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¤a Current address: Agricultural Genomics and Informatics Group, Department of Genomics, Agricultural

Biotechnology Research Institute, National Agricultural Research and Innovation Centre, Gödöllő, Hungary
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Abstract

Viruses have different strategies for infecting their hosts. Fast and acute infections result in the

development of severe symptoms and may cause the death of the plant. By contrast, in a per-

sistent interaction, the virus can survive within its host for a long time, inducing only mild symp-

toms. In this study, we investigated the gene expression changes induced in CymRSV-,

crTMV-, and TCV-infected Nicotiana benthamiana and in PVX- and TMV-U1-infected Solanum

lycopersicum plants after the systemic spread of the virus by two different high-throughput

methods: microarray hybridization or RNA sequencing. Using these techniques, we were able

to clearly differentiate between acute and persistent infections. We validated the gene expres-

sion changes of selected genes by Northern blot hybridization or by qRT-PCR. We show that,

in contrast to persistent infections, the drastic shut-off of housekeeping genes, downregulation

of photosynthesis-related transcripts and induction of stress genes are specific outcomes with

acute infections. We also show that these changes are not a consequence of host necrosis or

the presence of a viral silencing suppressor. Thermal imaging data and chlorophyll fluores-

cence measurements correlated very well with the molecular changes. We believe that the

molecular and physiological changes detected during acute infections mostly contribute to

virus symptom development. The observed characteristic physiological changes associated

with economically more dangerous acute infections could serve as a basis for the elaboration

of remote monitoring systems suitable for detecting developing virus infections in crops. More-

over, as molecular and physiological changes are characteristics of different types of virus life-

styles, this knowledge can support risk assessments of recently described novel viruses.
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Introduction

High-throughput sequencing methods opened a new avenue for virus discovery [1]. However,

more and more viruses are described each day, and assessing the importance and risk of these

recently described viruses is very difficult. This basic question should be addressed in the

future, not only for basic research but, more importantly, for decision makers who decide

about quarantine regulations [2]. Detailed knowledge about different virus infections could

help to identify key differences between acute and persistent virus infections [3].

Gene expression studies in virus-infected plants usually investigate events at early time-

points after the infection, i.e., just after the virus has entered the host cell. At this early time-

point, host antiviral responses are activated, and the fate of the infection is determined. If the

plant is not a potential host, the virus cannot replicate. If the plant is a host of the virus, replica-

tion in the infected cell can happen, but thanks to the efficient resistance mechanisms of plants,

most of the infections are confined to the infected cell, and the spread of the virus is blocked

(reviewed recently in [4, 5]). In an interaction with a susceptible plant, the virus gets past this

barrier and advances into the next stage of the infection, when it finally can move not only

from cell to cell but also long distances, colonising the whole plant. During this process, other

types of defence responses (such as antiviral RNA interference, RNAi) are activated [6].

Viruses can block RNAi mechanisms by expressing viral suppressor proteins to inhibit RNAi,

and as a consequence, they can reach higher virus titres [7]. RNAi-linked molecular mecha-

nisms and their potential role in disease induction are well described (reviewed in [8]); how-

ever, changes in the gene expression pattern of the host at this later step of infection still have

not been fully characterized. With the availability of both host genomes and high-throughput

methods such as microarray and RNA-sequencing (RNA-seq), an increasing number of stud-

ies investigate and characterize the molecular changes behind symptom development, usually

in specific host-virus combinations [9–20].

During the virus infection, the virus alters the host metabolism to have its own genome rep-

licated and to spread from cell to cell in the plant. A susceptible host can be sensitive or toler-

ant to a particular virus. In a sensitive host, the infection is usually acute: the virus accumulates

to high levels and downregulates (shut-off) prominent housekeeping genes [21], resulting in

severe disease symptoms that can even lead to the death of the plant within a short time. By

contrast, in a tolerant host, the infection is persistent; the virus is also present in large concen-

trations but does not induce obvious symptoms, and therefore, the plant survives.

In our previous study, we observed that some plant-virus interactions are able to decrease

expression of the important housekeeping genes, and this shut-off persists for several weeks

[22]. By using in vitro run-on transcription experiments, we have also shown that shut-off

manifests itself in the nucleus at the level of transcription [22]. We observed that the Cymbid-

ium ringspot virus (CymRSV) and the crucifer-infecting tobacco mosaic virus (crTMV)

showed very severe symptoms on N. benthamiana, and these infections finally culminated in

the death of the plant. Potato virus X (PVX) showed intense chlorosis on S. lycopersicum, but

necrosis never occurred, and the plants survived the infection. These infections were very fast,

and intense downregulation of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco)

and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) could be detected as typical gene

expression changes for acute infection. By contrast, turnip crinkle virus (TCV)-infected N.

benthamiana and tobacco mosaic virus U1 (TMV-U1)-infected S. lycopersicum showed very

mild symptoms of slight chlorosis. Neither the Rubisco nor the GAPDH levels were downre-

gulated, which is typical for persistent infection [22].

During this study, our aim was to uncover common and specific trends of gene expression

changes characteristic of acute or persistent viral infections. We used microarray, RNA-seq
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and Northern blot validation to follow the transcriptome changes. Employing diverse bioinfor-

matics tools, we unravelled commonalities and specific features of acute and persistent infec-

tions. We have also shown that specific changes in physiological parameters are characteristic

in acute infections. Based on these data, we propose that the molecular and physiological alter-

ations may contribute to viral symptom development during acute infection.

Materials and methods

Plant materials and virus infection

Wild-type Nicotiana benthamiana [23] and Solanum lycopersicum (‘Kecskeméti jubileum’ cul-

tivar of ZKI (www.zki.hu)) plants were used as systemic hosts. Plants were grown under a 16 h

light/8 h dark regime at 21˚C in soil. The N. benthamiana plants were infected with CymRSV,

CymRSV19S (a p19 silencing suppressor mutant CymRSV), carnation Italian ringspot virus

(CIRV), CIRV19S (a p19 silencing suppressor mutant CIRV), crTMV and TCV. The S. lyco-
persicum plants were infected with PVX and TMV-U1 strain. For infection, we used in vitro
transcripts of the viruses (CIRV, CIRV19S, crTMV, PVX and TMV-U1) or purified virions

(CymRSV, CymRSV19S, and TCV). The efficiency of the virus infection was tested either by

EtBr gels or by Northern blot analysis of extracted RNA using radioactively labelled virus-spe-

cific probes. Cloned partial viral pieces were the templates for radioactive probe preparation.

S19 Table contains a list of the primers used for cloning these viral sequences.

