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Introduction

Despite the activity of a large number drugs approved by the
US Food and Drug Administration (FDA) that depend on a co-

valent mode of action,[1] classical drug discovery screening cas-
cades typically eliminate electrophilic compounds, mainly due

to the toxicity risks associated with their mechanism. Indeed, a

majority of these drugs was discovered by serendipity in bio-
logical assays, and their mechanism was elucidated later on,

typically after approval. The reluctance to use reactive ligands,
and more specifically promiscuous “suicide inhibitors”, is relat-

ed to increased risks of carcinogenicity, hepatotoxicity, and po-
tential idiosyncratic effects caused by protein haptenization.[2, 3]

More recently, the reputation of covalent binders has
changed thanks to the guidelines introduced for the rational

design of targeted covalent inhibitors (TCIs). According to
these guidelines, the ligand’s selectivity toward its protein

target is still to be achieved by optimizing the noncovalent in-

teractions (hydrogen bonding, van der Waals, electrostatic,
etc.) at the binding site, as in the case of traditional ap-

proaches. Furthermore, increased specificity can be obtained
by targeting a poorly conserved reactive residue within the

protein family.[3] To this effect, the development of methods to
identify poorly conserved reactive residues have aided the ac-
celeration of TCI design. For example, activity-based protein

profiling techniques (ABPP, isoTOP-ABPP[4, 5]) can be used to
both investigate the activity at the proteomic level and quanti-
fy the intrinsic reactivity of functional cysteines. Also, Liu and
colleagues have coined the term “kinase cysteinome” to refer

to the collection of targetable cysteine residues in the human
kinome[6] and published a computational methodology to

identify such cysteines.[7]

Ligands that bind through a covalent mechanism are not
subject to classical equilibrium kinetics, as their residence time

in the binding pocket can last up to days. As a consequence,
the potency of these drugs is capable of surpassing the theo-

retical limits of potency/ligand efficiency.[2] Another advantage
is the prolonged duration of action, which can persist even

when the ligand has already been cleared from the body. This

can be beneficial for alleviating the drug burden of a patient
due to less frequent drug dosing (depending on the turnover

rate of the protein) and therefore a possibly lower risk of idio-
syncratic toxicity, which has been linked to daily drug

dosage.[8]

Thanks to recent guidelines, the design of safe and effective
covalent drugs has gained significant interest. Other than tar-

geting non-conserved nucleophilic residues, optimizing the
noncovalent binding framework is important to improve po-
tency and selectivity of covalent binders toward the desired
target. Significant efforts have been made in extending the
computational toolkits to include a covalent mechanism of
protein targeting, like in the development of covalent docking

methods for binding mode prediction. To highlight the value
of the noncovalent complex in the covalent binding process,

here we describe a new protocol using tethered and constrain-

ed docking in combination with Dynamic Undocking (DUck) as

a tool to privilege strong protein binders for the identification
of novel covalent inhibitors. At the end of the protocol, dedi-
cated covalent docking methods were used to rank and select
the virtual hits based on the predicted binding mode. By vali-
dating the method on JAK3 and KRas, we demonstrate how
this fast iterative protocol can be applied to explore a wide

chemical space and identify potent targeted covalent inhibi-
tors.
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In addition, the TCI approach has proven to be a valuable
tool in targeting protein binding sites, which were previously

considered as undruggable, as well as to combat drug resist-
ance by targeting poorly conserved non-catalytic residues.

Overall, all of these aspects have contributed to a resurgence
of covalent drug discovery programs, which has already led to

an increase of clinical candidates acting via a covalent mecha-
nism.[9]

In general, a covalent binder first requires the formation of

an initial noncovalent complex with its target, followed by the
chemical reaction between the ligand’s electrophilic warhead
and the nucleophilic residue. As such, the most straightforward
covalent drug design approach is based on the modification of
a known noncovalent binder to introduce an electrophilic war-
head. This could indeed allow to reach and covalently modify

the targeted nucleophile on the protein by maintaining the

overall binding mode in the rest of the pocket. Additionally, an
important strategy is to fine-tune the warhead reactivity based

on the target nucleophilicity in order to limit possible side ef-
fects arising from off-target modifications.[9–11]

From a computational perspective, once an appropriate nu-
cleophile and warhead are identified, a structure-based ap-

proach can be used to screen or optimize ligands to fit the

binding site, while also being able to place the warhead in the
vicinity of the targeted residue to form the covalent bond. Sev-

eral covalent docking methods have recently been developed
to model the structural changes occurring when covalent li-

gands bind to their target. However, other than the inherent
limitations of traditional docking methods (i.e. , scoring, protein

flexibility, solvation, and nonclassical effects),[12] these tools also

have to address additional challenges in the simulation. Pre-
dicting the optimal geometry of the reacting groups upon co-

valent bond formation is of key importance for accurate simu-
lations. Furthermore, covalent docking programs face the in-

ability to evaluate the energy of bond formation, which would
require QM-based simulations of the reaction. Depending on

the method of choice, modeling all the different and key as-

pects characterizing the binding of covalent ligands is often re-
flected in higher computational costs than for traditional non-

covalent docking.
Among the first developed tools are GOLD[13] and Auto-

Dock:[14] the former enforces the covalent reaction through the
definition of a link atom in both the ligand and receptor

before initiating the genetic algorithm search, while the latter
offers the opportunity to choose between the two-point attrac-
tor approach and the better performing flexible side-chain
method, in which the ligand is sampled as part of the protein.
In addition to a lack of the energetic contribution of covalent

binding, the manual definition of the atoms involved in the re-
action hinders the applicability of covalent docking programs

to large libraries. A recent approach taken by CovalentDock[15]

automatically detects reactive atoms for linking and rewards
the energy contribution of the binding event as an additional

