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Abstract. In this paper, we mainly discuss the problem of de-
scribing the structure of transformations leaving norms of general-
ized weighted quasi-arithmetic means of invertible positive opera-
tors invariant. Under certain conditions, we present the solution of
this problem which generalizes one of our former results cointaing
its solution for weighted quasi-arithmetic means. We also prove
the interesting property that in a quite general setting, general-
ized weighted quasi-arithmetic means on self-adjoint operators are
not monotone in their variables. Moreover, we investigate their
relation with the Kubo-Ando means and show that the common
members of their class and the set of the latter means are weighted
arithmetic means.

1. Introduction and statement of the main results

In [6, Theorem 1], under certain conditions, the general forms of
maps on the set of complex positive definite matrices of a fixed size
preserving a norm of a weighted quasi-arithmetic mean were described.
The main aim of this paper is to extend that result for generalized
weighted quasi-arithmetic means. The motivation of reaching this goal
comes from a private discussion with Zoltán Daróczy in which he pro-
posed us to investigate the problem studied in that theorem also in the
case of the latter means. Originally, they were defined only for real
numbers by Matkowski in [15, Definition 2/(2)] (we remark that the
paper [1] was the first article in which their notion appeared). How-
ever, they have the advantage that their definition can be extended
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to the operator setting using their formula for numbers. Before intro-
ducing the corresponding extension, we collect some basic notions and
notation that will be used throughout the paper.

Let H be a complex Hilbert space with dimH > 1. We will denote
by L(H) and L(H)sa the C∗-algebra of all bounded linear operators
on H with unit I and the vector space of the self-adjoint elements in
L(H), respectively. For any set D ⊂ R, the symbol L(H)Dsa stands
for the collection of all operators in L(H)sa with spectra in D. An
element A ∈ L(H) is termed positive if 〈Ax, x〉 ≥ 0 is satisfied by
every vector x ∈ H. The usual order ≤ on L(H)sa is defined by A ≤
B if B − A is positive (A,B ∈ L(H)sa). The symbols L(H)+ and
L(H)++ stand for the set of positive and invertible positive operators

in L(H), respectively. Observe that L(H)+ = L(H)
[0,∞[
sa and L(H)++ =

L(H)
]0,∞[
sa .

We fix a number n ∈ N \ {1}, an interval D ⊂ R and continuous
functions fi : D → R (i = 1, . . . , n) which are monotone in the same
sense and not simultaneously constant on any nontrivial subinterval
of D. The (operator theoretical version of the) generalized weighted
quasi-arithmetic mean generated by f1, . . . , fn is defined by the equality

Mf1,...,fn(A1, . . . , An) = (f1 + . . .+ fn)−1(f1(A1) + . . .+ fn(An))

for all operators Ai ∈ L(H)Dsa (i = 1, . . . , n). Observe that f1 + . . . +
fn is a continuous strictly monotone function with range containing
f1(D) + . . . + fn(D), and using these properties, one can check that
Mf1,...,fn(A1, . . . , An) is a well-defined element of L(H)Dsa (A1, . . . , An ∈
L(H)Dsa). The most fundamental generalized weighted quasi-arithmetic
means are the weighted arithmetic means, whose generating functions
are f1 = w1id, . . . , fn = wnid with some numbers w1, . . . , wn ≥ 0 whose
sum is 1.

Since Mf1,...,fn is an operation on L(H)Dsa, it is a natural problem
to describe the structure of homomorphisms with respect to it. Un-
fortunately, as it is explained below the formulation of Problem A in
[6], in the case of quasi-arithmetic means – which are trivially seen to
be means of the form Mf1,...,fn – those maps do not have any regular
structure. Despite this fact, we may have hope for a regular form in
the case of maps which preserve not Mf1,...,fn itself, but some numerical
function, e.g. a norm of it. We remark that for a fundamental class
of means of positive operators, the Kubo-Ando means, transformations
preserving a norm of one of them were studied, e.g. in [7, 8, 22]. Below,
we present our first two results in which, under certain conditions, the
general form of maps on L(H)++ leaving a norm of Mf1,...,fn invariant
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is described. In order to do so, we recall that a norm N : L(H)→ R is
termed unitary invariant ifN(UAV ) = N(A) for all elementsA ∈ L(H)
and unitary operators U, V on H. Our first result reads as follows.