Sample collection for high-throughput analysis

Infection experiments were performed three times, resulting in three biological replicates. In

the case of N. benthamiana, we collected systemically infected leaves at 5 days post inoculation

(dpi) (CymRSV-, crTMV- and mock-infected) and 11 dpi (TCV-infected) for microarray anal-

ysis and further validation. RNA was extracted from 10 plants/infection in three biological rep-

licates (S1 Fig). In the case of S. lycopersicum, mock- and virus-infected ‘Kecskeméti jubileum’

variety at 14 dpi was used for RNA-seq and further validation (S2 Fig). Leaf samples were col-

lected from the second leaf level from the bottom from four plants/infection in three biological

replicates. RNA was immediately extracted from the samples, or the leaves were stored at

-70˚C.

Total nucleic acid and RNA isolation

Total RNA was extracted [23] from the mock- or virus-infected (systemically infected) leaves.

Briefly, frozen plant material was homogenized in an ice-cold mortar, suspended in 650 μl of

extraction buffer (100 mM glycine, pH 9.0, 100 mM NaCl, 10 mM EDTA, 2% SDS and 1%

sodium lauroylsarcosine) and mixed with an equal volume of phenol, centrifuged for 5 min-

utes. The aqueous phase was treated by equal volumes of phenol, chloroform, and isoamyl-

alcohol (25:24:1), and after subsequent treatment with chloroform:isoamyl-alcohol (24:1), it

was precipitated with ethanol and then resuspended in sterile water. Sample quality and viral

presence were examined on a 1.2% agarose gel and by Northern blot analysis. This total nucleic

acid was used for the Northern blot experiments. For microarray analysis and RNA-seq, the

samples were further purified to eliminate DNA and improve the sample quality. Total nucleic

acid extracts obtained were stored at −70˚C until used.

Microarray and bioinformatics analysis

For microarray analysis, total nucleic acid extracts of the pooled N. benthamiana samples (10

samples/infection in 3 biological replicates) were further purified by Tri Reagent (Sigma) and
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treated with DNase (Thermo Scientific). The concentration of the purified DNA-free RNAs

was determined by NanoDrop, and their quality was further checked by Agilent scanner, FE

SW 9.5. Samples with adequate quality were used for microarray hybridization using the Agi-

lent Tobacco Gene Expression Microarray 4x44K array. Expression profiles of the virus-

infected samples were compared to those of the control plants. Raw data were deposited into

NCBI-GEO: GSE113774/ GPL21056. Mean normalized expression values for each probe were

calculated (3 biological replicates for 3 virus and mock infections), and these normalized

results for all samples were also deposited into NCBI-GEO. Genes showing statistically signifi-

cant changes in response to infection by crTMV, CymRSV and TCV were identified using cor-

rected p value assignments <0.05 that were derived from unpaired T-test variance analysis and

followed by multiple testing correction by the Benjamini–Hochberg procedure. Changes in

gene expression were calculated as normalized fold changes, and changes greater than twofold

were analysed (S1 Table).

RNA-sequencing and bioinformatics analysis

For RNA-seq, total nucleic acid extracts of pools derived from S. lycopersicum plants (4 sam-

ples/infection in 3 biological replicates) were purified with RNAzol. Their quality was checked

on a Bioanalyser. Libraries were prepared with Illumina TruSeq Stranded mRNA Library prep

kit, and 50 base-pair single-end reads were sequenced on an Illumina HiScanSQ by the

UD-GenoMed company. The third biological replicates were sequenced twice as a technical

replicate; therefore, four fastq files containing results of the sequencing were deposited into

NCBI-GEO: GSE113774/GPL24943. For quality control, the reads were checked with fastqc,

ribosomal contaminations were removed with SortMeRNA [24], and adapter trimming and

quality filtering were performed by Trimmomatic [25]. After quality control, the reads were

aligned to the genome (Sly2.5 with ITAG2.4 annotation) and quantified, and a significant

expressional difference was calculated using the Tuxedo protocol [26]. Only genes showing

significantly different expression (FDR-adjusted p value less than 0.05) and twofold changes

were considered (S2 Table). Heat maps were created to show the gene expression of several

probes or genes using red colour for up- and green for downregulated genes. A detailed ver-

sion of each heat map is provided as a supplementary Excel table containing log2-fold change

values with their corresponding p values.

Northern blot analysis of host endogenous genes

N. benthamiana and S. lycopersicum total RNA extracts were used for first-strand cDNA syn-

thesis (RevertAid First Strand cDNA Synthesis Kit, Thermo Scientific) according to the manu-

facturer’s recommendation and using oligo dT. Target gene fragments were amplified from

the produced cDNA by PCR using Taq polymerase (Thermo Scientific). The sequences of the

oligonucleotides used as primers are listed in S11 and S12 Tables. The products of the reverse

transcription PCR (RT-PCR) were purified by GenJet (Thermo Scientific). The gel-purified

PCR products were ligated into pBlueScript plasmid (Promega). The sequences of the clones

were confirmed by Sanger sequencing. For Northern blot analysis, 1–5 μg of total RNA were

separated on formaldehyde-containing 1.2% agarose gels and blotted to Hybond-N mem-

branes, as described previously [27]. Cloned fragments of the viruses and endogenous genes

being studied were used as templates for probe preparation. Before probe preparation, the

dNTPs were eliminated from the PCR product by gel filtration of the product on homemade

G-50 Sephadex micro columns. Radioactively labelled random DNA probes were generated

from these purified PCR products with a DecaLabel DNA Labeling Kit (Thermo Scientific).

Northern blots were hybridized with these probes either in Church buffer (1% BSA, 1 mM
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EDTA, 0.25 M Na2HPO4, 7% SDS, pH 7.2), DIG Easy Hyb(Roche) or PerfectHyb Plus

Hybridization buffer (Sigma-Aldrich), at 65˚C, washed according to the manufacturer’s

instructions and exposed to X-ray films. Signal intensity was calculated using the rRNA band

of the EtBr-stained gel before blotting as a loading control.

Quantitative RT-PCR analysis

When Northern blot analysis was not successful in detecting endogenous target transcripts, we

used quantitative RT-PCR for validation of gene expression changes. For qRT-PCR, the total

RNA isolated by the phenol-chloroform method was treated with DNase (Thermo Scientific),

followed by purification using RNAzole (Sigma). Then, 3 μg RNA was used to prepare cDNA

using RevertAid Reverse Transcriptase and a random oligo primer (Thermo Scientific). cDNA

was used as a template for PCR, which used gene-specific primers (S11 and S12 Tables) and

Power SYBR Green PCR Master Mix (Applied Biosystems) and was performed in a Rotor

Gene 3000 real-time DNA detection system (Qiagen). Three biological replicates and three

technical replicates were used per sample. For relative gene expression results, the delta-delta

Ct was calculated. Ubiquitin showing stable expression changes in every infection in both

hosts was used as an internal control.

