bk(e), ν) = lim sup
k→∞

Dsp(Bk(C), ν) − (d/2)Dsp(Bk(e), ν) ≥ 0.

Proof. By Theorem 5 the first term in (19) is non negative and by Theorem 6 the second term

converges to0. This completes the proof.

The main theorem of this chapter is the following.
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Theorem 7 If ν is a smooth typical eigenvector process, thenα(C, ν) − (d/2)α(e, ν) ≥ 0 and

equality implies thatν is 2-Markov.

Proof. By iterating the third inequality in Lemma 10.1 we obtain that

D(Bk(C), ν) − (d/2)D(Bk(e), ν) ≤ D(Bl(C), ν) − (d/2)D(Bl(e), ν)

holds for everyk ≥ l ≥ 0. Furthermore if we replaceν in the above formula by the Gaussian wave

µ then we get equality. This implies that

α(Bk(C), ν)− (d/2)α(Bk(e), ν) ≤ α(Bl(C), ν) − (d/2)α(Bl(e), ν) (20)

holds for everyk ≥ l ≥ 0. By Proposition 10.1 we get the inequality of the theorem by applying

(20) with l = 0 andk → ∞. For the second statement assume thatα(C, ν) − (d/2)α(e, ν) = 0.

By (20) this is only possible ifα(Bk(C), ν)− (d/2)α(Bk(e), ν) = 0 holds for everyk and thus the

inequalities of Lemma 10.1 are all equalities. This impliesthatν is 2-Markov. �

11 Heat equation and the proof of the main theorem

Definition 11.1 For λ ∈ [−2
√
d− 1, 2

√
d− 1] andd ≥ 3 let Fd,λ denote the set of joint distribu-

tionsF = (X1, X2, . . . , Xd, Z) of real valued random variables such that

1. E(XiXj) = (λ2 − d)d−1(d − 1)−1, E(XiZ) = λ/d, E(Xi) = E(Z) = 0 andE(X2
i ) =

E(Z2) = 1 holds for1 ≤ i, j ≤ d andi 6= j;

2. the joint distribution(X1, X2, . . . , Xd, Z) is symmetric under every permutation that fixesZ;

3. for every1 ≤ i ≤ d the joint distribution(Xi, Z) is the same as the joint distribution(Z,Xi);

4. the quantitiesDsp(X1, X2, . . . , Xd, Z) andD(X1, Z) are both finite.

We define the functionD : Fd,λ → R byD(F ) = Dsp(X1, X2, . . . , Xd, Z)− d
2D(X1, Z).

Notice that the covariance conditions of definition 11.1 guarantee thatE((X1+X2+ · · ·+Xd−
λZ)2) = 0 and thusX1+X2+ · · ·+Xd = λZ holds with probability1. This implies that the joint

distributionF is concentrated on the1 co-dimensional (d-dimensional) subspaceWλ(C) in Rd+1.

The subspace differential entropy in definition 11.1 is measured in this subspace.

In this chapter we think ofλ ∈ [−2
√
d− 1, 2

√
d− 1] andd as fixed values and most of the times

our notation will not indicate the dependence on these values even if there is such a dependence.

Our goal is to solve the extremal problem of maximizingD insideFd,λ (see Theorem 8). This will

provide the last step in the proof of our main theorems (see Theorem 2 and Theorem 3) as we will

explain at the end of this chapter.

It will be important that there is a unique elementF ∗ = (X∗
1 , X

∗
2 , . . . , X

∗
d , Z

∗) in Fd,λ such

thatF ∗ is Gaussian. (The covariances define the Gaussian system uniquely, which clearly satisfies
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the symmetry conditions.) Note thatF ∗ depends on bothd andλ. Most of this chapter deals with

the proof of the the next theorem which says that the entropy formulaD in Fd,λ is maximized by

the Gaussian distributionF ∗.

Theorem 8 For everyF ∈ Fd,λ we have thatD(F ) ≤ D(F ∗) and equality holds if and only if

F = F ∗.

To get rid of the subspace differential entropy, we apply a change of basis to the systems inFd,λ.

We can choose a fix linear transformationT : Rd+1 → Rd (depending ond andλ) such that for

everyF ∈ Fd,λ the systemT (F ) = (B1, B2, . . . , Bd) satisfiesE(BiBj) = δi,j for 1 ≤ i, j ≤ d.

Using thatM = T (F ∗) is Gaussian we obtain thatM is the standard normal distribution onRd.

Using that linear transformations change differential entropy with a fix constant (depending on the

transformation; see Lemma 13.1), the statement of the theorem is equivalent to the fact that

D(T (F ))− (d/2)D(X1, Z) ≤ D(M)− (d/2)D(X∗
1 , Z

∗)

and equality holds if and only ifT (F ) = M . The proof of Theorem 8 relies on the following

proposition.

