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Abstract

We are seeking a sufficient condition that forces a transversal in a generalized Latin
square. A generalized Latin square of order n is equivalent to a proper edge-coloring of
Kn,n. A transversal corresponds to a multicolored perfect matching. Akbari and Alipour
defined l(n) as the least integer such that every properly edge-colored Kn,n, which contains
at least l(n) different colors, admits a multicolored perfect matching. They conjectured that
l(n) ≤ n2/2 if n is large enough. In this note we prove that l(n) is bounded from above
by 0.75n2 if n > 1. We point out a connection to anti-Ramsey problems. We propose a
conjecture related to a well-known result by Woolbright and Fu, that every proper edge-
coloring of K2n admits a multicolored 1-factor.
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1 Multicolored matchings and generalized Latin squares

A subgraph H of an edge-colored host graph G is multicolored if the edges of H has different
colors. The study of multicolored (also called rainbow, heterochromatic) subgraphs dates back
to the 1960’s. However, the special case of finding multicolored perfect matchings in complete
bipartite graphs was first studied much earlier by Euler in the language of Latin squares. Since
then this branch of combinatorics, especially the mentioned special case, has been flourishing.
Several excellent surveys were dedicated to the subject, see [8–10,14].

In this paper we mainly focus on the case when the host graph is a complete bipartite graph
Kn,n, and the multicolored subgraph in view is a perfect matching (1-factor). There is a natural
constraint on the coloring: it has to be proper.
These conditions can be reformulated in the language of Latin squares. A Latin square of order
n is an n×n matrix, which has n different symbols as entries, and each symbol appears exactly
once in each row and in each column. A generalized Latin square of order n is an n× n matrix,
in which each symbol appears at most once in each row and in each column. A diagonal of a
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generalized Latin square of order n is a set of entries, which contains exactly one representative
from each row and column. If the symbols are all different in a diagonal, then we call it a
transversal.
Generalized Latin squares correspond to properly edge-colored complete bipartite graphs, while
transversals correspond to multicolored 1-factors (perfect matchings). The so called partial
transversals correspond to multicolored matchings. This intimate relation allows us to use the
concept of symbols and colors interchangeably.

It is known that there exist Latin squares without a transversal. One might think that using
more symbols should help finding a transversal. Therefore, it is natural to seek the sufficient
number of symbols. We recall the following

Definition 1.1 (Akbari and Alipour [1]). Let l(n) be the least number of symbols that forces a
transversal in any generalized Latin square of order n that contains at least l(n) symbols.

In the terminology of matchings, they asked the threshold for the number l(n) of colors such
that any proper l-coloring of Kn,n contains a multicolored perfect matching if l ≥ l(n). Notice
that the function l(n) is not obviously monotone increasing.

Akbari and Alipour determined l(n) for small n: l(1) = 1, l(2) = l(3) = 3, l(4) = 6. They
also proved that l(n) ≥ n+ 3 for n = 2a − 2 (2 < a ∈ N). They posed the following

Conjecture 1.2 (Akbari and Alipour [1]). l(n)−n is not bounded if n → ∞, while l(n) ≤ n2/2
if n > 2.

Our main contribution is the following theorem.

Theorem 1.3. l(n) ≤ 0.75n2 if n > 1.

Although we conjecture that l(n) = o(n2), we must mention that if we relax the settings by
allowing symbols to appear more than once in the columns, then there exist n×n transversal-free
matrices for all n which contain n2/2 +O(n) symbols [3].

The paper is built up as follows. In Section 2 we show the connection of the problem to
a classical Erdős–Spencer result. We prove an upper bound on l(n) using a refined variant of
the Lovász local lemma. We present the proof of Theorem 1.3 which is mainly built on König’s
theorem. Finally, in Section 3, we propose the study of a function similar to l(n), and investigate
the relation to certain Anti-Ramsey problems.

2 Two approaches to bound the number of symbols

2.1 Lovász local lemma

It is a classical application of the Lovász local lemma (LLL) that there exists a transversal in an
n× n matrix if no color appears more than 1

4en times. In fact, Erdős and Spencer [7] weakened
the conditions of LLL by introducing the so called lopsided dependency graph G of the events,
on which the following holds for every event Ei and every subfamily F of events {Ej : j 6∈ NG[i]}:

P (Ei | ∩j∈FEj) ≤ P (Ei),

where NG[i] denotes the closed neighborhood of vertex i in graph G. Under this assumption, it
is enough to show the existence of an assignment i 7−→ (µi > 0) which fulfill

P (Ei) ≤
µi

∑

S⊆NG[i]

∏

j∈S µj
(2.1)
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to obtain P (∩iEi) > 0.
Applying the ideas of Scott and Sokal [11]; Bissacot, Fernández, Procacci and Scoppola [4]

observed that LLL remains valid if the summation in Inequality 2.1 is restricted to those sets S
which are independent in G.