IR thermography

For thermography, we selected the third, fully developed young leaves from the apical shoots

of Nicotiana benthamiana (CymRSV and crTMV on 4 dpi; TCV on 8 dpi) or Solanum lycoper-
sicum (13 dpi for both viruses) plants. Thermographic images were taken using a Stirling-

cooled infrared scanning camera (varioSCAN 3021 ST, Jenoptik, Jena, Germany). All plants

under treatment were assessed by thermography, with 3 plant replicates per treatment. Leaf

temperatures were analysed independently from each other [28, 29]. The mean leaf tempera-

ture per plant was used for statistical analysis (n = 3 to 5).

Chlorophyll a fluorescence and Chl fluorescence imaging

Leaves of the third fully developed branch from the apical shoot were used for the study in

both hosts. Plants were analysed at 7 dpi (in the case of CymRSV- and crTMV-infected N.

benthamiana), at 11 dpi (in the case of TCV-infected N. benthamiana) and at 8 dpi (in the case

of TMV- and PVX-infected S. lycopersicum) together with their appropriate controls. OJIP

chlorophyll a fluorescence transients were measured by a Plant Efficiency Analyzer (Pocket

Pea, Hansatech, UK). Prior to the OJIP measurements, plants were dark-adapted for 20 min

under greenhouse conditions. Nine leaves from 3 independent plants/treatment were analysed

to obtain data. Quenching analysis of Chl fluorescence was detected by the maxi-head of a

PAM Chl fluorescence imaging system (Walz Effeltrich, Germany).

The chlorophyll fluorescence parameters (that determine photosynthetic performance)

were measured or calculated as follows: the initial fluorescence yield was obtained in a dark-

adapted state, when the reaction centres are open (Fo); maximal fluorescence yield, in a dark-

adapted state, when the reaction centres are closed (Fm); maximal quantum yield of photosys-

tem II photochemistry (Fv/Fm); electron transport rate at donor side of PSII (Area) reflecting

the size of the plastoquinone pool; the amount of active reaction centres per absorption (RC/

ABS); efficiency of water splitting complex on the donor side of PSII (Fv/Fo); probability of

electron transport out of QA ((1-Vj)/ Vj, where Vj = (F2ms–Fo)/Fv); and performance index

(potential) for energy conservation from photons absorbed by PSII to reduce the intersystem

electron acceptors (PI) [30].

Gene expression changes in plant virus infection
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Results and discussion

Based on viral symptoms and infection lifestyles, we employed a range of single-stranded RNA

viruses to study whole transcriptome changes induced during acute or persistent infections. N.

benthamiana plants were infected with CymRSV (Tombusviruses, acute), crTMV (Tobamo-

viruses, acute) and TCV (Tombusviruses, persistent), whereas S. lycopersicum plants were infected

with PVX (Potexviruses, acute) and TMV-U1 (Tobamoviruses, persistent). CymRSV and crTMV

infections on N. benthamiana plants resulted in a high level of virus accumulation in the systemic

leaves at 5 dpi, which is associated with drastic downregulation of housekeeping gene mRNAs, as

demonstrated by monitoring virus and GAPDH mRNA levels [22]. This acute phase of infection

turns rapidly into necrosis and subsequent death of plants at 7–8 dpi. The acute PVX infection on

S. lycopersicum is slower, with the virus reaching the systemic leaves at approximately 14 dpi, coin-

ciding with the downregulation of housekeeping genes. Although severe disease symptoms

appear, the plant can survive while exhibiting prolonged downregulation of housekeeping genes.

TCV infection on N. benthamiana is slower than CymRSV and crTMV infections, with the virus

reaching the systemic leaves at 11 dpi. In this case, the downregulation of housekeeping genes

never occurs, and the infection never turns into the acute phase. TMV infection on S. lycopersicum
shows the same characteristic pattern, with the virus reaching the systemic leaves at 14 dpi but

never inducing downregulation of the housekeeping genes [22]. According to these results, we

identified sampling timepoints in this current work to represent the earliest timepoints when

viruses systemically infect their host plants and induce symptoms such as stunting and chlorosis,

but only when necrotic reactions are not yet initiated (S1 and S2 Figs).

Host transcriptomes are strongly affected during acute virus infections

To unravel changes caused by CymRSV-, crTMV-, TCV (and mock) infection in N. benthami-
ana plants a microarray analysis was carried out (see Materials and Methods). To find differen-

tially expressed genes, we collected all probes showing 2-fold changes with p values smaller

than 0.05 in any of the virus-infected plants (listed in S1 Table). In CymRSV- and crTMV-

infected plants, the number of differentially expressed probes (DEPs) was very high (6639 and

6318), while in TCV-infected samples, the number of DEPs was lower by approximately an

order of magnitude (515 DEPs) (Fig 1A and 1B). Among these DEPs, 2807, 2033 and 275

probes were upregulated, whereas 3832, 4285 and 240 were downregulated (Fig 1B). Impor-

tantly, most of up- (1473) and downregulated (3219) probes were similar in the CymRSV- and

crTMV-infected plants, suggesting common regulation (Fig 1C). These results show that acute

infections (CymRSV and crTMV) severely alter the transcriptome of the host, whereas the per-

sistent infection (TCV) has a limited impact.

An RNA-seq analysis was carried out to study transcriptome changes during PVX and

TMV-U1 infection in S. lycopersicum plants (see Materials and Methods). The differentially

expressed genes (DEGs, 2-fold changes, p<0.05) observed during virus infection are listed in

S2 Table. A total of 5711 DEGs were identified in the PVX-infected samples (vs mock),

whereas in the TMV-infected samples, only 1672 DEGs were found. Among these, 2736 and

1008 DEGs were upregulated and 2975 and 664 DEGs were downregulated in PVX- and

TMV-infected plants, respectively (Fig 2A and 2B). Only a small fraction of the DEGs (542

and 288) overlapped between the two infections (the majority of DEGs were present only in

the PVX-infected plants) (Fig 2C).

Comparison of Volcano plots shows that the number of downregulated genes was much

higher in N. benthamiana than that of upregulated genes, whereas in S. lycopersicum, this ratio

was approximately 1:1 (Figs 1A and 2A). However, probes on the N. benthamiana chip could

not be directly correlated to changes in the whole genome because some transcripts could be

Gene expression changes in plant virus infection

PLOS ONE | https://doi.org/10.1371/journal.pone.0216618 May 3, 2019 6 / 26

https://doi.org/10.1371/journal.pone.0216618


overrepresented, whereas probes for others could be absent. An imbalance of the genes repre-

sented on the chip could lead to an imbalance in the identified DEGs and not actually show

their real ratio.