Proposition 11.1 LetF = (X1, X2, . . . , Xd, Z) ∈ Fd,λ andFt = F +
√
2tF ∗ (using independent

sum) for everyt > 0. Then the function

ΛF (t) = D(T (Ft))− (d/2)D(X1 +
√
2tX∗

1 , Z +
√
2tZ∗)

satisfiesΛ′
F (0) ≥ 0. If F is not Gaussian thenΛ′

F (t) > 0 for somet ≥ 0.

Note that the choice ofFt comes from the heat equation inRd (see chapter 12). We first show

that Proposition 11.1 implies Theorem 8. The joint distribution Ft does not satisfy the covariance

conditions of definition 11.1 but it is clear that the scaled versionFt(1 + 2t)−1/2 is inFd,λ. Notice

that scaling does not change the differential entropy formula because the extra additive constants

coming from scaling exactly cancel each other. By using the claim for G = Ft(1 + 2t)−1/2 we

obtain fromΛ′
G(0) ≥ 0 thatΛ′

F (t) ≥ 0 holds forF with everyt ≥ 0. SinceFt(1 + 2t)−1/2 =

F (1 + 2t)−1/2 + F ∗(2t/(1 + 2t))1/2 converges toF ∗ ast → ∞, we obtain thatF ∗ maximizesD.

To see that only the Gaussian systemF ∗ attains the maximum assume thatF attains the maximum.

In this caseΛ′
F (t) ≥ 0 is only possible ifΛ′

F (t) = 0 holds for everyt ≥ 0. This implies thatF is

Gaussian by the second part of Proposition 11.1.

It remains to prove Proposition 11.1. We start with some notation and lemmas. Assume that the

measureµ is the distribution andf is the density function ofB = T (F ). We can choose a matrix

Q ∈ R(d+1)×d such thatXi =
∑

k Qi,kBk holds fori = 1, . . . , d, andZ =
∑

k Qd+1,kBk is also

satisfied. We definevi = (Qi,1, . . . , Qi,d) for i = 1, . . . , d andw = (Qd+1,1, . . . , Qd+1,d). Notice
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that the covariance matrix ofF isQQT . Hence the vectors{vi}di=1 andw are unit vectors such that

(vi, vj) = (λ2 − d)d−1(d − 1)−1 and(vi, w) = λ/d for every1 ≤ i, j ≤ d. The joint distribution

((v1, B), (v2, B), . . . , (vd, B), (w,B)) is the same asF . We have thatµ is invariant with respect

to every orthogonal transformation permuting the system{vi}di=1 and fixingw. Furthermore we

have thatµ projected to the space spanned byvi andw is invariant with respect to the reflection

interchangingvi andw. We can choose two real numbersα andβ such that the vectorsai =

αw + βvi andbi = αvi + βw satisfy(ai, bi) = 0 and‖ai‖2 = ‖bi‖2 = 1 for every1 ≤ i ≤ d (in

particular, we need that(α2 + β2)λ/d + 2αβ = 0, and(α2 + β2) + 2αβλ/d = 1). The choice of

α andβ is unique up to multiplying both by−1 or switching them. Their values can be determined

using elementary geometry.

Note that construction of the vector system{vi}di=1, w, {ai}di=1, {bi}di=1 in Rd is purely linear

algebraic. Such system, with the scalar products given above, can be constructed for an arbitrary

|λ| ≤ d however in the case of|λ| ≤ 2
√
d− 1 they satisfy a useful geometric property expressed in

the following lemma.

Lemma 11.1 If |λ| ≤ 2
√
d− 1, then there are numberst1, t2 with t1, t2 ≥ 0 andt1 + t2 = 1 such

that for everyu ∈ Rd we have

‖u‖22 =
d∑

i=1

(
t1(u, ai)

2 + t2(u, bi)
2
)
.

Proof. The proof follows from two observations. The first one is the following. Let{v′i}di=1 be a

system of unit vectors such that all pairwise scalar products are equal and for all1 ≤ i ≤ d we have

(v′i, w) = c for somec ≤ 1. (The system{ai}di=1 satisfies the conditions withc = α + βλ/d, and

{bi}di=1 with c = αλ/d+ β.) Then

d∑

i=1

(u, v′i)
2 = (1− c2)d(d− 1)−1‖u− (u,w)w‖22 + c2d(u,w)2 (21)

holds for everyu ∈ Rd. To see this, first notice that
∑

i v
′
i = cdw, which implies that(v′i, v

′
j) =

(c2d − 1)/(d − 1) for 1 ≤ i < j ≤ d. It follows that we can chooseγ ∈ R such that the equality

(v′i−γw, v′j−γw) = 0 holds for1 ≤ i < j ≤ d. On the other hand, we have
∑

i(u−(u,w)w, v′i) =

0. Therefore
d∑

i=1

(u, v′i)
2 =

d∑

i=1

(
(u − (u,w)w, v′i)

2 + (u,w)2(w, v′i)
2
)
.