Let c(aij) denote the number of occurrences of the symbol aij in an n× n array A (n > 1).
Let ci∗(A) and c∗j(A) measure the average occurrence in row i and column j as

ci∗(A) =

(

∑

t

c(ait)

)

− n and c∗j(A) =

(

∑

t

c(atj)

)

− n.

It can be viewed as some kind of weight-function on the rows and columns, where the weight
is zero only if all entries admit uniquely occurring colors.

We follow the proof of the improvement on the Erdős-Spencer result in [4]. We show that
P (∩vEv) > 0 holds for the set of events {Ev} that a random diagonal contains a particular
pair v of monochromatic entries. Here |NG[v]| in the lopsided dependency graph G depends
only on the number of monochromatic pairs (v, v′) of entries, which shares (at least) one row
or column with an entry from both v and v′. Thus if v consists of aij and akl, then |NG[v]| ≤
ci∗(A) + c∗j(A) + ck∗(A) + c∗l(A). Also if w,w′ ∈ NG[v] covers the same row from {i, k} or
column from {j, l} then w and w′ are adjacent in G.

If we set µv := µ ∀v, then it is enough to provide a µ such that

P (Ev) =
1

n(n− 1)
≤ µv

∑

S⊆NG[v],S indep.

∏

j∈S
µj

=
µ

∑

S⊆NG[v], S indep.
µ|S|

Consequently, it is enough to set µ in such a way that

µ
∑

S⊆NG[v], S indep.
µ|S|

>
µ

(1 + ci∗(A)µ)(1 + c∗j(A)µ)(1 + ck∗(A)µ)(1 + c∗l(A)µ)
≥ 1

n(n− 1)

holds.
It is easy to see that (1 + Uµ)(1 + V µ) ≤ (1 + U+V

2 µ)2 for all U, V ∈ R, hence

µ

(1 + cvµ)4
≥ 1

n(n− 1)

implies the required condition, where

cv :=
ci∗(A) + c∗j(A) + ck∗(A) + c∗l(A)

4
.

Thus if we set µ := 1
3cv

, we obtain the following

Proposition 2.1. There always exists a transversal in a generalized Latin square unless

(

4

3

)3

(ci∗(A) + c∗j(A) + ck∗(A) + c∗l(A)) > n(n− 1) (2.2)

holds for a pair of monochromatic entries aij and akl.

Corollary 2.2. l(n) ≤ (1− 27
256 )n

2 + 27
256n ≈ 0.895n2 if n > 1.
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Proof. Observe that n2 − ci∗(A) or n2 − c∗j(A) bounds from above the number of colors in A
for all i, j ∈ [1, n]. Consequently, if the number of colors is at least (1− 27

256)n
2 + 27

256n, then

(

4

3

)3

ci∗(A) ≤
1

4
(n2 − n) and

(

4

3

)3

c∗j(A) ≤
1

4
(n2 − n)

for every row i and column j, which in turn provides the existence of a transversal according to
Proposition 2.1.

Remark 2.3. Note that while the proof of Erdős and Spencer points out the existence of one fre-
quently occurring symbol, the proof above reveals that in fact many symbols must occur frequently
to avoid a transversal.

2.2 Using König’s theorem

We start with a lemma on the structure of partial transversals, which is essentially the conse-
quence of the greedy algorithm. The following easy observation is due to Stein [12].

Result 2.4. Consider r rows in a generalized Latin square A of order n. If n+1
2 ≥ r, then there

exists a partial transversal of order r in A covering the r rows in view.

Lemma 2.5. Consider p rows and q columns in an n× n generalized Latin square. If q ≤ p ≤
(n+ 1)/2, then either
(Case (a)) q ≤ p/2 and there exists a partial transversal of size p covering the p rows and q
columns, or
(Case (b)) q > p/2 and there exists a partial transversal of size ⌊p/2⌋ + q covering the p rows
and q columns.

Proof. Both parts follow from the fact that we can choose min{q, ⌊p/2⌋} entries in the array
formed by the intersection of the p rows and q columns and we can complete it greedily by
Result 2.4.

We proceed by recalling a variant of König’s theorem, see Brualdi, Ryser [5].

Lemma 2.6. There exists an all-1 diagonal in a 0/1 square matrix of order n if and only if
there does not exist an all-0 submatrix of size x× y, where x+ y ≥ n+ 1.