Fig 1. Gene expression changes in virus-infected N. benthamiana plants. Differentially expressed probes were obtained by comparing the gene expression of

virus-infected and mock-treated samples. Fold changes in log2 were used to generate volcano plots. More than 2-fold changes and p values less than 0.05 were

applied to identify the DEPs. (A) Volcano plots display log2-fold changes and p values. (B) Column diagram of the number of DEPs showing at least a 2-fold

change. (C) Venn diagrams of DEPs identified in the virus-infected samples. Circle areas reflect the number of DEPs. All DEPs are listed with their characteristic

parameters in S1 Table.

https://doi.org/10.1371/journal.pone.0216618.g001
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Fig 2. Gene expression changes in virus-infected S. lycopersicum plants. Differentially expressed probes were obtained by comparing the gene expression of virus-

infected and mock-treated samples. Fold changes in log2 were used to generate volcano plots. Changes of more than 2-fold and p values less than 0.05 were applied to

identify the DEGs. (A) Volcano plots display log2-fold changes and p values. (B) Column diagram of the number of DEGs showing at least a 2-fold change. (C) Venn

diagram of DEGs identified in the virus-infected samples. Circle areas reflect the number of DEGs. All DEGs are listed with their characteristic parameters in S2

Table.

https://doi.org/10.1371/journal.pone.0216618.g002
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Therefore, in summary, acute infections cause severe transcriptome changes, whereas per-

sistent infections have a moderate impact. The changes caused by acute and persistent infec-

tions in N. benthamiana and S. lycopersicum plants are consistent with each other.

Photosynthesis-related transcript downregulation and stress-related

transcript up-regulation occur specifically during acute infection

To reveal the molecular basis of acute and/or persistent infections, we analysed the functional

distribution of the DEGs (annotated according to their Bin codes). The most differentially reg-

ulated genes common for acute and persistent infections (for all viruses tested) were the ones

that participate in protein metabolism, followed by the DEGs of RNA regulation, signal pro-

cesses and transport (S3 Fig). These changes were observed in both hosts. When we searched

for DEGs, we found that transcripts that play role in photosynthesis were downregulated,

whereas stress response DEGs were upregulated almost exclusively during acute (CymRSV,

crTMV and PVX) infections and were typically absent in persistent (TCV and TMV-U1)

infections (S4 Fig and S3–S6 Tables). Investigating the top 20 down- and upregulated genes in

both hosts, we found the same situation: changes were more severe during acute infections

(S7–S10 Tables). The most downregulated genes in N. benthamiana plants were almost the

same during acute infections (CymRSV and crTMV), and the expression of these probes was

unaltered during persistent (TCV) infection. The most upregulated genes in virus-infected N.

benthamiana plants were stress-related genes and were very similar during CymRSV- and

crTMV-infected tobacco but were unchanged in the TCV-infected tobacco (S8 Table).

The most downregulated DEGs in S. lycopersicum have diverse functions, except the cyto-

chrome P450s, whose levels decreased in both PVX and TMV infections. Although some of the

top 20 downregulated genes were similar, the extent of their downregulation was more severe

during acute infection (PVX-infected tomato) (S9 Table). Pathogenesis-related proteins (PRs)

and various transcription factors that play a role in hormone metabolism were among the most

upregulated genes in the virus-infected tomato. In addition, in this case, the PVX-induced

changes were even much higher compared to TMV-U1 (S10 Table). In summary, photosynthe-

sis-related and stress-related transcripts are specifically affected during acute infection.

Housekeeping-, stress- and some metabolism-related transcripts are

differentially expressed during acute but not persistent infection

In our previous work, we showed that, in systemic leaves of CymRSV-infected N. benthami-
ana, the level of GAPDH, tubulin, Rubisco, chlorophyll a/b binding protein (CP) 29 (CP29)

and histone (H1E) transcripts were drastically downregulated, and the elongation factor (EF) 2

transcript was slightly decreased, whereas the glutathione S-transferase gene (GST) and the

heat shock protein (HSP) 90 gene (HSP90) transcripts were increased [22]. We checked the

expression levels of these genes in our microarray and RNA-seq data. Several Rubisco-,

GAPDH- and CP-specific probes were present on the microarray chip. Their expression

showed severe changes only during acute (CymRSV and crTMV) infections, and their expres-

sion was not altered during persistent (TCV) infection (Fig 3A upper panel). We validated the

changes of the Rubisco, GAPDH and CP29 transcripts by Northern blot analysis (Fig 3A bot-

tom panel). The RNA-seq results from S. lycopersicum plants showed that Rubisco, GAPDH

and CP RNA levels decreased during the PVX infection but were not altered or only slightly so

during TMV-U1 infection (Fig 3B upper panel). Validation of their levels by Northern blot

analysis showed the same trend (Fig 3B bottom panel).

According to the microarray analysis in N. benthamiana and RNA-seq analysis in S. lyco-
persicum plants, the expression of tubulin, EFs and histones was mostly downregulated during
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acute virus infections (CymRSV, crTMV and PVX), whereas they were not altered in persis-

tent virus infections (TCV and TMV-U1) (S5A and S5B Fig). Quantitative RT-PCR results of

EF and histone in PVX- and TMV-U1-infected S. lycopersicum plants validated these findings,

showing downregulation only during acute (PVX) infection (S5C Fig. Glutathione S transfer-

ases, pathogen-related proteins, systemic acquired resistance genes (SARs) and heat shock pro-

teins (HSPs) are typical stress genes: the expression of GST-specific probes in microarray

experiments showed up-regulation in CymRSV- and crTMV-infected plants, whereas it

remained unaltered during TCV infection (Fig 4A upper panel). According to the RNA-seq

results, the GST genes of S. lycopersicum were usually upregulated during virus infection, and

these changes were more severe in PVX-infected plants (Fig 4B upper panel). These changes

were validated by Northern blot analysis (Fig 4A and 4B lower panels).

We checked the relative expression of PR, SAR and HSP transcripts in our microarray and

RNA-seq data (S6 Fig); all were upregulated only during acute (CymRSV, crTMV and PVX)

infections, whereas their induction was absent or mild during persistent (TCV or TMV-U1)

infections. Induction of the pathogen-related protein Q gene (PR-Q), pathogen-related protein

1 gene (PR1) and SAR in N. benthamiana and HSP20 in S. lycopersicum was also validated by

Northern blot analysis (S6A and S6B Fig).