The second term is equal to the second term of (21). In the firstterm, we can replacev′i with v′i−γw.

If the latter is equal to zero, then we are done. Otherwise, since{v′i−γw}di=1 is an orthogonal basis

in w⊥, we obtain

d∑

i=1

(u, v′i)
2 = ‖v′i − γw‖22‖u− (u,w)w‖22 + c2d(u,w)2.
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On the other hand, for symmetry reasons,‖v′i− γw‖22 does not depend oni. By substitutingu = v′1

and using(v′1, v
′
j) = (c2d − 1)/(d− 1) again, we get that the value of this constant is the same as

in equation (21).

The second observation says that if|λ| ≤ 2
√
d− 1 then there exist constantst1, t2 ≥ 0 with

t1 + t2 = 1 such thatt1(ai, w)2 + t2(bi, w)
2 = 1/d. First of all note the symmetries of the vector

system imply that(ai, w)2, (bi, w)2 are independent fromi. Elementary calculation shows that the

two values(ai, w)2 and(bi, w)2 are equal to(1 ±
√
1− (λ/d)2)/2. This shows the existence of

the constantst1, t2. We get the statement of the lemma by taking the convex combination of (21)

applied for{ai}di=1 and{bi}di=1 with coefficientst1 andt2. �

Now we return to the proof of Proposition 11.1. For1 ≤ i ≤ d let fi denote the orthogonal

projection off to the two dimensional spaceVi = 〈w, vi〉R. This means that

fi(x) =

∫

z∈V ⊥

i

f(x+ z)

for x ∈ Vi. Let T2 : R2 → R2 denote the linear transformationT2(x, y) = (αx + βy, αy + βx)

with α andβ defined above. We have thatfi (when written in the orthonormal basisai, bi) is the

density function ofT2(Xi, Z). We can writeΛF (t) as

k + D(T (Ft))− (d/2)D(T2(X1 +
√
2tX∗

1 , Z +
√
2tZ∗)) (22)

where the constantk comes from the change of basisT2. Then by the de Bruijn identity (see equation

(27) and Lemma 12.2) we get

Λ′
F (0) =

∫

Rd

‖▽f‖22/f − (d/2)

∫

V1

‖▽f1‖22/f1.

From Lemma 11.1 we have that

‖▽f‖22 =
d∑

i=1

(t1(∂ai
f)2 + t2(∂bif)

2) (23)

holds for somet1, t2 ≥ 0 such thatt1 + t2 = 1. Using

‖▽f1‖22 = (∂a1
f1)

2 + (∂b1f1)
2

and the above equations it follows that

Λ′
F (0) =

d∑

i=1

∫

Rd

(t1(∂ai
f)2 + t2(∂bif)

2)/f − (d/2)

∫

V1

((∂a1
f1)

2 + (∂b1f1)
2)/f1.

By the symmetries off we have that the terms in the above sum are all the same and thus

Λ′
F (0) = d

∫

Rd

(t1(∂a1
f)2 + t2(∂b1f)

2)/f − (d/2)

∫

V1

((∂a1
f1)

2 + (∂b1f1)
2)/f1. (24)
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Lemma 11.2 If u ∈ V1, then
∫

Rd

(∂uf)
2/f ≥

∫

V1

(∂uf1)
2/f1.

Equality holds if and only if the functiong = ∂uf(x)/f(x) = ∂u log f satisfiesg(x) = g(x + z)

for every pairx ∈ Rd andz ∈ V ⊥
1 .

Proof.
∫

Rd

(∂uf)
2/f =

∫

x∈V1

f1(x)

∫

z∈V ⊥

1

(f(x+ z)/f1(x))(∂uf(x+ z)/f(x+ z))2

≥
∫

x∈V1

f1(x)
(∫

z∈V ⊥

1

(f(x+ z)/f1(x))(∂uf(x+ z)/f(x+ z))
)2

=

∫

x∈V1

f1(x)
(∫

z∈V ⊥

1

(∂uf(x+ z)/f1(x))
)2

=

∫

V1

(∂uf1)
2/f1.

To see the inequality in the above calculation notice thatf(x + z)/f1(x) is the density function of

a probability measure onx + V1 . We can apply the Cauchy–Schwarz inequality using this density

function to get the inequality. It also shows that equality holds in the statement of the lemma if and

only if ∂uf(x+ z)/f(x+ z) is constant almost everywhere onx+V1 for almost everyx. Since we

work with continuous functions the almost can be omitted. �

We apply Lemma 11.2 fora1 andb1 and (24) to obtain that

Λ′
F (0) ≥ (dt1 − d/2)

∫

V1

(∂a1
f1)

2/f1 + (dt2 − d/2)

∫

V1

(∂b1f1)
2/f1. (25)

Using the symmetry of(X1, Z) we obtain that
∫

V1

(∂a1
f1)

2/f1 =

∫

V1

(∂b1f1)
2/f1. (26)

It follows thatΛ′
F (0) ≥ 0. The proof of the first part of Proposition 11.1 is now complete.