MM-based term. The authors retrospectively validated their
method on 76 covalently bound ligands in the Protein Data

Bank (PDB), for which CovalentDock showed better per-
formance than GOLD and AutoDock. However, CovalentDock is

limited in reaction types (only Michael addition and b-lactam
opening are supported) and does not account for the flexibility

of the reacted residue. Furthermore, the cloud web server de-
veloped for its usage appears to no longer be available (access

attempted on October 16, 2018). More recently, other web-
based servers such as DOCKovalent,[16] or proprietary software

such as ICM-Pro,[17] FITTED,[18] and DOCKTITE[19] (an SVL-based
workflow for the modeling software MOE[20]) enabled covalent
docking-based virtual screening applications by using prede-

fined and customizable reactions to identify reacting groups.
Schrçdinger’s CovDock[21] takes it one step further and

mimics the full binding process of covalent ligands (as op-
posed to only taking into account the covalently attached

ligand–protein complex). With this, CovDock highlights the im-
portance of the noncovalent interactions formed prior to cova-

lent binding. The multistep algorithm provides two alternative

solutions by means of a “pose prediction” module and a virtual
screening module (CovDock-VS). The former includes an exten-

sive protocol for the prediction of the covalently bound pose,
namely: I) ligand conformation generation; II) positioning the

pre-reaction form of the ligand warhead close to the receptor
reactive residue (mutated to Ala) using a constrained docking;

III) resetting the mutation to the original residue, sampling its

rotameric states, and generating the covalent attachment; IV)
clustering and minimization of the poses (including the react-

ed residue) ; and V) scoring by means of the Prime energy
model. An additional affinity score, which averages GlideScore

on both the pre- and post-reaction forms of the ligand, is pro-
vided to compare different compounds equipped with the

same or similar reactive warheads. While it shows good bind-

ing mode prediction accuracy, this protocol takes roughly 1–2
CPU hours per ligand, so it is not suited for high-throughput

screenings. Toledo Warshaviak and colleagues addressed this
issue by developing CovDock-VS,[22] which I) skips the ConfGen

step, II) limits the number of resulting pose clusters to three,
III) excludes minimization by Prime, and IV) scores and ranks
protein–ligand complexes based only on the initial GlideScore.

Ultimately, this led to significantly improved speeds (&15 mi-
nutes per structure on a single CPU according to the info on
CovDock’s latest release) over the pose prediction module, but
also yielded less accurate binding mode predictions, unless

known interaction patterns were incorporated.
In general, the performance gap in terms of binding mode

prediction among the different covalent docking programs

was shown to vary significantly depending on various factors
(i.e. , protein target, accessibility of the nucleophilic residue,

amount of noncovalent interactions occurring in the com-
plex).[23] On the other hand, the speed of the simulation re-

mains one of the main bottlenecks that can drastically affect
the size and diversity of the covalent libraries used for screen-

ing applications. To this end, herein we present DUckCov, a

time-efficient multistep VS protocol for the identification of
novel covalent binders. It was devised to emphasize the role of

the interactions mediating the initial noncovalent complex,
whose optimization can, therefore, result in both an increase

of the selectivity for the target and in an opportunity to de-
crease the reactivity of the electrophile. As depicted in
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Figure 1, rDock[24] is first used to constrain the reactive war-
head close to the targeted residue. During docking, pharmaco-

phoric restraints are applied to known H-bond interaction
points, if any. Dynamic Undocking (DUck)[25] is then used to

assess the strength of these H-bonds. DUck evaluates structur-

al stability, rather than thermodynamic stability, and has been
shown to be orthogonal to methods that attempt to estimate

the binding energy. H-bonds are suggested to be the main de-
terminants of structural stability based on their sharp distance

and angular dependencies, and their role in structure-kinetic
relationships.[25, 26] Finally, CovDock is used to evaluate the

binding mode of those ligands that optimally bind through

noncovalent interactions, and to check if the same interaction
pattern is maintained in the predicted covalent docking pose.

The protocol was prospectively validated in two case stud-
ies: a target with highly conserved noncovalent interactions

(JAK3) and another one where the noncovalent interactions
are not conserved across known inhibitors (KRasG12C).

Results and Discussion

Case study 1: JAK3

JAK3 is one of the four Janus kinases (a subfamily of tyrosine
kinases), the only of which is primarily restricted to leukocytes.