Protodermal factor 1 (PDF1) and lactate dehydrogenase (LDH) were among the DEPs

whose levels were severely changed in acute infection in N. benthamiana plants but stayed

unchanged during persistent infection (S7A and S7B Fig). LDH was shown to play a role in

Fig 3. Investigation of the gene expression changes of Rubisco, GAPDH and different chlorophyll binding proteins

(CPs) in virus-infected N. benthamiana (A) and S. lycopersicum (B) plants. The column diagram in the upper panel

shows log2-fold changes of probes or genes specific for the investigated gene obtained by microarray analysis (N.

benthamiana) or by RNA-seq (S. lycopersicum). The lower panel shows Northern blot hybridization using radioactively

labelled probe specific for endogenous genes. Fold-change values are shown below each band (quantifications were

normalized to mock controls). EtBr-stained gel served as a loading control. Yellow columns depict genes whose levels

were validated by Northern blot hybridization. (The investigated N. benthamiana GAPDH probe was absent on the

microarray chip).

https://doi.org/10.1371/journal.pone.0216618.g003
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proline metabolism [31]. During stress conditions, fast degradation of proline happens as a

result of the activation of proline dehydrogenase (ProDH) [32]. Although lactate is a substrate

of LDH, it is also a competitive inhibitor of ProDH (S7A Fig, lower panel at right). The

increase in LDH expression during virus infection enhances ProDH activity, allowing a fast

response to stress conditions. PDF1 encodes a putative extracellular proline-rich protein exclu-

sively expressed in the L1 layer of meristems and the protoderm of organ primordia. Its level

was strongly downregulated in acute infection compared to mock- and TCV-infected leaves

(S7B Fig right panel). In S. lycopersicum, changes in PDF1 and LDH expression showed the

same trend. PDF1 was markedly upregulated during PVX and only slightly in TMV-U1 infec-

tion. LDH was downregulated during PVX infection and slightly upregulated during TMV-U1

infection (S7A and S7B Fig right panels).

The gene expression patterns analysed above show that specific transcriptome changes are

induced during acute infections. These changes are not characteristic of persistent infections.

Acute transcriptome changes, however, are consistently similar in the two investigated hosts.

Photosynthesis-related, cell wall-remodelling and hormone-responsive

transcripts are severely altered during acute infection

Although extensively studied, the molecular background of viral symptom development is still

elusive. Symptom development in virus-infected plants reflects the sum of various molecular

and physiological changes [5, 33]. Chlorosis, yellowing, leaf size reduction, malformation or

senescence are ‘general’ symptoms caused by several plant viruses. These changes usually coin-

cide with alterations in photosynthetic activity or molecular structure of the host chloroplast

[34–39], but insights into molecular changes are still elusive.

Chlorosis and yellowing can be a result of chlorophyll (Chl) degradation, an early mark of

leaf senescence. The key regulator of Chl degradation is pheophorbide a oxygenase (PAO),

which catalyses the cleavage of the porphyrin ring of pheophorbide, resulting in a red Chl

catabolite intermediate (RCC), which later degrades in the vacuole (Fig 5A). The level of PAO

increases during biotic stresses [40, 41]. As on the microarray chip, we did not find a specific

probe for N. benthamiana PAO, we showed by Northern blot analysis that its level was induced

during acute (CymRSV and crTMV) infections (Fig 5B). By contrast to this observation, our

Fig 4. Investigation of the gene expression changes of GST in virus-infected N. benthamiana (A) and S.

lycopersicum (B) plants. The column diagram shows log2-fold changes of probes or genes specific for GST obtained by

microarray analysis (N. benthamiana) or by RNA-seq (S. lycopersicum) (upper panels). The lower panel shows Northern

blot hybridization using radioactively labelled GST-specific probe. Fold-change values are shown below each band

(quantifications were normalized to mock controls). The EtBr-stained gel served as a loading control. Yellow columns

depict genes whose levels were validated by Northern blot hybridization. (The investigated N. benthamiana GST probe

was absent on the microarray chip).

https://doi.org/10.1371/journal.pone.0216618.g004
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RNA-seq results in S. lycopersicum showed three different PAO-like DEGs, whose expression

slightly decreased in PVX and slightly altered in TMV-U1 infection (Fig 5C, S13 Table).

During acute infection, in addition to chlorosis and yellowing, slight stunting of both hosts

was observed. When cell wall synthesis is impaired, the leaf size decreases, malformation of the

leaf shape occurs, and the total growth of the plant is reduced. These changes can be observed

in cell wall synthase (CESA) mutants or CESA-silenced plants [42]. By contrast, cell wall inver-

tase (CWINV), which converts sucrose into fructose, is usually induced early during any

defence [43] (Fig 6A left panel). With tomato yellow leaf curl virus, infected S. lycopersicum
plants, especially when co-infected with tomato chlorosis virus, stunting was directly corre-

lated to CESA8 down- and CWINV2 upregulation [34]. Investigation of the DEPs in N.

benthamiana and the DEGs in S. lycopersicum that play a role in cell wall metabolism showed

the same trend (Fig 6, S13 and S14 Tables); that is, the levels of the CESA8-type synthases were

downregulated, whereas the invertases were upregulated. The findings were validated by

qRT-PCR (Fig 6B and 6C).

According to our results, PAO, CESA and CWINV expression levels correlated very well

with the type of infection, being more severe during acute infections in both hosts. These

changes probably have a role in the development of the stunted phenotype during acute

infections.

Different morphological abnormalities which are usually present in acute infection can also

be the result of changes in hormone metabolism (reviewed recently in [5]). Auxins, cytokinins,

gibberellic acid and brassinosteroids that regulate plant growth, development and elongation

can have ambiguous effects during virus infection (reviewed by [44]). Although improper

annotation did not allow us to map DEPs and DEGs of these pathways completely, after com-

piling gene expression changes of all probes and genes annotated to these pathways, these

pathways were observed to be differentially regulated in acute infection, whereas changes were

almost absent in persistent infection in both hosts (S15 and S16 Tables). Transcription factors

regulated by other hormones, such as ethylene, abscisic acid, jasmonic acid and salicylic acid,

can differentially regulate senescence-associated genes (SAGs), which finally lead to chloro-

phyll breakdown and leaf senescence [45, 46]. To summarize our transcriptomics results

obtained by microarray and RNA-seq experiments, all hormone metabolism annotated

Fig 5. Investigation of the PAO gene expression changes in virus-infected plants. (A) Schematic diagram of the

chlorophyll degradation pathway; (B) Northern blot hybridization using radioactively labelled PAO specific probe.