Theorem 1. Assume that dimH < ∞ and let f1, . . . , fn : ]0,∞[→ R
be continuous bijections which are monotone in the same sense and
N : L(H)→ R be a unitary invariant norm. If φ : L(H)++ → L(H)++

is a bijective map satisfying

(1) N(Mf1,...,fn(φ(A1), . . . , φ(An))) = N(Mf1,...,fn(A1, . . . , An))

for all A1, . . . , An ∈ L(H)++, then there is a unitary or an antiunitary
operator U on H such that φ is of the form

φ(A) = UAU∗ (A ∈ L(H)++).

Our next result follows which shows that the previous one holds also
in the case where the common range of f1, . . . , fn is not R, but ]0,∞[.

Theorem 2. Suppose that dimH < ∞ and let f1, . . . , fn : ]0,∞[→
]0,∞[ be continuous decreasing bijections and N : L(H)→ R be a uni-
tary invariant norm . If φ : L(H)++ → L(H)++ is a bijection satisfying
(1) for all A1, . . . , An ∈ L(H)++, then there is a unitary or an antiu-
nitary operator U on H such that φ is of the form

φ(A) = UAU∗ (A ∈ L(H)++).

We remark that the above results generalize [6, Theorem 1]. In
the next part of the paper, we investigate monotonicity properties of
Mf1,...,fn . We point out that there are several other problems which are
frequently studied concerning means of real numbers, e.g. the problem
of homogeneity and equality. In those problems, certain conditions
hold for all values of the variables of the means under consideration.
We can study their counterparts for the operator mean Mf1,...,fn and
apply those conditions to scalar operators in L(H)Dsa. In this way, we
infer that they hold also for Mf1,...,fn as a scalar mean. Therefore,
the investigation of the mentioned problems in the case of the operator
meanMf1,...,fn can be reduced to their study in the setting of generalized
weighted quasi-arithmetic means of real numbers. However, this is not
the case with monotonicity. As for the latter property of Mf1,...,fn , we
have the result below. To formulate it, we recall that a map φ between
subsets of L(H)sa is called monotone if A ≤ B implies φ(A) ≤ φ(B)
for all elements A,B in the domain of φ.

Theorem 3. Let D ⊂ R be a closed interval which is not bounded
from above and fi : D → R (i = 1, . . . , n) be continuous functions
which are not simultaneously constant on any nontrivial subinterval of
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D. Further, assume that for some number j ∈ {1, . . . , n}, the equal-
ity | limx→∞ fj(x)| = ∞ holds, moreover one has that f1, . . . , fn are
increasing and f1 + . . . + fn is strictly concave or that f1, . . . , fn are
decreasing and f1 + . . . + fn is strictly convex. Then Mf1,...,fn is not
monotone in its j th variable.

It is important to highlight the fact that Mf1,...,fn as a mean on the
set D of real numbers is clearly monotone in each of its variables and by
this theorem, in the multidimensional case under quite general condi-
tions on f1, . . . , fn, the operation Mf1,...,fn is not monotone in any of its
variables. This striking contrast shows that the properties of Mf1,...,fn

can be very much different in the one- and the multidimensional set-
tings.

In our last result, we determine the common members of the classes of
generalized weighted quasi-arithmetic means and of Kubo-Ando means
on L(H)+. The latter means are defined as follows (see [13]). A binary
operation σ : L(H)+ × L(H)+ → L(H)+ is a Kubo-Ando mean if it
has the next properties. For each elements A,B,C,D ∈ L(H)+ and
sequences (An), (Bn) in L(H)+:

(i) IσI = I;
(ii) if A ≤ C and B ≤ D, then AσB ≤ CσD;

(iii) C(AσB)C ≤ (CAC)σ(CBC);
(iv) if An ↓ A and Bn ↓ B, then AnσBn ↓ AσB.