Its functional modulation has been associated with a pheno-
type of severe combined immunodeficiency.[27] Although signif-
icant effort has been put into the discovery of JAK inhibitors,

the search for JAK-specific ligands is still on-going. JAK3 specif-
icity over other family members can be achieved by targeting

C909 with ligands that are able to covalently bind this residue.
H-bond interactions are known to play a prominent role in

building up affinity toward kinase targets. Because the majority

of kinase inhibitors bind to the highly conserved hinge motif,
DUckCov application on JAK3 was focused on the identifica-

tion of covalent ligands displaying strong interactions at this
region.

The DUckCov workflow for JAK3 is described in Figure 2 B.
Based on the selected JAK3 structure, tethered and constrain-

ed docking filtered the acrylamide dataset from roughly 50 000
compounds to 249 compounds that satisfied the H-bond inter-

actions with E903 (backbone C=O) and L905 (backbone NH) at
the hinge region (depicted in cyan in Figure 2 A), while con-

serving the acrylamide group close to the reactive C909 as ob-

served in the prepared reference ligand (depicted in grey in
Figure 2 A). Next, DUck was performed, using the H-bond es-

tablished with E903-O as the simulation coordinate, leading to
92 remaining hits. From those, a second round of DUck on the

H-bond formed with L905-NH resulted in 66 compounds. In
both cases, a WQB (work necessary to pull the ligand from 2.5

to 5.0 a relative to the defined H-bond interaction) threshold

of 6 kcal mol@1 was maintained. The consensus of both interac-
tions was used to filter the rDock docking poses using DUck,

as both these interactions are made by the reference ligand
(with WQB = 13 kcal mol@1 and 11 kcal mol@1, respectively). Then,

in order to get both a quantitative ranking and more accurate
binding mode predictions, CovDock in the “Pose prediction”
module was used for the covalent docking simulations on the

66 DUck hits. Finally, we have selected the top 10 ligands ac-
cording to their CovDock affinity scores. Out of these, five
compounds (1, 3, 5, 8 and 9) were available for immediate pur-
chase (Figure 2 C–D): they were experimentally validated in an

enzyme-based activity assay (see Methods section). For the
rest of the top 10 ligands, see Supporting Information Fig-

ure S6.

Compound 1, the top-ranked ligand, has been originally re-
ported as a potent double mutant EGFRL858R/T790M inhibitor (PF-

06459988, IC50 = 7 nm),[28] and based on the DUckCov predic-
tion and subsequent in vitro testing, we found that the com-

pound inhibits JAK3 with similar potency (5 nm). Interestingly,
JAK3 activity of this compound was not reported previously;

however, profiling against 54 human kinases at 1 mm revealed

its moderate JAK1 and JAK2 inhibitory activity.[28] Compounds
5, 6, 8 and 9 are characterized by a higher rigidity of the linker

between the hinge binding region and the warhead. Com-
pound 5 displayed an IC50 value of 389 nm on JAK3, and 18 %

and 62 % inhibition on JAK1 and JAK2 at 10 mm, respectively,
suggesting a covalent bond driven improvement of the inhibi-

Figure 1. Starting from a library of covalent ligands, the general workflow is as follows: 1) docking with rDock with pharmacophoric constraints (orange
spheres) and positional restraints for the warhead (encircled by orange ellipse), 2) dynamic undocking to test the strength of the H-bond interaction that was
enforced during docking, and 3) covalent docking of ligands that display the best noncovalent interactions to account for warhead flexibility (red arrow).
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tion due to the presence of the JAK3 unique reactive cysteine.
Compound 9, a partially saturated analogue of 5, was found to

be less potent (1.27 mm IC50), in line with the observed vast
majority of aromatic hinge binding moieties known in the liter-

Figure 2. A) Pre-reaction reference ligand in the structure 5TOZ in grey, and covalent attachment in orange in the post-reaction form, with defined features as
cyan spheres, and interactions in cyan dashes. B) DUckCov protocol for JAK3. C) Top-ten compounds, ranked by CovDock affinity scores (green: rDock binding
modes, magenta: CovDock binding modes; interactions with the hinge residues E903 and L905 are displayed in cyan). D) Experimentally tested compounds
for JAK3; the three confirmed compounds correspond to a hit rate of 60 %.
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ature. In the same line, compound 8 showed no activity in the
biochemical assay, further highlighting the preference for

planar hinge-binding cores. Finally, compound 3 was also ex-
perimentally tested (as an analogue of 5 with a flexible linker),

but has shown no activity.
In Figure 2 C the poses generated by rDock and CovDock for

the top 10 ligands are shown in green and magenta, respec-
tively. In nine out of 10 cases the interactions used for pulling

with DUck were reproduced in the best scoring pose generat-

ed by CovDock. (RMSD values, CovDock affinity, rDock scores,
and DUck WQB values, along with the ZINC codes of the com-
pounds are given in Supporting Information Table S7). Com-
pounds 1, 4, 5, 7, 8, 9 and 10 retain the same orientation of

the hinge binding region, while compounds 2 and 3 contain
the hinge binding scaffold in a flipped orientation, due to the

flexibility of the linker. However, compound 3 maintained both

interactions at the hinge, while compound 2 showed a dual in-
teraction with L905. In addition to the higher deviations

(RMSD) between the binding modes predicted by rDock and
CovDock, the linker flexibility of compounds 1–4 results in

higher strain energies as well (relative to minimum energies of
the free ligands, see Supporting Information Table S8). Howev-

er, this does not necessarily prevent the compounds to be

potent inhibitors of JAK3 (as exemplified by compound 1), in
accordance with the general notion that the linker rarely has a

profound effect on activity. Compound 6 is the only case
where neither an interaction with E903, nor L905 is observed.