Fold-change values are shown below each band (quantifications were normalized to mock control). EtBr-stained gel

serves as a loading control. (C) The table shows gene expression changes of S. lycopersicum PAO transcripts. (listed in

S13 Table with their characteristic parameters). (Chl b: chlorophyll b; NYC1: non-yellow coloring 1; NOL: nyc1-like

HCAR: 7-hydroxymethyl Chl a reductase; Chl a: chlorophyll a; NYEs (NYE1, NYE2): non yellowing; PPH:

pheophytinase; Pheide a: pheophorbide a; PAO: pheophorbide a oxygenase; RCC: red Chl catabolite).

https://doi.org/10.1371/journal.pone.0216618.g005
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changes were collected (S17 and S18 Tables) and visualized as heat maps of these pathways (S8

Fig). The overall or combined effects of hormone biosynthesis and regulation would finally

lead to the development of leaf senescence. Changes at each level were more pronounced in

the acute infections, which could explain the development of more severe symptoms during

this type of infection.

Physiological changes in virus-infected N. benthamiana and S. lycopersicum
plants

To check whether the molecular changes caused by the acute infection (vs persistent ones) are

able to cause physiological alterations, we characterized the photosynthetic response of the

host in the above host-virus interactions by the application of various physiological measure-

ments (chlorophyll fluorescence, leaf temperature, area photosynthetic activity and calculated

performance index (PI)) (Fig 7 and Fig 8).

Evaporative cooling of healthy and infected plants could be distinguished by using thermal

imaging approaches. With better stomatal regulation, leaves of healthy plants transpire more

water than is transpired by infected plants, which can be the effect of stomatal closure induced

by the pathogen. Thermal images of acute and persistent virus infections were quantified by

thresholding the evaporative cooled area relative to the temperature of the surrounding air

(Fig 7). We could observe similar transpiration rates similar to those of the mock-infected

plants during persistent (TCV- and TMV-U1 -infected N. benthamiana and S. lycopersicum,

respectively) infections. By contrast, during acute (CymRSV, crTMV and PVX) infections the

leaf temperature was found to be significantly higher (almost similar to that of ambient air),

suggesting that acute viruses have a drastic negative impact on the evapotranspiration of their

hosts.

Fig 6. Investigation of the gene expression changes in cell wall metabolism. (A) Schematic diagram of cellulose synthesis pathway; (B, C) heat maps show gene

expression changes of the investigated genes (left panels upregulation: red, downregulation: green). Whisker diagrams show delta-delta Ct results of qRT-PCR from 3

biological and technical replicates using ubiquitin as an internal control (middle and right panels). The DEPs and DEGs on the heat map are listed in S13 and S14

Tables with their characteristic parameters. (HK: hexokinase; PGI: phosphoglucose isomerase; CWINV: cell wall invertase; SuSy: sucrose synthase; CESA: cellulose

synthase).

https://doi.org/10.1371/journal.pone.0216618.g006
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The chlorophyll fluorescence fast kinetics approach also proved to be very effective in mea-

suring physiological responses. Chlorophyll fluorescence parameters characterizing the elec-

tron transfer on both the acceptor and the donor sides of photosystem II drastically affected

the performance index parameter, the maximal quantum yield for primary photochemistry

and the quantum yield for electron transport [47, 48] in CymRSV- and crTMV-infected N.

benthamiana and in PVX-infected S. lycopersicum plants. In TCV-infected N. benthamiana
and TMV-U1-infected S. lycopersicum plants, the chlorophyll fluorescence parameters were

the same or a little higher than in the control (Fig 8A and 8B).

Physiological data are consistent with molecular changes, and the mild alterations of gene

expression during persistent infection do not alter the physiology of the leaves. During acute

Fig 7. Symptoms and temperature changes in virus-infected N. benthamiana and S. lycopersicum plants. Photos in

visible light (A) and thermographic images (B) of mock-inoculated and virus-infected N. benthamiana (A, B) and S.

lycopersicum plants (C, D). Thermographic images show the difference between the ambient temperature and the leaf

temperature of the virus-infected and control plant as a colour image and as a column diagram (in Kelvin, K).

https://doi.org/10.1371/journal.pone.0216618.g007

Fig 8. Chlorophyll fluorescence in virus-infected N. benthamiana and S. lycopersicum plants. Spider graphs show calculated chlorophyll fluorescence parameters

of (A) N. benthamiana infected with CymRSV, crTMV (7 dpi) and TCV (11 dpi) and (B) S. lycopersicum infected with PVX and TMV (8 dpi). Parameters shown are

initial (Fo) and maximal (Fm) fluorescence levels; the Fv/Fm and Fv/Fo (maximal PSII quantum yield) ratios; the area parameter, the dissipated energy flux per

active reaction centre (RC/ABS); the (1-Vj)/ Vj parameter, where Vj = (F2ms–Fo)/Fv; and the performance index (PI) measured on the third/fourth young fully

developed branches from the apical tip. The data refer to virus-infected plants (colour symbols) after normalization with respect to values obtained in the mock-

inoculated plants (black symbols). Data are means of 3 independent biological plant replicates per treatment.

https://doi.org/10.1371/journal.pone.0216618.g008
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infection, the severe transcriptome changes may cause physiological alterations as observed

even at a very early time-point of the infection.

Expression of different regulators active in the nucleus showed the same

pattern during different infections

Molecular and physiological changes in N. benthamiana and S. lycopersicum plants followed

the same pattern in the different viral lifestyles. Severe changes occurred during acute infection

but were absent or mild during persistent infection in both hosts, suggesting the presence of a

universal regulatory pathway. In vitro transcription assays have proven that shut-off happens

at the transcription level in the nucleus [22], where transcription factors regulate their targets.

During acute infection, these types of DEPs in N. benthamiana were seriously altered. The

expression of six of them was confirmed by Northern blot analysis, and their possible role is

discussed in the Supplementary Material (S1 File and S9 Fig). In the nucleus of virus-infected

plants, where transcription factors regulate their targets, the transcription factors themselves

are often under the control of RNAi-based regulation executed by microRNAs (miRNA) and

small interfering RNAs (siRNA) (reviewed by [5, 49, 50]). During transcriptional gene silenc-

ing (TGS) 24-nt-long small RNAs are loaded into Argonaute 4 protein (AGO4) to direct

changes in DNA methylation and histone modification. The TGS may be modulated during

pathogen attack [51]. When analysed, AGO4 was found to be differently regulated; its level

was downregulated only in acute infection. AGO4 mRNA changes were also validated by

Northern blot analysis in N. benthamiana (S10A Fig). Methyltransferases changed in a similar

manner (S10B Fig).

