
Pacific Rocks 2000, Girard, Liebman, Breeds & Doe (eds) © 2000 Balkema, Rotterdam, ISBN 90 5809 155 4

1289

1 INTRODUCTION

The schematic stress-strain curves for different con-
stant strain rates ( )(tε&  = constant) and stress rates
( )(tσ&  = constant) of the Poynting-Thomson (stan-
dard) model of linear viscoelasticity are shown in
Figures 1a, b, respectively. The stress-strain curves
are linear if loading rates tend to infinite or zero al-
though for finite loading rates these curves are non-
linear (see e.g. Asszonyi & Richter 1979).

Comparing the theory with the practice (Fig. 2) the
stress-strain curves for rocks at the experimentally
available rates are non-linear and strongly velocity
dependent: with increasing loading rate the entire
stress-strain curve rises, i.e. time-dependent. An un-
loading process (dotted line in Figure 2) starting
from any stress level reveals an irreversible compo-
nent of the strain. For the two above-mentioned rea-
sons one can conclude that for loading process which
starts from the stress-free state the yield stress for
most rocks is zero (Cristescu 1989). The curves
shown in Figure 2 also reveal that the loading rate
also influences failure; with increasing loading rate
the stress at failure increases while strain decreases.

According to the usual explanation higher stress or
strain rate leads to greater (crack) localization, stress
relaxation (achieved by means of visco-elastic defor-
mation or breaking off of inter-particle bonds –
grains and atoms – and stress redistribution) and dis-
sipation is limited (Andreev 1995). As a conse-
quence, more elastic energy is stored within the body
and its failure (fracture) is burst-like (Houpert 1979).

The dissipated energy amount depends on the ratio
between  the  time of  attaining  constant strain t0 and

Figure 1. Schematic stress-strain curves for different constant
a) strain, (t)?& , and b) stress, (t)?& , rates using the Poynting-
Thomson (standard) model (Asszonyi & Richter 1979).

Figure 2. Stress-strain curves for schist according to Cristescu
(1993). The broken lines are the curves obtained for three
stress rates: 0.49 MPa/sec (circles); 0.065 MPa/sec (triangles);
and 0.002 MPa/sec (squares). The solid line is a uniaxial
curve, showing at each stage the number of days taken to
achieve stabilization.
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the time of relaxation trel. In test conditions of high
stress and strain rates t0/trel is small and there is no
dissipation. In case of t0 > 10 trel, almost all energy
dissipates (Andreev 1995).

The Poynting-Thomson (standard) model gives a
minimal theoretical foundation to these observed
properties.

2 CALCULATION THE DISSIPATED ENERGY

The deformation of the rock-sample depends on the
loading rate. The difference between the work of
external forces per unit volume (U) and the structural
energy per unit volume (Φ ) is the dissipating energy
(L). According to the Poynting-Thomson model and
the related physical view this dissipated energy seems
to be a good candidate as a measure of the failure.
When the dissipated energy per unit volume (L = U -
Φ ; dimension: kJ/m3) reaches a critical value the fail-
ure of the material occurs. This critical value should
be rock-type dependent.

Figure 3. Energies per unite volume in case of uniaxial com-
pressive test: a) definition of work of external forces per unite
volume (U); b) structural energy per unit volume (Φ ); and c)
dissipating energy per unit volume (L).

Knowing the stress-strain curves for different
loading rates these energies can be determined. When
the strain or stress rate tends to infinite, i.e. the
loading rate is “very fast” the work of external forces
per unit volume (U) is represented by the area under
the stress-strain curve. Figure 3a shows the geomet-
rical meaning of this work for uniaxial stress. The
internal energy per unit volume (Φ ) is represented by
the area under the stress-strain curve when the strain
or stress rate tends to zero (see Figure 3b for uniaxial
stress). The dissipating energy (L) is the area be-
tween the two lines, as it can be seen on Figure 3c.
The area is between the two lines is maximal  at the
critical stress and this is the Critical Dissipating En-
ergy CDE (Lc) per unite volume.

If the material is quasi-homogeneous, isotropic and
linear elastic, the work or energy per unit volume
(W) supplied during the deformation can be calcu-
lated (Asszonyi & Richter 1979):

a) In case of known main strains:
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where σ and ε are the main stress and the main strain
tensor, respectively, ν is the Poisson ratio, and P2
and I2 are the invariants of strain tensor, i.e.:
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b) In case of known main stresses:
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where σ and ε are the main stress and the main strain
tensor, respectively, ν is the Poisson ratio, and P1’
and I2’ are the invariants of stress tensor, thus:
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When the strain or stress rates tend to infinite, i.e.
the loading is “very fast” the slope of the stress-strain
curve is the Young’s modulus of the material (E). In
this case the stress-strain curve is independent of
time, i.e. the influence of the rheological constants
(relaxation times) is not significant.