(The ten lowest ranked ligands are included as counter-exam-
ples in Supporting Information Figure S9, most of them lacking

any kind of interaction with the hinge).

The 60 % hit rate observed with DUckCov against JAK3 dem-
onstrates the importance of noncovalent interactions estab-

lished by covalent ligands. However, these findings also clearly
show the need for dedicated covalent docking programs sam-

pling multiple rotameric states of the reactive residue. This
would increase the chance to identify the most optimal geom-

etry of the covalent attachment, which could consequently re-

flect in a rearrangement of the overall binding mode that
would be generated by tethered docking.

It is also important to note that running the DUckCov work-
flow took a total 1200 CPU/GPU hours, while running CovDock

Virtual screening on the whole dataset would have taken
about 13 750 CPU hours (15 minutes per ligand according to

the software manual). The roughly 11-fold speedup can be
mostly attributed to the quick tethered docking step, leaving

only a fraction of the ligands to be evaluated by the more ex-
pensive Dynamic Undocking. If we account for parallelization

as well, running this specific workflow in parallel on 24 GPUs
of the Barcelona Supercomputing Center has required a total

50 hours of runtime, while our license token limit would have

allowed us to run CovDock Virtual screening on three parallel
threads (three ligands), resulting in about 4600 hours of total

runtime, translating to a roughly 92-fold decrease in speed
compared to the DUckCov workflow. The reported speedups

can be considered typical for academic groups (based on the
accessible resources), but in a more general sense, CPU/GPU
time is more accessible (cheaper) than state-of-the-art software

licenses (such as Schrçdinger) for industrial researchers as well.

Case study 2: KRasG12C

To challenge the method’s applicability domain, it was also ap-

plied to another oncological target, the catalytic domain of
KRasG12C. For KRasG12C, even the best irreversible binders show
low potency if their covalent warhead is removed.[29] KRas is a

small G protein, which is rendered constitutively active by the
G12C mutation, leading to abnormal cell growth. The mutation
has been shown to be implicated in 40 % of KRas-driven lung
cancers.[30] Known covalent ligands bind to a highly flexible al-

losteric pocket, which traps KRasG12C in the inactive GDP-bound
state (thereby confirming its druggability).[31] Additionally, cova-

lent ligands can specifically target the mutated KRasG12C, spar-

ing the wildtype protein and offering the opportunity for on-
cogene-specific inhibition.[30]

In Table 1, the various H-bond interactions are displayed for
10 KRasG12C structures containing a covalently bound acrylam-

ide ligand, as well as the WQB values obtained for each interac-
tion on the reference ligand. For the remaining two of the 12

selected structures (PDB IDs 4M21 and 6ARK), no H-bonds

could be reliably identified. An interaction was used in DUck-
Cov if the work required to break the H-bond was higher than

6 kcal mol@1. Thus, structures 5F2E (pulling from atoms R68-

Table 1. Interaction patterns for the selected KRasG12C structures.[a]

PDB ID LIG Chain R68 NH2
[Don]

K16 NZ
[Don]

E63 O
[Acc]

E63 OE2
[Acc]

D69 OD1
[Acc]

H95 NE2
[Don]

4M22 22C B 6.5
5F2E 5UT A 10 X 10 13
5V6S 8YD A X 9.2 X
5V71 8ZG A X X
5V9L 91D A X X
5V9O 91G A 10 12 21
5V9U 91S A X
5YXZ 94C A X X
5YY1 94F A X X
6B0V C8G A X X

[a] X indicates that the calculated DUck WQB value was <6 kcal mol@1, otherwise the value corresponds to the work necessary to break the H-bond during
the DUck simulation in kcal mol@1.
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NH2, E63-O and D69-OD1), 5V9O (pulling from atoms K16-NZ,
E63-OE2 and D69-OD1), and 5V6S (pulling from atom D69-

OD1) were used to validate the DUckCov protocol on KRasG12C.

In Figure 3 A, the workflow is summarized for the two struc-
tures and three interactions that led to virtual hits, namely

5V9O, E63-OE2 and D69-OD1, and 5V6S, D69-OD1. Finally, 63,
22 and 47 hits were generated by DUckCov from these interac-

tion points, respectively. Based on the results of JAK3, the com-
pounds that were selected for experimental testing were en-

sured to have maintained the inspected H-bond and/or dis-
played similar binding modes according to rDock and Cov-

Dock. The RMSD between rDock and CovDock poses and di-

versity of the hits were also used to support the final selection
(Figure 3 C).