Persistent downregulation of housekeeping genes during acute infection is

not a consequence of necrosis

As we have shown, acute infections have a profound effect on the gene expression pattern and

physiology of the hosts. However, whether the molecular and physiological changes are the

cause or the consequence of the early necrosis is not clear. Tombusviruses, such as CymRSV

and CIRV, systemically infect N. benthamiana plants, and the infection ultimately culminates

in the death of the host. These viruses encode a very efficient viral suppressor protein of RNA

silencing (VSR), p19. p19 binds virus-derived small interfering RNA (vsiRNA) duplexes in a

size-specific manner [52], consequently blocking their loading into RNA-induced silencing

complexes and thus inhibiting the antiviral RNA silencing defence [53]. During infection with

suppressor-deficient mutant viruses (CymRSV19S and CIRV19S), however, the antiviral sys-

tem works efficiently, and the plants are able to recover from infection [54]. After a recovery

period, an almost healthy phenotype develops (recovery phenotype). In recovery plants, due to

the efficient antiviral silencing, the virus is present only at a low level. The efficiency of RNA

silencing decreases at lower temperatures [55]. Under low-temperature conditions, suppres-

sor-deficient viruses can also accumulate to a high level. It was also shown that CymRSV19S or

CIRV19S viruses do not induce necrosis even at low temperatures [56]. To exclude the possi-

bility that downregulation of housekeeping genes is a consequence of early necrosis, we ana-

lysed housekeeping gene expression patterns in response to CymRSV19S- and CIRV19S-

infection at 15˚C. Samples from newly developed, systemically infected leaves were collected at

12 dpi, and the expression levels of two housekeeping genes (Rubisco, CP29) and a stress gene

(PR-Q) were investigated by Northern blot analysis (Fig 9).

The Rubisco and CP29 levels were downregulated and the expression of PR-Q was induced

irrespective of the presence of the VSR. Similarly, as we showed earlier two other housekeeping

transcript (GAPDH and tubulin) levels were reduced during CymRSV19S infection [22].
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These findings suggest that the shut-off of housekeeping genes is not a consequence of the

upcoming necrosis or the presence of VSR.

Conclusions

In our work, we investigated genome-wide gene expression changes and physiological alter-

ations during acute and persistent infections in two different hosts. Persistent shut-off of

housekeeping- and photosynthesis-related transcripts, induction of stress-related transcripts

and alterations of cell wall remodelling enzyme transcripts were exclusively caused by viruses

that had an acute lifestyle strategy, but not in the case of persistent viruses. Gene expression

changes on the global scale (microarray and RNA-seq data) were validated by an alternative

method (Northern blot analysis or qRT-PCR) for representative transcripts of each class.

Acute virus-specific changes were very similar in the two host plants (N. benthamiana and S.

lycopersicum) and in the case of different viruses (Tombusviruses, Tobamoviruses and Potex-

viruses), thereby suggesting that general mechanisms are involved. Two methods were used to

serve as a cross-reference in our study, validating the reliability of the results and strengthening

our conclusions.

During infection, viruses harness the host machinery to replicate themselves. During this

process, the host endomembrane system, RNA transport, transcription and translation

machinery are hijacked by the virus (deployed from the host). This shortage of host enzymatic

processes may be directly or indirectly responsible for acute virus-caused gene expression

changes and subsequent physiological alterations. However, the extremely high virus level dur-

ing persistent infection in the investigated host-virus systems (TCV-infected N. benthamiana
and TMV-U1-infected S. lycopersicum plants) contradict this hypothesis and suggest that

extreme overuse of the host transcriptional and translational system is probably not the pri-

mary cause of severe host gene alteration during acute infections.

We show that the housekeeping gene shut-off is not the consequence of the upcoming

necrosis or the presence of RNA silencing suppressor protein. Previously it was proposed that

interference of the silencing suppressor with endogenous silencing pathways might contribute

to viral symptom development [57, 58]. This possibility has since been questioned [59] because

Fig 9. Northern blot analysis of the gene expression changes in N. benthamiana plants infected with wild-type and

VSR mutant viruses at 15˚C. N. benthamiana plants were infected with CymRSV or CymRSV19S (A) and CIRV or

CIRV19S viruses (B). Accumulation of Rubisco, CP29 and PR-Q mRNA was investigated in systemically infected

leaves at 12 dpi by Northern blot analysis. Fold-change values are shown below each band (quantifications were

normalized to mock controls). EtBr-stained agarose gel served as a loading control.

https://doi.org/10.1371/journal.pone.0216618.g009
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the p19 suppressor is not able to bind endogenous small RNAs in a virus-infected environ-

ment. We propose, therefore, that the severe transcriptome and physiological changes caused

by the acute viruses but not alterations of the miRNA-guided developmental pathway are the

primary contributors of viral symptoms. Our finding that key regulators of TGS (AGO4) were

altered during acute infection implies that the altered TGS-mediated pathway could cause

broad-range changes in host gene regulation. Mapping 24-nt small RNA-mediated methyla-

tion changes of the host in this type of infection could answer this question in the future.

Moreover, as has been shown for AGO1, translational regulation (which cannot be detected by

either microarray or RNA-seq experiments) can further influence this complex pattern.

While investigating the mechanism of shut-off in virus-infected mammalian cells, Gilbert-

son and colleagues recently showed that cytoplasmic degradation of mRNAs can negatively

regulate their initial transcription rate in the nucleus [60]. During mRNA degradation, RNA-

binding proteins are released and shuttle back to the nucleus, where they block early stages of

transcription. During virus infection, the translation machinery is redirected to produce viral

proteins, which may affect both host RNA stability and protein translation, leading to the

induction of gene expression changes as observed during acute infections. Beside cell-autono-

mous impacts, viruses may alter plant metabolism on tissue or organism level (water and

nutrient transport), which would affect cell-autonomous regulatory pathways. Testing how

these regulatory mechanisms operate in virus-infected plants could further contribute to our

understanding of host-virus interactions and development of viral symptoms.

We used two different high-throughput methods in our experiments: microarray hybridiza-

tion and RNA sequencing to detect changes in the gene expression pattern of the host in com-

patible virus infections. Changes in expression levels were higher in the case of DEPs

compared to DEGs, which could be a result of different detection methods. The ratio of down-

regulated genes in microarray analysis was higher compared to that in upregulated ones,

which could be a result of the presence of overrepresented probes. This trend is a warning sig-

nal that interpretation of the most extensively changed gene ontology categories cannot be pre-

cisely defined based on the microarray data.