We arrived to the second part of Proposition 11.1. Assume that F satisfiesΛ′
F (t) = 0 for every

t ≥ 0. Using the notation from Lemma 11.1 we have byt1 + t2 = 1 that at least one oft1 > 0

andt2 > 0 holds. Without loss of generality we assume thatt1 > 0. Let gt : Rd → R denote

the logarithm of the density function ofBt = T (Ft). This implies by Lemma 11.2 that∂a1
gt

satisfies the property that∂a1
gt(x) = ∂a1

gt(x + z) holds wheneverx ∈ Rd andz ∈ V ⊥
1 . For

convenience, we will write every elementx ∈ R
d as a triple(α(x), β(x), γ(x)), whereα(x) =

(x, a1), β(x) = (x, b1) andγ(x) is the projection ofx to V ⊥
1 . Using this notation, we have that

∂a1
gt(x) = ht(α(x), β(x)). This means that there exists a function̂ht : R2 → R such that

∂a1
ĥt(α(x), β(x)) = ∂a1

gt(x). We have by∂a1
(gt − ĥt) = 0 that gt(x) − ĥt(α(x), β(x)) =

st(β(x), γ(x)) for some functionst. We obtain that the density function ofBt can be written in the

following form.

exp(ĥt(α(x), β(x))) · exp(st(β(x), γ(x)).
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In other words, this means that the random variables ofα(Bt) andγ(Bt) are conditionally indepen-

dent with respect toβ(Bt). This implies by Lemma 12.6 that one of the following two possibilities

holds: eitherα(B) is independent of(β(B), γ(B)) or γ(B) is independent of(α(B), β(B)). In the

first case we obtain (using the terminology of Lemma 12.5) that a1 is an independent direction for

B. By symmetries ofB we obtain that{ai}di=1 are all independent directions forB. If t1 < 1 then

(ai, aj) 6= 0 for every pair1 ≤ i < j ≤ d and Lemma 12.5 finishes the proof. Ift1 = 1, then

{ai}di=1 is an orthonormal basis inRd andb1 =
∑d−1

i=2 ai(d − 1)−1/2. We have that(B, ai) are

identically distributed independent random variables andthat(B, b1) =
∑d−1

i=2 (B, ai)(d − 1)−1/2

has the same distribution. This is only possible if this(B, ai) is normal for everyi. We obtain that

B is Gaussian.

In the case whenγ(B) is independent of(α(B), β(B)) we have that∂ug(x) = ∂ug(x+z) holds

for every tripleu ∈ V1, x ∈ Rd, z ∈ V ⊥
1 . The symmetries off imply that∂ug(x) = ∂ug(x + z)

holds for every tripleu ∈ Vi, x ∈ Rd, z ∈ V ⊥
i . Let ri denote the orthogonal projection ofai to

w⊥ for 1 ≤ i ≤ d. Note that the vector system{ri}di=1 is completely symmetric in the sense that

the origin is the center of a regular simplex whose vertices are given by these vectors. We have for

every1 ≤ i ≤ d that∂rig(x) = hi((x, ri), (x,w)) for some two variable functionhi : R
2 → R.

The symmetries off imply thathi does not depend oni and thushi = h for someh for everyi.

The next step is to prove thath(x, y) = xh∗(y) for some one variable functionh∗. We have

by
∑d

i=1 ri = 0 that
∑d

i=1 ∂rig(x) = 0 and thus
∑d

i=1 hi((x, ri), (x,w)) = 0 holds for every

x ∈ Rd. For arbitrary numbersx1, x2, . . . , xd, y ∈ R with
∑d

i=1 xi = 0 we can choosex ∈ Rd

such that(x, ri) = xi and (x,w) = y. It follows that
∑d

i=1 h(xi, y) = 0 holds for arbitrary

numbers with
∑d

i=1 xi = 0. Assume first that allxi is 0 then we have thatdh(0, w) = 0 and

thush(0, w) = 0 for everyw. Then assume thatx1 = a, x2 = −a andxi = 0 if i ≥ 3. We

obtain thath(a, w) + h(−a, w) = 0 and thush(−a, w) = −h(a, w) holds for everya andw.

Finally letx1 = a, x2 = b, x3 = −a− b andxi = 0 if i ≥ 4. We obtain thath(a, w) + h(b, w) =

−h(−a−b, w) = h(a+b, w). Sinceh is additive and continuous in the first coordinate a well known

fact implies thath is a linear function in the first coordinate and thus we obtainh(x, y) = xh∗(y).