In Figure 3 C, the compounds retrieved using the stepwise
workflow are shown. Compounds 11, 13, 15 and 16, maintain

the defined interaction with D69 of the KRas structure 5V6S, in
both rDock and CovDock poses. It should be noted that the

Figure 3. A) DUckCov workflow for KRasG12C for the structures and interactions that eventually led to virtual hits. B) Pre-reaction reference ligands in 5V6S and
5V9O in orange (warhead used for tethering), with covalent attachment in grey, and pharmacophoric features for docking/interaction for DUck in cyan.
C) Compounds resulting from DUckCov workflow against 5V6S (11–16) and 5V9O (17–20). In the latter case, compound 17 was retrieved considering the fea-
ture/interaction with E63, while compounds 18–20 were retrieved considering the feature/interaction with D69. rDock poses and CovDock poses are shown
in green and magenta, respectively.
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pharmacophoric restriction in rDock has a tolerance of 1 a rela-
tive to the reference coordinates. As a result, in some cases

the input geometry for DUck does not form a hydrogen bond.
Yet, the initial step in the DUck protocol involves a minimiza-

tion that can repair the H-bond. For this reason, as shown in
compounds 12 and 14, some interactions present high WQB

values even though they were not recapitulated by rDock.
These interactions are also present in the CovDock pose.

The overall conservation of the binding modes in all ten

compounds is reasonably good, in accordance with the RMSD
values between the rDock and CovDock poses. RMSD values,

CovDock affinity and rDock SCORE.INTER (interaction score
energy) scores, as well as WQB values, for the final ten com-

pounds are reported in Supporting Information Table S10,
along with their ZINC codes. These compounds were pur-

chased and tested in HSQC NMR measurements (except for

compound 14 that was not available for immediate purchase
at the time of this study). The 2D structures are included in

Figure 4 B for the confirmed hits, and Supporting Information
Figure S11 for the rest. Strain energies of the resulting binding

modes are reported in Supporting Information Table S12.
The site specific binding of compounds 11, 13, 17 and 19

was confirmed by 1H,15N-HSQC (2D NMR) measurements. After

the appropriate incubation time, changes in the HSQC spec-
trum were detected based on chemical shift perturbation con-

firming the binding of the mentioned small molecules (see Fig-
ure 4 A, and Supporting Information Figure S13 for the full

spectra). The perturbed chemical shifts are located mostly in
the well-known Ras functional regions: the P-loop (G10-S17),

Switch I (D30-D38), and Switch II (L56-G77). Overall, the find-

ings suggest that the compounds can bind to KRasG12C cova-
lently at the C12 residue, and are located in the allosteric bind-

ing pocket of KRas, similarly to known inhibitors such as ARS-
853[31] and ARS-1620.[32] It is worth to note that from the three

protein structure/H-bond combinations that were applied for
the DUckCov workflow (Figure 3 A), all of them have produced
at least one confirmed hit compound.

The 44 % hit rate retrieved for KRas using the DUckCov pro-
tocol is exceptional, considering the lower druggability of this
target. Moreover, the correlation between affinity and activity
remains elusive.[33] Considering this, the protocol was success-
ful in identifying four novel KRas covalent binders in an effi-
cient manner by first focusing on the noncovalent interactions,

even though these are known to be non-conserved. Further-
more, a dedicated covalent docking program is imperative for
the evaluation of possible rearrangements of the overall bind-
ing mode generated by rDock. By sampling multiple rotameric
states of the reactive residue, forming the covalent bond be-

tween the reactive atoms and performing structural optimiza-
tion of the covalently attached ligand, the binding mode pre-

diction module in CovDock could increase the chance to find
an optimal geometry for the ligands. Additionally, a compari-
son with Schrçdinger’s CovDock Virtual screening module

clearly highlights the advantage of the DUckCov workflow, as
three out of the four confirmed hits were not included in the

top ten virtual hits by CovDock (Supporting Information
Table S14).

Conclusions

DUckCov is presented here as a novel protocol for the identifi-
cation of covalent binders that models every stage of the mul-

tistep binding mechanism of covalent ligands in an efficient hi-
erarchical manner. In this protocol, only molecules that can

form a stable and productive pre-reactive state are evaluated
before assessing the post-reactive state, thereby allowing to

explore large chemical spaces. Dynamic Undocking (DUck) is

the main feature of the workflow, as it is used to analyze the
pre-reactive state of the ligands by evaluating the strength of

H-bond interactions driving the formation of the initial nonco-
valent protein–ligand complex. Furthermore, DUck calculations

are performed on focused protein chunks, thus enabling fast
simulations by decreasing the size of the system. Therefore,
DUckCov relies on DUck as a stringent and efficient filter for

the selection of molecules to be subjected to the following
steps. Next, the post-reactive state is analyzed by performing

covalent docking with CovDock in the most accurate pose pre-
diction module. This step is used to generate bound conforma-

tions, thus allowing to compare binding modes in the pre- and
post-reaction states, and to assess if the key H-bonds are main-

tained when the ligand is covalently bound to the targeted nu-

cleophilic residue.
Our protocol was successfully validated in two case studies.