Here, the symbol ↓ stands for monotone decreasing convergence in the
strong operator topology. Concerning Kubo-Ando means, we will need
the following notions. A real-valued function f defined on a nontrivial
interval D is termed d-monotone (or monotone of order d) if for each
pair A,B of self-adjoint operators on a d-dimensional complex Hilbert
space whose spectra are in D, one has f(A) ≤ f(B) in the case A ≤ B.
If this condition holds for each number d ∈ N, then we say that f is
operator monotone. We call f d-concave in the case where, for any
operators A,B satisfying the above properties, the inequality

f(αA+ (1− α)B) ≥ αf(A) + (1− α)f(B) (α ∈ [0, 1])

is fulfilled.
We see from the proof of [13, Theorem 3.2] that for a Kubo-Ando

mean σ and a scalar t > 0 the operator Iσ(tI) is scalar. Therefore, we
can define a function fσ : ]0,∞[→ [0,∞[, called the generating function
of σ, with the property

fσ(t)I = Iσ(tI) (t > 0).
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The cited proof also shows that if d = dimH < ∞, then fσ is d-
monotone and it is operator monotone in the case dimH =∞. More-
over,

(2) AσB = A1/2fσ(A−1/2BA−1/2)A1/2

for all A,B ∈ L(H)++. We deduce that the generating function of a
Kubo-Ando mean on L(H)+ is monotone of an order greater than 1.

The most basic Kubo-Ando means are the weighted arithmetic means
which are, as we have noted above, also generalized weighted quasi-
arithmetic means. Now our last result follows in which we establish
that – under very general conditions – among operations on L(H)+,
only weighted arithmetic means can have this property.

Theorem 4. A map M : L(H)+ × L(H)+ → L(H)+ is a general-
ized weighted quasi-arithmetic mean with injective generating functions
f1, f2 : [0,∞[→ R and also a Kubo-Ando mean if and only if it is a
weighted arithmetic mean with positive weights.

2. Proofs

In this section, we are going to present the verifications of the results
in the introduction. We begin this work with the first one.

Proof of Theorem 1. By inserting equal operators A2, . . . , An in (1), it
can be seen that without loss of generality, we may and do assume that
n = 2. Consider the maps ψ1, ψ2 : L(H)sa → L(H)sa given by

ψi(A) = fi(φ(f−1i (A))) (A ∈ L(H)sa, i = 1, 2).

Then ψ1 and ψ2 are bijective transformations and possess the property
that

(3) N((f1 + f2)
−1(ψ1(A1) + ψ2(A2))) = N((f1 + f2)

−1(A1 + A2))

for all operators A1, A2 ∈ L(H)sa. Observe that by the conditions of
Theorem 1, the function g = (f1 + f2)

−1 : R →]0,∞[ is continuous,
strictly monotone and there is an element α0 ∈ {−∞,∞} for which
limα→α0 g(α) = 0. Assume that g is increasing. Then by [6, Lemma 2],
for operators A,B ∈ L(H)sa given arbitrarily one has

A ≤ B ⇐⇒ N(g(A+X)) ≤ N(g(B +X)) ∀ X ∈ L(H)sa

⇐⇒ N(g(ψ1(A) + ψ2(X))) ≤ N(g(ψ1(B) + ψ2(X))) ∀ X ∈ L(H)sa

⇐⇒ N(g(ψ1(A) + Y )) ≤ N(g(ψ1(B) + Y )) ∀ Y ∈ L(H)sa

⇐⇒ ψ1(A) ≤ ψ1(B).