Now we have∂rig(x) = (x, ri)h
∗((x,w)) for every1 ≤ i ≤ d. It is easy to see that this

implies thatg(x) = ‖x − (x,w)w‖22h∗((x,w)) + c∗((x,w)) wherec∗ : R → R is some function.

We have that∂wg(x) = ‖x − w(x,w)‖22(h∗)′((x,w)) + (c∗)′((x,w)). On the other hand we

have that∂wg(x) = ∂wg(x + z) holds wheneverz ∈ V ⊥
i for every1 ≤ i ≤ d. It follows that

(h∗)′ = 0 everywhere and sog(x) = c‖x − (x,w)w‖22 + c∗((x,w)) with some constantc. Now

from f(x) = exp(c‖x − (x,w)w‖22 + c∗((x,w))) we have thatB − (B,w)w and (B,w) are

independent random variables. FurthermoreB − (B,w)w is a Gaussian distribution concentrated

on the orthogonal space ofw. This means that the pair(B, r1), (B,w) of random variables is

independent and(B, r1) is Gaussian. We know that(B, v1) is a linear combination of(B, r1) and
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(B,w) (with a non-zero coefficient for(B, r1)) and its distribution is the same as the distribution

of (B,w) (here we use the symmetries ofB). It follows that (B,w) is also Gaussian and thus

c∗((x,w)) = c2(x,w)
2 + c3 for some constantsc2, c3. Thus we have thatB is a Gaussian joint

distribution implying thatF is also joint Gaussian, as it is a linear function ofB. �

Proof of Theorem 2 and Theorem 3From Proposition 5.1 we have that theorem 3 implies theorem

2. Letµ be a smooth typical eigenvector process corresponding to eigenvalueλ represented by a

system of random variables{Xv}v∈Vd
. According to the results in chapter 7 it is enough to show that

µ is a Gaussian wave. We have by Lemma 5.1 thatλ ∈ [−2
√
d− 1, 2

√
d− 1]. LetF = {Xv}v∈C .

It is clear thatF ∈ Fd,λ. We have by Theorem 7 thatD(F ) ≥ D(F ∗) and thus by Theorem 8 we

obtain thatF = F ∗. Again by Theorem 7 we have thatµ is 2-Markov and so{Xv}v∈Vd
can be

obtained by iterating conditionally independent couplings ofC along edges (see chapter 10). This

shows the Gaussianity of the whole system{Xv}v∈V .

12 Appendix A: On heated random variables

LetX be a random variable with values inRn and letM be the standard normal distribution onRn.

Let ft denote the density function ofX +
√
2tM and letµt denote the corresponding measure on

R
n. The standard heat equation says that∂tft = △ft holds for everyt > 0. It is useful to compute

the variation of the differential entropyD(ft). The de Bruijn identity (see e.g. [17]) says that

∂t(D(ft)) = ∂t

∫

Rn

−ft log ft =

∫

Rn

−△ft(1 + log ft) =

∫

Rn

‖▽ft‖22/ft. (27)

However the validity of (27) relies on the fact that both∂ift and∂ift log ft vanish at infinity for

every1 ≤ i ≤ n. This fact is proved in Lemma 12.2. Notice that ifX has finite variance then also

X +
√
2tM has finite variance and ift > 0 thenD(ft) is a finite quantity (Lemma 12.3).

In general ifσ > 0 then the density functionf of X+σM is smooth, non-vanishing and analytic

restricted to every line inRn. More precisely, ifp, q ∈ Rn then the real functionλ 7→ f(p+λ(q−p))

extends to an entire analytic function onC. Furthermore every partial derivative off has this

property. In the rest of this appendix we prove several otherfacts about heated random variables.

Lemma 12.1 Let X be a random variable with values inRn and letM be the standard normal

distribution onRn. Letf be the density function of the independent sumX + σM for someσ > 0.

Then for every1 ≤ i ≤ n andx ∈ Rn we have that|∂if(x)| ≤ f(x)a(1 + | log(bf(x))|1/2) for

some constantsa, b depending onn andσ.

Proof. Let Φ be the density function ofσM and letµ be the distribution ofX . Let r ∈ R+

the smallest positive real number such that∂iΦ(z) ≤ |f(x)| for everyz satisfying |z| ≥ r. It

can be shown thatr ≤ c2(1 + | log(c1f(x))|1/2) for some constants (depending onn andσ). Let

34



D = {z : |x − z| ≤ r}. We have that
∫
z∈D ∂iΦ(x − z)dµ ≤ |f(x)|. On the other hand, by

f(x) =
∫
z∈R

Φ(x− z)dµ we obtain that
∫

z∈D

∂iΦ(x− z)dµ ≤ |f(x)|max
|y|≤r

∂iΦ(y)/Φ(y).