Now we prove another upper bound on l(n).

Theorem 2.7. If a generalized Latin square of order n contains at least 0.75n2 symbols, then
it has a transversal.

Proof. First notice that the statement holds for n = 1, 2. We proceed by induction. Consider
a generalized Latin square A of order n, which contains at least 0.75n2 symbols. A symbol is
a singleton if it appears exactly once in A. We refer to the other symbols as repetitions. A
submatrix is called a singleton-, resp. repetition-submatrix if every entry of the matrix is a
singleton, resp. repetition.

Let p be the number of rows consisting only of repetitions and q be the number of columns
consisting only of repetitions. We refer to these as full rows and columns, and assume that
q ≤ p. Notice that p ≤ n/2, since the number of symbols is at least 0.75n2.
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Our aim is to choose a partial transversal that covers all full rows and columns, and then we
complete this to a transversal by adding only singletons. First we apply Lemma 2.5 to get a
partial transversal that covers the full rows and columns. Next, we omit the rows and columns
that are covered by the chosen partial transversal. We obtain a generalized Latin square A′ of
order (n−p) in Case (a) or of order (n−p/2− q) in Case (b). Now we are done by Theorem 2.6,
if there are no x×y repetition-submatrices in A′ of order (n−p) in Case (a), where x+y > n−p,
or there are no x × y repetition-submatrices in A′ of order (n − p/2 − q) in Case (b), where
x+ y > n− p/2− q.

We suppose to the contrary that such a repetition-submatrix exists in one of the cases. Note
first that in either case, A′ does not contain full rows and columns. Therefore, we can choose a
singleton σ1 in A′ such that at least x repetitions appear in its row. Similarly, we can choose a
singleton σ2 in A′ such that at least y repetitions appear in its column.

Claim 2.8. There exists a singleton σ whose row or column contains more than n/2 repetitions
in the original Latin square A both in Case (a) and (b).

Proof. In Case (a) q ≤ p/2.
The number of repetitions in the row of σ1 is at least q + x and number of repetitions in the
column of σ2 is at least p+y. Thus the statement holds since p+ q+x+y > p+ q+(n−p) ≥ n.

In Case (b), q > p/2.
The number of repetitions in the row of σ1 is at least q+x and number of repetitions in the column
of σ2 is at least p+y. Thus the statement holds since p+q+x+y > p+q+(n−p/2−q)≥ n.

In view of Claim 2.8, if we omit the row and column of the singleton σ, we obtain a generalized
Latin square B of order n− 1, which admits more than 0.75n2 − (2n− 1) + n/2 > 0.75(n− 1)2

symbols. By the induction hypothesis, there exists a transversal in B, hence it can be completed
to a transversal of A by adding σ.

3 Discussion

At the time of submission, we learned that Best, Hendrey, Wanless, Wilson and Wood [2]
achieved results similar to ours. As the best upper bound, they proved l(n) < (2 −

√
2)n2.

Nevertheless, not only the conjecture of Akbari and Alipour remained open, but it is plausible
that it can be strengthened in the order of magnitude as well. In fact, the bound 1

2n
2 is

intimately related to the number of singletons, which took a crucial part in both our proof and
the proof in [2]. If the number of colors does not exceed 1

2n
2, then there might be no singletons

at all. However, our first probabilistic proof implies also that either there exists a transversal in
a generalized Latin square of order n with Cn2 colors (C > 0.45), or the number of singletons
is large. This fact points out that the constant 1/2 in Conjecture 1.2 is highly unlikely to be
sharp. More precisely, we show the following

Proposition 3.1. If the number of singletons is less than (2C + 0.25
(

3
4

)3 − 1 + o(1))n2 in a
generalized Latin square of order n with Cn2 symbols, then there exists a transversal.

Proof. Suppose first that in every row and column, the sum ci∗(A) and c∗j(A) are below

0.25
(

3
4

)3
(n2−n). This in turn implies the existence of a transversal by Proposition 2.1. On the

other hand, if for example ci∗(A) exceeds that bound, then consider only the symbols not appear-
ing in row i, and let us denote by nk the number of occurrences of symbol k, which does not occur
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in row i. Clearly
∑

k nk = Cn2−n and
∑

k knk = (n(n− 1)− ci∗(A)) ≤ (1− 0.25
(

3
4

)3
)(n2 −n).

Consequently, for the number of singletons not appearing in the ith row,

|{t : nt = 1}| ≥ 2
∑

k

nk −
∑

k

knk ≥ (2C + 0.25

(

3

4

)3

− 1 + o(1))n2,

which makes this case impossible.