Similarly, we obtain that ψ2(A) ≤ ψ2(B) exactly when A ≤ B. These
conclusions can be reached using the latter argument also in the case
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where g is decreasing (then one can apply [6, Lemma 2] for the function
g ◦ (−idR) instead of g). We infer that ψ1, ψ2 are order automorphisms
of L(H)sa, meaning that they are bijective and preserve the order in
both directions. Such transformations of L(H)sa are described in [21,
Theorem 2]. Applying that result to ψ1, ψ2, we deduce that there are
invertible linear or conjugate-linear operators T1, T2 on H and elements
Y1, Y2 ∈ L(H)sa such that

(4) ψ1(A) = T1AT
∗
1 + Y1, ψ2(A) = T2AT

∗
2 + Y2 (A ∈ L(H)sa).

Substituting these forms of ψ1, ψ2 to the equation (3), we get

N(g(T1A1T
∗
1 +T2A2T

∗
2 +(Y1+Y2))) = N(g(A1+A2)) (A1, A2 ∈ L(H)sa).

Inserting A1 = 0 in this equality and using the argument in [6] from Eq.
(10) until the end of the proof of Lemma 3 (for g ◦ (−idR) in the case
where g is decreasing), we conclude that T2 is unitary or antiunitary
and Y1 + Y2 = 0. Similarly, we obtain that T1 is also such an operator.
Then the last displayed equality implies

N(g(T ∗2 T1A1T
∗
1 T2 + A2)) = N(T ∗2 g(T1A1T

∗
1 + T2A2T

∗
2 )T2)

= N(g(T1A1T
∗
1 + T2A2T

∗
2 )) = N(g(A1 + A2)) (A1, A2 ∈ L(H)sa).

Now assume that g is increasing and perform the substitution A2 =
α(P−I) in this chain of relations with an arbitrary rank-one projection
P on H and number α ∈ R. Then by [6, Lemma 1], it is very easy to
see that tending to ∞ with α, the limits of the expressions before the
first and after the last equality sign are N(P )g(TrT ∗2 T1A1T

∗
1 T2P ) and

N(P )g(TrA1P ), respectively. The chain in question shows that they
are the same, so the injectivity of g yields that TrT ∗2 T1A1T

∗
1 T2P =

TrA1P . This easily implies the equality 〈T ∗2 T1A1T
∗
1 T2u, u〉 = 〈A1u, u〉

for any unit vector u in the range of P . Since P was arbitrary, we con-
clude that T ∗2 T1A1T

∗
1 T2 = A1, i.e. T1A1T

∗
1 = T2A1T

∗
2 (A1 ∈ L(H)sa).

A similar argument can be used to verify that the latter relation holds
also in the case where g is decreasing (then [6, Lemma 1] should be
applied for g ◦ (−idR) instead of g).

Referring to the conclusions in the last two paragraphs and to (4),
we observe that

ψ1(A) = T1AT
∗
1 + Y1, ψ2(A) = T1AT

∗
1 − Y1 (A ∈ L(H)sa)

with a unitary-antiunitary operator T1, or, equivalently,

(5)
T1f

−1
1 (f1(A) + Z1)T

∗
1 = f−11 (T1f1(A)T ∗1 + Y1) = φ(A)

= f−12 (T1f2(A)T ∗1 − Y1) = T1f
−1
2 (f2(A)− Z1)T

∗
1 (A ∈ L(H)++),
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where Z1 = T ∗1 Y1T1. This means that f−11 (f1(A) + Z1) = f−12 (f2(A)−
Z1), yielding that (f2 ◦ f−11 )(f1(A) + Z1) = f2(A) − Z1 for all A ∈
L(H)++, which gives us that

(f2 ◦ f−11 )(A+ Z1) = (f2 ◦ f−11 )(A)− Z1 (A ∈ L(H)sa).