Using that∂if(x) =
∫
z ∂iΦ(x− z)dµ and that∂iΦ(z)/Φ(z) = O(z) the proof is complete. �

Lemma 12.2 LetX be a random variable with values inRn and letM be a random variable with

standard normal distribution onRn. Letf be the density function of the independent sumX + σM

for someσ > 0. Then for1 ≤ i ≤ n the functionsf , ∂if and∂if log f vanish at infinity.

Proof. We start withf . For contradiction, assume thatD = {x : f(z) ≥ c} is unbounded for

somec > 0. LetΦ be the density function ofσM and let us chooser ∈ R+ such thatΦ(x) ≤ c/2

whenever‖x‖2 ≥ r. Let µ be the probability distribution ofX . We have that iff(x) ≥ c and

Qx = {z : ‖z − x‖2 < r}, then
∫
z∈Qx

Φ(z − x)dµ ≥ c/2 and thusµ(Qx) ≥ ‖Φ‖−1
∞ c/2. From

the unboundedness ofD we conclude that there is an infinite set of points{pi}∞i=1 in D such that

‖pi − pj‖2 > 2r holds for every pairi 6= j in N. This contradicts the fact thatµ is finite. The

statement for∂if and∂if log f follows from Lemma 12.1. �

Lemma 12.3 LetX be a random variable with values inRn with finite covariance matrix. LetM

be independent ofX , with standard normal distribution onRn. Then, for everyσ > 0, X + σM

has finite differential entropy.

Proof. The random variableX + σM has finite covariance matrix. As it is well-known, among the

distributions with a given covariance matrix, Gaussian distribution maximizes differential entropy.

HenceD(X+σM) < ∞. On the other hand, as in the previous lemma, letf be the density function

of X + σM . Lemma 12.2 implies that{t : f(t) > 1} is a compact set. The continuity off implies

that
∫
Rn f(t) log f(t)dt < ∞. Thus we also haveD(X + σM) > −∞. �

Lemma 12.4 Let X be a random variable with values inRn and letM be the standard normal

distribution onRn. Letf be the density function of the independent sumX + σM for someσ > 0.

Then for everyε > 0 there isε′ > 0 such that for every paira, b ∈ Rn with ‖a− b‖2 = r ≤ ε′ and

f(b) > c we have thatf(a)/f(b) ≥ 1− ε, wherec = σ−(n−1)/2 exp(−r−1/(16σ2)).

Proof. We start by general estimates for a paira, b ∈ R
n with r = ‖a − b‖2 ≤ 1/4. We have

thatf(x) =
∫
y∈Rn Φ(x − y)dµ whereµ is the probability distribution ofX andΦ is the density

function ofσM . Let D = {z : ‖z − a‖2 ≤ r−1/2}. Let f1(x) =
∫
y∈Rn 1DΦ(x − y)dµ and

f2(x) = f(x) − f1(x). We have thatf2(x) ≤ supz∈D Φ(x − z). It follows that|f2(a)|, |f2(b)| ≤
(2πσ2)−(n−1)/2Φ0(r

−1/2 − r) whereΦ0 is the density function of the one dimensional normal

distributionN(0, σ). Thus usingr−1/2 − r ≥ r−1/2/2 and1/
√
2π < 1 we have

|f2(a)|, |f2(b)| ≤ (2πσ2)−(n−1)/2Φ0(r
−1/2/2) < c2. (28)
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To estimatef1(a)/f1(b) we use

min
z∈D

Φ(z − a)/Φ(z − b) ≤ f1(a)/f1(b).

From

Φ(z − a)/Φ(z − b) = exp((‖z − b‖22/2− ‖z − a‖22/2)/σ2) = exp(((a− z, b− a) + r2/2)/σ2)

it follows that

f1(a)/f1(b) ≥ exp((−r1/2 + r2/2)/σ2) ≥ 1− r1/2/σ2. (29)

Inequality (28) implies thatf(b) = f1(b) + f2(b) ≤ f1(b) + c2. Using this andf1(a) ≤ f(a) we

obtain

f(a)/f(b) ≥ f1(a)/(f1(b) + c2) = (f1(a)/f1(b))(1 + c2/f1(b))
−1.

If f(b) > c, thenf1(b) = f(b)− f2(b) > c− c2 and thus by (29) we get

f(a)/f(b) > (f1(a)/f1(b))(1 + c2/(c− c2))−1 ≥ (1 − r1/2)(1− c).

The quantityc goes to0 with r and so ifr is small enough we have thatf(a)/f(b) ≥ 1− ε. �

Let X be a random variable with values inRd. We say thatv ∈ Rd is an independent direction

for X if the R-valued random variable(X, v) is independent from the projection ofX to thed − 1

dimensional spacev⊥. Note that every direction is independent for the standard normal distribution.