A special case, that appears as a bottleneck in some arguments concerns generalised Latin
squares, where each repeated symbol has maximum multiplicity. We show that also in this
special case one can find a transversal.

Lemma 3.2. If A is a generalised Latin square of order n, where each symbol has multiplicity
1 or n (and both multiplicities occur), then A has a transversal.

Proof. We associate an edge-colored complete bipartite graph GA to A such that vertices on
one side correspond to rows the other side to columns and the colors of the edges to the symbols.
Our goal is to find a multicolored matching.

Notice that the Latin property implies that a symbol with multiplicity n corresponds to a
perfect matching. Let us remove all edges corresponding to symbols with multiplicity n. If there
are r such colors, then the remaining bipartite graph is (n− r)-regular. As an easy corollary of
Hall’s theorem, any regular bipartite graph contains a perfect matching. In our case there are
only singleton colors on the edges, so the perfect matching is multicolored. �

It seems likely that if the number of colors is large, then we not only obtain one transversal,
but also a set of disjoint transversals. This motivates the study of the following function.

Definition 3.3. Let l∗(n) be the least integer such that for any proper edge-coloring of Kn,n by
at least l∗(n) colors, the colored graph can be decomposed into the disjoint union of n multicolored
perfect matchings.

Conjecture 3.4. l∗(n) ≤ n2/2 if n is large enough.

We remark that the difference of l(n) and l∗(n) is at least linear in n.

Proposition 3.5. l∗(n)− l(n) ≥ n− 1.

Proof. For n ≤ 2 the claim is straightforward. Suppose n ≥ 3. By definition, there exists a
transversal-free generalized Latin square A of order n with l(n)−1 symbols. Since l(n) ≤ 0.75n2,
we can find a set S of n− 1 different repetitions, where n− 1 ≤ 0.25n2. We assign new symbols
to the entries of S to create a new generalized Latin square A′ of the same order. Since S cannot
cover n disjoint transversals, and there were no transversals disjoint to S, matrix A′ cannot be
decomposed to n transversals, but contains l(n) + n− 2 symbols.

The question we studied concerning l(n) clearly has an anti-Ramsey flavor. The anti-Ramsey
number AR(n,G) for a graph family G, introduced by Erdős, Simonovits and Sós [6], is the
maximum number of colors in an edge coloring of Kn that has no multicolored (rainbow) copy
of any graph in G. To emphasize this connection, we propose the following problem.

Problem 3.6. What is the least number of colors t(n, 2), which guarantees a rainbow 2-factor
subgraph on at least n − 1 vertices in a properly edge-colored complete graph Kn colored by at
least t(n, 2) colors?
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Perhaps the size n − 1 of the 2-factor subgraph seems artificial in some sense at first, or
at least it could be generalized to any given function f(n). We recall that for the function
t(n, 1) corresponding to 1-factors, Woolbright and Fu provided the following related result. In
Problem 3.6, we have to allow two values n− 1 and n to avoid parity issues.

Proposition 3.7. [13] Every properly colored K2n has a multicolored 1-factor if the number of
colors is at least 2n− 1 and n > 2. That is, t(n, 1) = n− 1.

In another formulation, the necessary number of colors for a proper edge-coloring is already
sufficient to guarantee a multicolored perfect matching. It might happen that it also forces a
much larger structure as required in Problem 3.6. We propose the following

Conjecture 3.8. Any proper edge-coloring of K2n by 2n − 1 colors contains a multicolored
2-factor on 2n− 1 or 2n vertices.

If the above conjecture fails, then possibly there are proper edge-colorings of Kn without
multicolored 2-factors of size n or n − 1. In that case, we can use a connection between t(n, 2)
and l(n) to show a lower bound.

Proposition 3.9. l(n) ≥ t(n, 2) + 1.

Proof. Consider an edge-coloring C of the complete graph Kn on vertex set V without multi-
colored 2-factors of size n or n−1. We associate to C a coloring of the complete bipartite graph
Kn,n on partite classes U and W as follows: let us assign the color of vivj ∈ E(Kn) (i, j ∈ [1, n])
to the edge uiwj ∈ E(Kn,n) if i 6= j, and color the set of independent edges uiwi (i ∈ [1, n]) by
a separate color. Suppose that we found a multicolored 1-factor M in the complete bipartite
graph. We omit at most one edge of M if we delete the edges uivi and M ′ remains. Consider
the edges vkvl in Kn, for which ukvl is contained in the multicolored M ′ of edges. This edge set
is multicolored too, and each vertex has degree 2.
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