After performing the substitution A = xI in this equation, we infer
that

(f2 ◦ f−11 )(x+ z) = (f2 ◦ f−11 )(x)− z
for all eigenvalues z of Z1 and numbers x ∈ R. The functions f1, f2
are monotone in the same sense, hence f2 ◦ f−11 is increasing, which
property together with the latter equality forces z to be 0. Since it was
an arbitrary eigenvalue of Z1, we deduce that Z1 = 0, and, referring
to (5), we then see that φ is of the desired form. Now the proof is
complete. �

In what follows, we are going to show only the sketch of the verifi-
cation of the second result, since it is very similar to that of the first
one.

Sketch of the proof of Theorem 2. We may and do assume that n = 2.
Define the maps ψ1, ψ2 : L(H)++ → L(H)++ just as in the proof of The-
orem 1. Then ψ1 and ψ2 are bijective and satisfy the equation (3) for all
operators A1, A2 ∈ L(H)++. Observe that g = (f1 + f2)

−1 is a contin-
uous strictly decreasing selfmap of ]0,∞[ for which limx→∞ g(x) = 0.
Using the argument in the first paragraph of the previous proof for
g ◦ (−id]−∞,0[) instead of g, we obtain that ψ1 and ψ2 are order au-
tomorphisms of L(H)++. In [17, Theorem 1], Molnár described the
structure of all such transformations. Due to that result, we obtain
that there are invertible linear or conjugate-linear operators T1, T2 on
H such that

(6) ψ1(A) = T1AT
∗
1 , ψ2(A) = T2AT

∗
2 (A ∈ L(H)++).

Then by (3) and the latter conclusion

N(g(T1A1T
∗
1 + T2A2T

∗
2 )) = N(g(A1 + A2)) (A1, A2 ∈ L(H)++).

Plugging A2 = (1/k)I (k ∈ N) in this equality and taking the limit
k →∞, we see that

N(g(T1AT
∗
1 )) = N(g(A)) (A ∈ L(H)++),

i.e.,

N((g ◦ (−id]−∞,0[))(T1AT
∗
1 )) = N((g ◦ (−id]−∞,0[))(A))

for all operators A ∈ −L(H)++. Using the argument given in the last
paragraph of the proof of [6, Lemma 3], we arrive at the conclusion
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that T1 is unitary or antiunitary. This fact together with (6) and the
definition of ψ1 gives us that

φ(A) = f−11 (T1f1(A)T ∗1 ) = T1f
−1
1 (f1(A))T ∗1 = T1AT

∗
1 (A ∈ L(H)++)

completing the proof.
�

Now we are going to verify the third result.

Proof of Theorem 3. Observe that if any of the functions fi (i = 1, . . . , n)
is constant, thenMf1,...,fn is an n−1 variable generalized weighted quasi-
arithmetic mean whose generating functions satisfy the conditions of
Theorem 3. Moreover, clearly M−f1,...,−fn = Mf1,...,fn , so by consider-
ing −fi instead of fi (i = 1, . . . , n), regarding the conditions of that
result w.l.o.g., we may and do assume that f1, . . . , fn are nonconstant
increasing functions. Thus, by those hypotheses, f1+ . . .+fn is strictly
concave and limx→∞ fj(x) =∞.

Now assume on the contrary that the conclusion of Theorem 3 does
not hold, i.e., Mf1,...,fn is monotone in its jth variable. Define

g = f1 + . . .+ fj−1 + fj+1 + . . .+ fn.

Then the latter assumption immediately implies that the map (fj +
g)−1(g(A) + fj(.)) is monotone for any A ∈ L(H)Dsa. Let A ∈ L(H)Dsa
be an arbitrary element. By the conditions, there is a number α ∈ R
such that D = [α,∞[. It is trivial that, since limx→∞ fj(x) = ∞ and
fj is increasing and continuous, fj(D) = [fj(α),∞[ and then one can
check that

{fj(X) | X ∈ L(H)Dsa} = {Y ∈ L(H)sa | fj(αI) ≤ Y }.
Moreover, obviously αI ≤ B (B ∈ L(H)Dsa), therefore the previous
observations give us that