Lemma 12.5 Let X be a random variable with values inRd and withE(X) = 0. Assume that

{vi}di=1 is a basis inRd such that eachvi is an independent direction forX and furthermore for

every1 ≤ i ≤ d there is1 ≤ ji ≤ d such that(vi, vji) 6= 0. ThenX is Gaussian.

Proof. Let N be the standard normal distribution. It is clear that the independent sumX + εN

has the same independence property asX for everyε ≥ 0. Furthermore it is enough to prove that

the heated versionX + εN of X is Gaussian for everyε > 0. Let us fixε > 0. The advantage

of working withX + εN is that it has a strictly positive smooth density functionf onRd and so

we can work with logarithms and with partial derivatives. The independence property now says that

∂vi log f(x) is equal tohi((x, vi)) for some smooth functionhi : R → R. We obtain that

∂vji∂vif = (vi, vji)h
′′
i ((x, vi)) , ∂vi∂vji f = (vi, vji)h

′′
ji((x, vji )).

and soh′′
i ((x, vi)) = h′′

ji((x, vji )). Sincevi andvji are independent for every paira, b ∈ R there

is x ∈ Rd such that(x, vi) = a and(x, vji ) = b. This implies thath′′
i (a) = h′′

ji
(b) holds for every

a, b and so eachh′′
i is a constant function for everyi. Consequentlyhi is linear for everyi and

thus (using that{vi}di=1 is a basis)∂u log f is a linear function for everyu ∈ Rd. It follows that

log f satisfies∂u1
∂u2

∂u3
log f = 0 for everyu1, u2, u3 ∈ Rd. This means thatlog f is given by a

quadraticd-variate polynomialQ onRd. We obtain thatf = c exp(Q(x)) holds and thusf is the

density function of some Gaussian distribution.
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Lemma 12.6 Let (X,Y, Z) be a joint distribution withX,Y ∈ R andZ ∈ R
d−2. Let (Xt, Yt, Zt)

be the triple obtained by running the heat equation for timet with X0 = X,Y0 = Y andZ0 = Z.

Assume that for everyt ≥ 0 we have thatXt andZt are conditionally independent with respect to

Yt. Then either(X,Y ) is independent fromZ or (Y, Z) is independent fromX .

Proof. We parametrizeRd with triples (x, y, z) where the coordinatesx andy are real numbers

andz is ad − 2-dimensional vector. By∆z we mean the sum of the second partial derivates with

respect to the coordinates belonging toz. We denote byft, ht, gt andmt the density functions of

(Xt, Yt, Zt), (Xt, Yt), (Zt, Yt) andYt, respectively. We also introducest(z, y) = gt(z, y)/mt(y).

Using the conditional independence and the heat equation weobtain the following equations.

ft(x, y, z) = ht(x, y)gt(z, y)/mt(y) = ht(x, y)st(z, y).

∂tft = ∆ft; ∂tht = ∆ht; ∂tgt = ∆gt = ∂yygt +∆zgt; ∂tmt = ∆mt.

By abusing the notation we will omitt from ft, ht, gt,mt andst in the following calculations.

We start from the first equality, and use the other three one after the other.

∂xxf + ∂yyf +∆zf = ∂th · s+ h · ∂ts.

∂xxh · s+ ∂yyf +∆zf = ∂xxh · s+ ∂yyh · s+ h · ∂ts.

∂yyf + h ·∆zg/m = ∂yyh · s+ h ·
(
(∂tg)/m− (g · ∂tm)/m2

)
.

∂yyh · s+ 2∂yh · ∂ys+ h · ∂yys = ∂yyh · s+ (h · ∂yyg)/m− (gh · ∂yym)/m2. (30)

Before continuing this, we calculate the partial derivatives ofs with respect toy.

∂ys = (∂yg)/m− (g · ∂ym)/m2.

∂yys = (∂yyg)/m− 2(∂yg · ∂ym)/m2 − (g · ∂yym)/m2 + 2g · (∂ym)2/m3.

Now we substitute this into equation (30).

2(∂yh · ∂yg)/m− 2g(∂yh · ∂ym)/m2 + (h · ∂yyg)/m

− 2h(∂yg ·∂ym)/m2− (gh ·∂yym)/m2+2hg(∂ym)2/m3 = (h ·∂yyg)/m− (gh ·∂yym)/m2.

(∂yh · ∂yg)/m− (g · ∂yh+ h · ∂yg) · (∂ym)/m2 + gh(∂ym)2/m3 = 0.

(∂yh · ∂yg)/m2 − (g · ∂yh+ h · ∂yg) · (∂ym)/m3 + gh(∂ym)2/m4 = 0.
(
(∂yh)/m− (h · ∂ym)/m2

)(
(∂yg)/m− (g · ∂ym)/m2

)
= 0.