When the strain or stress rates tend to zero, i.e. the
loading is “quasi-static”, the slope of the stress-strain
curve (E*) is smaller than the previous Young’s
modulus.

The ratio of these two material constants is the
same as the ratio of the “very fast” and “quasi-static”
loading at the same strain (i = 1, 2, 3):
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Using Equation 3 the CDE (Lc) can be determined
applying Equation 1 and Equation 2 in case of main
strains and main stresses theory, respectively.

a) In case of known main strains:
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where E is the Young’s modulus, E* is the slope of
the stress-strain curve in case of infinite slow (i.e.
“quasi static”) strain rate, ν is the Poisson ratio, P1
and I2 are the invariants of strain tensor.

b) In case of known main stresses:
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where ν is the Poisson ratio, P1‘ and I2‘ are the in-
variants of stress tensor (see above).

According to the previous equations in case of
uniaxial stress the CDE (LC) of the material can be
calculated:

a) In case of main strain (Eq. 4):
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b) In case of main stress (Eq. 5):
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If ε = εcrit (main strain theory) or σ = σcrit (main
stress theory) (Fig. 3), the CDE can be determined.
Consequently there are two methods for determining
the CDE (LC) in the laboratory using uniaxial com-
pression tests. The main stress theory was chosen in
this research.

3 EXPERIMENTS

The aim of this research was to examine the influence
of the uniaxial compressive and tensile strength, po-
rosity and the longitudinal ultrasonic wave velocity
of the rock on the CDE. Three different andesites,
granite, dolomite, sandstone and rhyolite-tuff rock-
samples were investigated for determining the above
mentioned material properties. Table 1 contains the
material properties before the investigation (i.e. ultra-
sonic wave velocity, density and porosity).

The investigations were done under air-dry condi-
tion at room temperature (constantly 22 °C) for
measuring the slope of the stress-strain curves both
for “very fast” and “quasi-static” stress rates. All ex-
periments were performed on two specimens. All the
specimens were circular cylindrical having a length to
diameter ratio between 2 and 3, and the diameters
were approximately 54 mm and they were prepared
according to ISRM standard (ISRM 1979). In the
case of the Brazilian tests the length/diameter ratio
for the cylindrical specimen was approximately 1.
The Brazilian tests were done according to ISRM
standard (ISRM 1978), too.

Table 1. The average values of the measured longitudinal ul-
trasonic wave velocity, density and the porosity of the different
rock samples in air-dry condition.

Rock type wave velocity Density Porosity
v [km/sec] ρ0 [kg/m3] n` [V%]

1 Andesite I 5.85 2730 2.9
2 Andesite II 4.49 2480 5.8
3 Andesite III 3.91 2330 9.4
4 Granite 6.02 2760 0.4
5 Dolomite 4.45 2660 1.5
6 Sandstone 3.67 2480 4.2
7 Rhyolite tuff 2.85 1630 15.0

The Young’s moduli were determined at a stress
rate of about 5 MPa/sec ( )(tσ& ∞→ ) (according to
the standard tests the normal stress rate is 0.5-1.0
MPa/sec). For larger stress rates it was found that
the slope of the stress-strain curve does not change
significantly.

The strains in the quasi static stress rate
( )(tσ& 0→ ) conditions were obtained performing
creep tests. Using the solution of the differential
equation of the Poynting-Thomson (standard) model
the strain as a function of the time can be calculated
(Asszonyi & Richter 1979):
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where: σ0 is the constant uniaxial stress; E* is the
“quasi-static” modulus; λ is the linear viscosity fac-
tor; t is the time and ε is the strain at different time.

Using the creep test equipment which was de-
signed and built at the Department of Engineering
Geology at the Technical University of Budapest
(Gálos 1982) the asymptote of the strain curve (using
Equation 8) was calculated with the measured strain-
time curve after 30 days for different the stress lev-
els.

Figure 4 shows schematically the method for de-
termining the stress-strain curve at a loading rate
tending to 0 (two steps are shown). The first creep-
ing test was carried out at 5 MPa uniaxial compres-
sive stress and after 30 days it was increased with 5
MPa (it was assumed that after 30 days the deforma-
tion of the samples were finished). E* value was de-
termined using least square method but only the
points under the area of the stress-strain curve in
case of infinite stress rate (see Fig. 3) were used.

4 RESULTS AND DISCUSSION

The measured Young’s modulus (E) with “very
fast” stress rate and “quasi-static” modulus (E*)
(using the above written method) are shown in Table
2. According to the applied Poynting-Thomson
rheological model the ratio of these material pa-
rameters is the  ratio of the two  characteristic relaxa-

Figure 4. The determination of slope of the stress-strain curve
(E*) in case of infinite slow ( ( )tσ& 0→ ) stress rate with creep
tests. In this figure two steps are shown schematically.
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tion times of the model and can be large. For exam-
ple for granite and sandstone specimen the Young’s
modulus (E) is nearly ten times higher than the
“quasi-static” modulus (E*) and this number is less
than two for a high porosity andesite: the internal
structure of the rock seems to have a large influence
on these parameters.