For JAK3, we reported a hit rate of 60 % (three actives out of
five molecules tested), identifying two novel, low micromolar

and high nanomolar ligands, as well as a low nanomolar inhibi-
tor, originally developed for another kinase target (EGFR). For

the more challenging KRasG12C protein target, four novel cova-

lent ligands were experimentally confirmed out of nine tested.
Due to the highly flexible nature of the KRasG12C allosteric bind-

ing pocket, the resulting 44 % hit rate can be considered ex-
ceptionally good. The two case studies display the broad ap-

plicability of DUckCov, in identifying novel chemical matter for
structurally better characterized, as well as more challenging

targets. It is also important to highlight that, depending on

the available resources, the presented workflow can provide a
roughly ten- to hundred-fold speedup, as compared to a com-

mercially available virtual screening tool for covalent binders
(Schrçdinger CovDock).

Experimental Section

Target structure selection : For JAK3, the PDB structure 5TOZ
(chain A) was used as the template, using the co-crystallized inhibi-
tor PF-06651600 as the reference ligand. At the moment of selec-
tion, eight structures were available containing covalently bound li-
gands having a terminal acrylamide as warhead (4QPS, 4V0G, 4Z16,
5TOZ, 5TTS, 5TTU, and 5TTV). Alignment and superposition of
these structures in MOE[20] led to an average RMSD of 0.78 a. Given
the structural conservation of the JAK3 kinase, the choice for struc-
ture 5TOZ was based on its co-crystallized ligand having the best
inhibitory potency (0.4 nm).[34]

For the second case study, a structure ensemble approach was
used, due to the pronounced flexibility of the KRas allosteric bind-
ing site. At the end of May 2018, 23 KRas structures containing co-
valently bound ligands had been deposited in the PDB. The majori-
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Figure 4. A) 1H,15N-HSQC spectra of the tested nine molecules and KRasG12C, showing the spectral region of C12 and other binding site residues (blue), overlaid
on the reference spectrum of the free protein (red), after incubation. For compounds 11, 13, 17 and 19, most of the highlighted residues from the P-loop
(C12, S17, A18), Switch I (Y32, D38) and Switch II (L56, D57, Q61, E62, M67) regions are significantly perturbed, while almost no changes are detected for 12,
16 and 18. Small (inconclusive) changes are detected for compounds 15 and 20. B) 2D structures of the experimentally confirmed hit compounds against
KRasG12C.
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ty of unique ligands formed a covalent bond via Michael addition
(20/23). Of these, 12 were acrylamide-based covalent ligands, while
eight contained a vinylsulfonamide moiety as the electrophile. As
for the remaining three complexes, one was formed via a ring
opening reaction (5V6V) and the other two were formed through
disulfide formation (4LUC, 4LV6). We limited the set to the 12 acryl-
amide-based complexes due to the limited commercial availability
of screening compounds able to react via ring opening or disulfide
formation, and the narrower chemical space of available vinyl-
sulfonamides (roughly 2000 purchasable compounds in ZINC,
versus 50 000 purchasable acrylamides[16]). The average RMSD of
these 12 structures in the flexible switch II loop was 2.41 a (Sup-
porting Information Table S1). From these 12, those structures in
which at least one H-bond with the co-crystallized ligand was
stronger than 6 kcal mol@1 (as evaluated by DUck) were selected for
the ensemble approach in DUckCov.

Protein structure preparation (in silico): All of the selected PDB
structures were prepared in MOE as follows: I) the structure was
corrected (termini were capped, gaps were capped or a homology
of the sequence of a similar structure was built, alternate confor-
mations were chosen if more than one was present, correct tauto-
meric states for the residues were assigned); II) the structure (in-
cluding the covalently bound ligand) was protonated at pH 7;
III) the covalent bond between the residue and the ligand was
manually broken; IV) the ligand warhead in its pre-reaction form
was built with MOE builder by making the acrylamide’s Ca-Cb

bond double, and finally; V) the cysteine was rebuilt, then mini-
mized in the presence of the pre-reaction ligand.

The structures for the CovDock simulations were prepared with
the Protein Preparation Wizard provided in the Schrçdinger
Suite,[35, 36] in order to further refine the protein’s H-bond network
and to perform a restrained minimization of hydrogen atoms. The
receptor grid box required for docking calculations was centered
on the corresponding co-crystallized ligand.

Datasets for VS : As one of the main features of the protocol is its
efficiency, it is most beneficial when a large collection of electro-
philic ligands is available. In general, if the protein has already
been targeted by covalent inhibitors, the library can be compiled
by collecting commercially available ligands and/or by enumerat-
ing synthetically accessible compounds bearing the same warhead
type as the crystallized inhibitor. For JAK3, the vast majority of
known covalent inhibitors bind through an acrylamide warhead,
while for KRasG12C, most of the known potent covalent inhibitors
bind through either an acrylamide or a vinylsulfonamide warhead.
Further on, due to the limited commercial availability of screening
compounds containing other types of warheads, we used the ac-
rylamide dataset (roughly 50 000 compounds) collected by London
et al. (for testing their recently published covalent docking pro-
gram, DOCKovalent), to validate our protocol.[16] Prior to docking
simulations, LigPrep by Schrçdinger was used to prepare 3D con-
formations from SMILES codes and to generate tautomeric and
ionization states at pH 6–8 while retaining specified chiralities.[35, 36]