(fj + g)−1(g(A) + fj(αI)) ≤ (fj + g)−1(Z)

for all operators Z ∈ L(H)sa satisfying g(A) + fj(αI) ≤ Z. In the
terminology of [24], this means that (fj + g)−1 is locally monotone at
g(A) + fj(αI). In [24, Theorem 1], the self-adjoint elements in a C∗-
algebra at which a given strictly convex increasing function defined on
an open interval which is not bounded from above are characterized as
the central ones, i.e., those which commute with every member of that
algebra. It is mentioned before that result that it is true also in the case
where the interval in question is not open, provided that the considered
function is continuous. On the other hand, since fj(x) → ∞ (x →
∞) and fj, g are increasing and continuous, limx→∞(fj + g)(x) = ∞
implying that the function (fj +g)−1 also has these properties and it is
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defined on an interval which is not bounded from above. Observe that
(fj + g)−1 is strictly convex, too due to the strict concavity of fj + g.
By the previous discussion, g(A)+fj(αI) is a central element of L(H).

Such operators are well-known to be the scalar ones and then it
follows that g(A) ∈ RI. On the other hand, observe that g, being the
sum of nonconstant increasing functions, is not constant, thus there
exist numbers x1, x2 ∈ D for which g(x1) 6= g(x2). Now by picking
a nontrivial projection P ∈ L(H)sa and setting the arbitrary element
A ∈ L(H)Dsa to be x1P + x2(I − P ), we obtain a nonscalar operator
g(A) = g(x1)P + g(x2)(I − P ). To sum up, our assumption has led to
a contradiction, implying the statement of Theorem 3. �

We finish this section with the verification of the last result.

Proof of Theorem 4. By the introduction, any weighted arithmetic mean
with positive weigths is clearly a mean of those types appearing in that
result. Now assume that M is a mean of each of those kinds. Then
there is a function g : [0,∞[→ R such that M = σg = Mf1,f2 and g is
monotone of a certain order d > 1. Let x, y > 0 be arbitrary numbers.
By evaluating σg,Mf1,f2 at the point (xI, yI) and using (2), it follows
that

(7) xg
(y
x

)
= Mf1,f2(x, y).

Clearly, the left-hand side of this equation is homogeneous in (x, y),
hence so is the other one, which clearly yields that it is a homogeneous
generalized weighted quasi-arithmetic mean on ]0,∞[ with generat-
ing functions f1|]0,∞[, f2|]0,∞[. Such quantities are characterized in [15,
Theorem 3]. Applying that result, we obtain the existence of num-
bers a, b, c, d, p ∈ R for which p 6= 0, ac > 0 and we have f1(x) =
a log x+b, f2(x) = c log x+d or f1(x) = axp+b, f2(x) = cxp+d (x > 0).
Due to the continuity of f1, f2 and to the relation ac > 0, the former
case is excluded and p > 0. Moreover, the last two equalities hold for
x = 0, and then by substituting x = 1 in (7) and using the notation
α = a/(a + c), it follows that g(y) = (α + (1 − α)yp)1/p. The result
[14, Theorem 2.1] tells us that any d-monotone function on ]0,∞[ is
concave, as it is concave of order [d/2], thus so is g|]0,∞[. It is also twice
differentiable, therefore we infer that

g′′(x) = α(1− α)(p− 1)xp−2(α + (1− α)xp)
1
p
−2 ≤ 0 (x > 0),

which, since α ∈]0, 1[, yields p ≤ 1. By what we have proved so far,
we see that 0 < p ≤ 1. Now assume p < 1. Then, since ac > 0, 0 <
p < 1, it is obvious that f1, f2 would satisfy the conditions of Theorem
3, so it would apply and we would get that Mf1,f2 is not monotone
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increasing in its variables. However, it is a Kubo-Ando mean, thus
property (ii) in the definition of such means holds for it. It follows that
p < 1 is untenable, thus we conclude that p = 1 and therefore Mf1,f2 is
the arithmetic mean with the positive weights α, 1 − α. The proof of
Theorem 4 is complete. �
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