(
∂y(h/m)

)
·
(
∂y(g/m)

)
= 0.

We obtain that at least one of∂y(h/m) = 0 and∂y(g/m) = 0 holds on an open set. Assume that

(without loss of generality)∂y(h/m) = 0 holds on an open setU of the domainD of h/m which is
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R
2. This is equivalent tom∂yh−h∂ym = 0 onU . Letp ∈ U andq ∈ D be arbitrary. Let us define

the functionr : R → R by r(λ) = (m∂yh−h∂ym)(p+λ(q−p)). Thenr has an analytic extension

to C. In addition,r = 0 in a small neighborhood of0 in R. It follows thatr is constant0 and thus

∂y(h/m) is 0 at everyq ∈ D. This implies thatXt is independent ofYt. Similarly if ∂y(g/m) = 0

holds on an open set we obtain thatZt is independent ofYt. The conditional independence ofXt

andZt with respect toYt finishes the proof. �

13 Appendix B: Differential entropy

Differential entropy is defined as follows for absolutely continuous random vectors. Some properties

of the discrete entropy are preserved (e.g. it is additive ifwe put together independent random

variables), others do not hold any more; an essential difference is that differential entropy does not

have to be nonnegative.

Definition 13.1 Let (X1, X2, . . . , Xn) be a family of random variables. Suppose that their joint

distribution is absolutely continuous, and their joint density function isf . Then their differential

entropy is defined as follows (provided that the integral exists):

D(X1, X2, . . . , Xn) = −
∫

Rn

f(t1, . . . , tn) log f(t1, . . . , tn)dt1 . . . dtn.

To see the connection between entropy in the discrete case and differential entropy, recall Theo-

rem 9.3.1 from [17]. This says that if we divide the range ofX into bins of lengthδ, andXδ denotes

the quantized version ofX with respect to this grid, then

H(Xδ) + log δ → H(X)

asδ → 0, assuming that the density ofX is Riemann integrable.

The following well-known lemma shows how the differential entropy is modified when we apply

a linear transformation to the random vector (see e.g. corollary to Theorem 9.6.4 in [17].

Lemma 13.1 Let X = (X1, . . . , Xn) be a family of random variables, and letA ∈ Rn×n be an

invertible matrix. Then

D(AX) = D(X) + log |det(A)|.

The following lemma is equivalent to the fact that the nonnegativity of conditional mutual infor-

mation holds for differential entropy as well. We include a proof for completeness.

Lemma 13.2 Let X,Y, Z be random variables such that their differential entropy exist. Then we

have

D(X,Y, Z) ≤ D(X,Z) + D(Y, Z)− D(Z).
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Proof. Let g(x, y) = f(x, y, z)/f(z) on the support ofZ, and 0 otherwise. Theng is a density

function onR2. As the nonnegativity of mutual information is satisfied fordifferential entropy (see

e.g. Corollary to Theorem 9.6.1. in [17]), we have

−
∫

g(x, y) log g(x, y)dxdy ≤ −
∫

g1(x) log g1(x)dx −
∫

g2(y) log g2(y)dy,

whereg1 andg2 are the marginal densities ofg. Multiplying both sides byf(z) and integrating with

respect toz we get the statement of the lemma. �

14 Appendix C: Factor of i.i.d. processes

Let f : [0, 1]Vd → Y be a measurable function such that it is invariant under rootpreserving

automorphisms. We can usef to construct an invariant process in the following way. First we put

independent uniformly random elements from[0, 1] on the vertices ofTd. Then, at each vertexv,

we evaluatef for this random labeling such that the root is placed tov. If f depends only on finitely

many coordinates, then the corresponding process is calleda block factor of i.i.d. process.

Proposition 14.1 If {Xv}v∈Vd
is a real-valued typical process and{Yv}v∈Vd

is a weak limit of

factor of i.i.d. processes, then their independent sum{Xv + Yv}v∈Vd
is a typical process.

Proof. Notice that the family of typical processes is closed with respect to the weak topology. On

the other hand, every process that is a weak limit of factor i.i.d. processes is also a weak limit of

block factor of i.i.d. processes [31]. Hence it is enough to prove the statement in the case when

{Yv}v∈Vd
is a block factor of i.i.d. process. It is well known that block factor of i.i.d. processes can

be approximated with the corresponding local algorithm computed on graphs with sufficiently large

(essential) girth. Since large randomd-regular graphs have large essential girth, the independent

sum of the approximation of{Xv}v∈Vd
and the local algorithm approximating{Yv}v∈Vd

is an

approximation of the process{Xv + Yv}v∈Vd
. �

The next proposition was proved by Harangi and Virág in [27].

Proposition 14.2 For |λ| ≤ 2
√
d− 1 the unique Gaussian waveΨλ is a weak limit of factor of i.i.d

processes (but not a factor of i.i.d. process itself).
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