General workflow description : An overview of the protocol is
shown in Figure 1. The collected library (here: ZINC acrylamide col-
lection) is first docked with rDock against the target of interest,
while simultaneously tethering the covalent warhead to its refer-
ence coordinates and using pharmacophoric constraints to enforce
the main noncovalent interaction. Because the protein structure is
derived from a crystallized covalent complex, a distance cutoff is
set to avoid large deviations of the electrophilic warhead from the
position defined in the reference ligand. H-bond pharmacophoric

constraints are applied in the docking simulation to keep only
those ligands that can establish the H-bond interactions defined as
important for binding. DUck is then used to evaluate the strength
of the H-bond. For DUck, only H-bonds are assessed, as they are
known to be key contributors to affinity in many targets.[37, 38] In a
DUck simulation, the ligands are pulled from 2.5 to 5.0 a relative
to the defined H-bond interaction point in the protein, during a
user-defined number of MD and SMD replicas. The force necessary
to pull out the ligand is then used to calculate a work value (WQB),
which corresponds to the strength of the H-bond. What makes
DUck exceptionally fast, is that only the local environment of the
residue involved in the interaction is required for the simulation.
Lastly, only those ligands that display the best noncovalent interac-
tions (according to rDock and DUck) are covalently docked with
CovDock using the most accurate pose prediction module.

Tethered and constrained docking : Using rDock, the cavity was
prepared with the reference ligand method, using the respective
co-crystallized ligand. Tethered docking was used to restrain the
electrophile close to the reactive residue. Tethered docking consists
of two steps, namely, I) superposing atoms according to the de-
fined SMARTS pattern, and II) docking, during which the super-
posed atoms can only deviate from the original position by a user-
defined cutoff. The warhead was defined by the SMARTS pattern
“[#6] = [#6]@[#6] = [#8]” for the acrylamide motif. During docking,
the tethered part of the ligand could move freely in terms of the
dihedral degrees of freedom, while the translational and rotational
degrees of freedom could deviate by max. 0.1 a per docking run.
This is meant to allow some flexibility in the sampling, also taking
into consideration that the targeted cysteine residue could display
a significant degree of flexibility.

Furthermore, a pose is penalized if the defined pharmacophoric
constraints are not met. Here, a 1 a deviation was permitted to in-
crease sampling, considering that the strength of the H-bond
would still be assessed by DUck later on. For JAK3, the pharmaco-
phoric constraints were defined as an acceptor (E903 backbone C=
O) and a donor (L905 backbone NH), both of which interact with
the reference ligand in 5TOZ. For KRasG12C, the pharmacophoric
constraints were defined based on the H-bond interactions ob-
served between the reference ligands and the protein in the se-
lected structures: these interactions (along with their WQB values
evaluated by DUck) are summarized in Table 1.

Next, the high-throughput VS protocol (HTVS) of rDock was imple-
mented, which consisted of three docking stages for each ligand.
In each stage, the number of docking runs increases (for better
sampling), and the threshold for the docking score decreases
(better scores). The ligand only proceeds to the next stage if its
docking score is better than the defined threshold within the
specified number of runs. This is done to increase the efficiency of
the simulation by progressively decreasing the number of ligands
moved forward. The docking score filters were selected based on
the score of the reference ligands, while being stricter for JAK3 (as
the defined noncovalent interactions necessary for binding are
well known) and less strict for KRas (as the defined noncovalent in-
teractions necessary for binding are not known). For the same
reason, the total number of docking runs for JAK3 was significantly
lower than for KRas. The exact HTVS protocols are given in Sup-
porting Information Schemes S2 (for JAK3) and S3 (for KRas) along
with the in-place rDock SCORE.INTER scores in Supporting Informa-
tion Table S4.

Dynamic undocking : The first step for a DUck simulation is the
definition of the chunk (a part of the protein structure) that repre-
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sents the local environment surrounding the residue interacting
with the ligand. Thus, for every interaction point, a separate chunk
is created. When selecting residues for the chunk, the following
guidelines were considered: I) selecting as little residues as possi-
ble to reduce computational time; II) residues were not selected if
they would block the ligand from exiting the pocket during the
simulations based on the directionality of the H-bond; III) residues
were not removed if this would lead to the possibility of solvent
entering the pocket from areas other than where the ligand is exit-
ing; and lastly IV) preserving the local environment. This was done
from the already prepared structures. The gaps created during the
process of selecting the chunk residues were capped. For this,
each section of residues was split into separate chains, and the ter-
mini of each chain were acetylated or methylated. Lastly, the
chunk was checked for clashes possibly created during the capping
of the chains. The corresponding chunk definitions for JAK3 and
KRas are included in Supporting Information Table S5.