The calculated CDE (using Eq. 7) comparing with
the uniaxial compressive and the tensile strengths are
presented in Table 3.
Figures 5-8 show the relations between the CDE and
the uniaxial compressive and tensile strength, the
longitudinal ultrasonic wave velocity and porosity,
respectively. The following conclusions can be
drawn:

Table 2. Measured Young’s modulus and quasi-static modulus
of the investigated rocks.

Rock type Young’s
modulus

Quasi-
static

E/E*

E [GPa] E*[GPa]
1 Andesite I 55.6 9.4 5.9
2 Andesite II 18.6 6.4 2.9
3 Andesite III 22.0 11.3 2.0
4 Granite 52.6 5.4 9.7
5 Dolomite 58.9 7.7 7.7
6 Sandstone 11.7 1.2 9.8
7 Rhyolite tuff 3.7 1.5 2.5

Table 3. Calculated critical dissipated energy (CDE) compar-
ing with the uniaxial compressive and tensile strengths.

Rock type Compressive
strength

Tensile
strength

CDE

σc [MPa] σt [MPa] LC [kJ/m3]
1 Andesite I 151 17 172
2 Andesite II 79 6 110
3 Andesite III 86 7 82
4 Granite 157 15 210
5 Dolomite 118 10 104
6 Sandstone 46 6 78
7 Rhyolite tuff 17 3 25

Figure 5. The critical dissipated energy per unit volume (LC)
as a function of the uniaxial compressive strength (σc) – Num-
bers show the type of the rock according to the Tables.

a) The relation between the CDE (LC) and the
unaixial compressive strength (σc) is linear (see
Fig. 5):

LC = 1.17 σc (R2 = 0.85) (9)

b) Figure 6 shows the CDE (LC) as a function of the
measured tensile strength (σt). The calculated
equation is:

LC = 11.87 σt (R2 = 0.86) (10)

c) There is a parabolic relation (Fig. 7) between the
CDE (LC) and longitudinal ultrasonic wave ve-
locity (v) of the rock and it can be expressed as:

LC = 6.11 v2 – 3.75v (R2 = 0.97) (11)

Figure 6. The critical dissipated energy per unit volume (LC)
as a function of the tensile strength (σt) – Numbers show the
type of the rock according to the Tables.

Figure 7. The critical dissipated energy per unit volume (LC)
as a function of the longitudinal ultrasonic wave velocity (v) –
Numbers show the type of the rock according to the Tables.
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Figure 8. The critical dissipated energy per unit volume (LC)
as a function of the porosity (n’) – Numbers show the type of
the rock according to the Tables.

d) With increasing rock porosity (n’) the CDE (LC)
is decreasing (Fig. 8) according to the following
equation:

LC = 162.77 (n’)-0.442 (R2 = 0.62) (12)

5 CONCLUSION

The CDE was calculated for seven different types of
rocks in air-dry condition. Using the Poynting-
Thomson (standard) model the CDE can be calcu-
lated as the difference between the work of external
forces per unit volume (U) and the structural energy
per unit volume (Φ ) at the strength of the rock.
These energies were determined with “very fast”
( ( )tσ& ∞→ ) and “quasi-static” ( ( )tσ& 0→ ) stress
rate, respectively.

Let us remark here that the investigated question
(can be the CDE a material property or not?) is inde-
pendent on the applied theoretical model. Since here
(and in the rheological theories in general) the fail-
ure/yield of the materials is independent on the
structural changes modeled by rheology, it appears as
an independent ‘yield criteria’. Moreover, the contin-
uum damage mechanical theories where the thermo-
dynamic internal variables are qualified to take into
account structural changes leading to failure, suffer
from the same illness: the changes in elastic proper-
ties are mostly independent on the failure described
by the ‘damage surface’. Therefore, lacking a suitable
theory, the posed question cannot be answered on a
theoretical level. A proper theoretical explanation
should connect the ductile-brittle changes of the
elastic properties to the failure, a stability loss, of the
materials.

An other remarkable point is whether the sup-
posed material properties are really characterize the
material, the rock? Experimental evidences show that
the compressive strength of brittle rocks measured by

the standardized methods is strongly rate dependent
(Bieniawski 1967, Martin & Chandler 1994). Here
further experimental (and theoretical) investigations
are necessary. For determining the stress-strain lines
in case of “infinite” stress rate 5 MPa/sec was chosen
and “quasi-static” condition creeping tests were car-
ried out: the final strain was measured after 30 days
and the load was increased in 5 MPa steps (i.e. the
average stress rate was 0.000002 MPa/sec).

The CDE (LC) depends linearly on the uniaxial
compressive strength (σc) and the tensile strength
(σt), parabolicaly with the longitudinal ultrasonic
wave velocity (v) and hyperbolically with the poros-
ity (n’).
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