After production of the chunk, DUck automatically does the follow-
ing: I) automatic ligand parameterization in MOE, II) minimization,
III) equilibration, and IV) a series of SMD (at two different tempera-
tures), then MD simulations, in which the ligand is pulled from 2.5
to 5.0 a relative to the defined H-bond interaction. Steps II) to IV)
were performed with GPU-based pmemd.cuda in AMBER.[39] Five
replicas of step IV) were performed, during which a WQB threshold
of 6 kcal mol@1 (force necessary to pull the ligand) was maintained,
so that the simulation was stopped if the measured WQB value of
the H-bond was smaller. Additionally, for KRas, the inclusion of co-
crystallized GDP in the chunk was necessary, as its absence would
have led to the surface being more exposed to bulk solvent. For
this, GDP was parameterized using MOE’s PFROST forcefield, and
the generated parameters were automatically included in the DUck
protocol.

Covalent docking with CovDock : Because Schrçdinger’s CovDock
pose prediction module outperformed most of the other covalent
docking tools, we used this approach to rank and predict the bind-
ing mode of the virtual hits identified to have strong noncovalent
interactions by the previous workflow steps.[23] CovDock ranks the
compounds according to an “Affinity Score”, which is calculated as
the average of the pre-reaction Glide score and the post-reaction
in-place docking score. By deeming the energy of bond formation
as constant across a set of compounds having the same warhead
involved in the chemical reaction (as in the case of DUckCov), the
affinity score can be used to compare and rank ligands in a set.
CovDock affinity scores for the reference ligands of the structures
that led to hits are given in Supporting Information Table S4. Con-
trary to the first docking step in the workflow, no additional re-
straints were applied in the covalent docking simulation other
than those used by default in CovDock. Binding site residues were
defined by centering the receptor grid on the ligand co-crystallized
in the structure under investigation. When setting up the simula-
tion, the acrylamide warhead was automatically recognized in each
ligand structure through the SMARTS-based definition of the “Mi-
chael addition” reaction type. Ultimately, this step was incorporat-
ed to evaluate if a change in binding mode would take place upon
covalent bond formation, which would prevent the ligand from es-
tablishing the interactions defined as necessary by previous work-
flow steps. To that end, root-mean-squared deviation (RMSD)
values between the rDock and CovDock conformations were calcu-
lated by means of a Python script provided by Schrçdinger
(rmsd.py). A small RMSD, typically lower than 2.0 a, was considered
as favorable. Furthermore, the defined interaction patterns were
also visually inspected for consensus.

Biochemical and structural characterization of the identified vir-
tual hits : Compounds 1, 3, 5, 8 and 9 were tested at 10 mm in du-
plicate with the Z’-LYTE kinase inhibition assay (Life Technologies).
The assay uses a fluorescence-based format and is based on the
different sensitivity of phosphorylated and non-phosphorylated
peptides to proteolytic cleavage. A suitable peptide substrate is la-
beled with two fluorophores (coumarin and fluorescein), forming a
FRET pair. After incubating the kinase + peptide + test compound
mixture for an hour, a development reaction is carried out. Any
peptide that was not phosphorylated by the kinase is cleaved, dis-
rupting the resonance energy transfer between the FRET pair. The
reaction progress is quantified based on the ratio of the detected
emission at 445 nm (coumarin) and 520 nm (fluorescein), that is,
the ratio of cleaved versus intact peptide. A more detailed descrip-
tion of the assay is available on the website of Life Technologies.[40]

IC50 values were determined from 10 points titration measurements
using the same assay.

Binding of compounds 11–13 and 15–20 to KRasG12C was tested
and structurally characterized by NMR measurements, performed
on a Bruker Avance III 700 MHz spectrometer equipped with a 5-
mm Prodigy TCI H&F-C/N-D, z-gradient probe head operating at
700.05 MHz for 1H and 70.94 MHz for 15N nuclei. 1H,15N-HSQC spec-
tra were recorded at 298 K to obtain the protein 1H and 15N reso-
nances in both free and small-molecule-bound state and the
changes in chemical shifts were followed upon complex formation.
NMR samples contained 15N-labeled KRasG12C (catalytic domain, resi-
dues 1–169) in 150 and 50 mm concentration in free protein mea-
surement (as a reference) and binding test, respectively, 5 mm GDP,
10 mm EDTA, 15 mm MgCl2 in PBS buffer, 5 % DMSO and 10 % D2O
at pH 7.4 and 150–500 mm ligand. Because some of the ligands
were not fully dissolved, we used a longer incubation time (96 h),
and a high number of scans for every HSQC spectrum (NS = 128).
To avoid false-positive results, the free protein was incubated for
four days as well, and the spectra of the samples were compared
with the spectrum of the incubated free protein. All 1H chemical
shifts were referenced to the DMSO peaks (which were calibrated
to DSS resonance before in free protein measurements) as DSS
was not added to avoid any side reactions with the ligand. 15N
chemical shift values were referenced indirectly using the corre-
sponding gyromagnetic ratios according to the IUPAC convention.
Sequence-specific assignments of HN and N in the bound KRasG12C

spectra were transferred from our results to be published else-
where (BMRB entry code: 27646). There were ambiguities in a
number of resonances in crowded spectral regions; however, this
fact did not influence the final outcome. All spectra were pro-
cessed with Bruker TOPSPIN and analyzed using NMRFAM-SPARKY
software.[41]
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