Severe downregulation of genes that play a role in photosynthetic and other housekeeping

processes has a marked effect on plant physiology. Thermal imaging and variable chlorophyll

fluorescence transients to follow leaf temperature and photosynthetic activity, respectively,

could measure these effects. According to our results, physiological changes associated with

the extensive shut-off of host genes in acute infections make it possible to differentiate the lat-

ter from persistent infections, even before visible symptoms appear. Remote sensing methods

are able to monitor these physiological changes [61–63]; however, the development and use of

these new technologies must be based on detailed knowledge of both the changes in gene

expression and the resulting physiological changes in virus-infected plants. Consequently, our

data could be utilized in the future by remote sensing techniques in precision agriculture, help-

ing crop management by predicting possible infection risks.

High-throughput sequencing methods lead to the discovery of more and more viruses each

day, but determining the actual importance (disease-causing potential) of these newly discov-

ered viruses is very difficult. Characterizing gene expression patterns of housekeeping genes

and identifying the type of viral infection based on their expression levels could be used in risk

assessments (Table 1).

Coexistence of a virus and its host in a persistent virus infection without visible symptoms

could be beneficial for the virus and the host at an evolutional scale. Interestingly, the persis-

tently infecting TCV caused improved physiological attributes (e.g., Performance index

increased by 1.4-fold, Fig 8A), suggesting that TCV may be a mutualist rather than an agent of

disease. Although we gained deep insight into the regulation of gene expression in various
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viral infections, how viruses can avoid or minimize the host reaction during persistent infec-

tions to reach a ‘peaceful’ coexistence with their host is a very exciting question that needs to

be further investigated.

Supporting information

S1 Fig. Sampling strategy of virus-infected N. benthamiana plants. (A) Photo of infected N.

benthamiana plants at the time of microarray sampling, together with the dpi-s for the differ-

ent types of experiments. (B) Samples from different biological replicates used for microarray

were checked for the endogenous GAPDH level by Northern blot analysis. The photo of the

EtBr-stained agarose gel served as a loading control. The presence of TCV, CymRSV and

crTMV were validated according to their RNA size. Numbers show relative expression of the

investigated gene, where 1 is the expression level of the gene in mock-inoculated sample.

(TIF)

S2 Fig. Sampling strategy of virus-infected S. lycopersicum plants. (A) Experimental design

for the different types of experiments, with sample collection time in dpi being indicated with

photos of virus-infected and mock-inoculated plants. (B) Northern blot analysis of individual

plant extracts in the first experiment probed hybridized with radioactively labelled virus-spe-

cific probe. Samples of virus-infected Kecskeméti jubileum cultivar was also tested for the

endogenous Rubisco (C) level by Northern blot analysis after being hybridized with a radioac-

tively labelled gene-specific probe. EtBr-stained gel served as a loading control. Numbers show

relative expression of the investigated gene, where 1 is the expression level of the gene in the

mock-inoculated sample.

(TIF)

S3 Fig. Functional distribution of all differentially expressed probes or genes (up and

downregulated) probes or genes in all virus infected (A) N. benthamiana and (B) S. lyco-
persicum plants. Functions were grouped according to their Bin codes. All DEPs and DEGs

are listed with their Bin codes and other characteristic parameters in the S1 and S2 Tables.

(TIF)

S4 Fig. Comparison of the DEPs/DEGs that play a role in (A) photosynthesis and (B)

stress responses.Heat map of DEPs in virus-infected N. benthamiana and DEGs in virus

infected S. lycopersicum plants were prepared using green for downregulated and red for upre-

gulated genes. The intensity of the colour correlates with the severity of the changes. White

shows changes that are smaller than 2-fold. A list of probes and genes whose levels are

Table 1. Summary of basic differences between acute and persistent virus infections which could be used to predict type of the infection.

Gene-expression changes

Rubisco GAPDH CPs GST Physiological parameters

Acute decrease increase leaf temperature Chl fluorescence parameters

Persistent no change no change Acute increase decrease

Persistent no change no change

LDH PAO CWINV

Acute increase

Persistent no change

PDF CESA

Acute decrease

Persistent no change

https://doi.org/10.1371/journal.pone.0216618.t001
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indicated on the heat map, along with their characteristic parameters, is detailed in the S3 and

S4 Tables (for photosynthesis) and in the S5 and S6 Tables (for stress responses).

(TIF)

S5 Fig. Investigation of the gene expression changes of tubulin, elongation factors (Efs)

and histones in virus-infected (A) N. benthamiana and (B) S. lycopersicum plants. The col-

umn diagrams show log2-fold changes of probes or genes specific for the investigated gene

resulting from (A) N. benthamiana microarray analysis or from (B) S. lycopersicum RNAseq.

(C) Validation of gene expression changes of S. lycopersicum EF and histone coding gene by

quantitative RT-PCR. Box plot shows the relative gene expression calculated from delta-delta

Ct values in 3 biological and 3 technical replicates for each gene in the control and the PVX- or

TMV-infected plant, using ubiquitin as an internal control. The yellow shows gene expression

changes of (A) probes specific for tubulin and EF, whose level was investigated in our previous

work (Havelda et al, Plant Journal 2008), or (B) the level for a specific gene that was validated

by qRT-PCR.

(TIF)

S6 Fig. Gene expression changes of stress-related genes in (A) N. benthamiana and (B) S.

lycopersicum plants. The column diagrams show log2-fold changes of probes or genes specific

for the investigated gene resulted from (A) N. benthamiana microarray analysis or from (B) S.

lycopersicum RNAseq. Yellow shows gene expression changes of (A) probes or (B) genes

whose level was validated by Northern blot analysis. In Northern blot experiments, the mem-

brane was hybridized with a radioactively labelled gene-specific probe. EtBr-staining served as

a loading control. Numbers show relative expression of the investigated gene, where 1 is the

expression level of the gene in the mock-inoculated sample.

(TIF)

S7 Fig. Investigation of the gene expression changes of enzymatic pathways in virus-

infected plants. Gene expression changes of (A) lactate dehydrogenase, (B) protodermal fac-

tor1, Schematic diagrams (A left panel) show role; tables show gene expression changes of the

investigated gene, with red showing upregulation and green showing downregulation. North-

ern blot hybridizations used radioactively labelled gene-specific probes. EtBr staining served as

the loading control.

(TIF)

S8 Fig. Summary of the DEPs and DEGs that play role in hormone regulation identified

during virus infection in N. benthamiana and S. lycopersicum plants. Boxes show the heat

map results of the DEPs or DEGs specific for the genes that play a role in hormone metabo-

lism. The intensity of the colour correlates with the magnitude of the change. Green shows

downregulation, whereas red shows upregulation. The list of probes and genes whose levels

are indicated on the heat map is detailed in the S17 Table (N. benthamiana) and S18 Table (S.

lycopersicum), together with their characteristic parameters.

(TIF)

S9 Fig. Investigation of the gene expression changes of regulator factors in virus-infected

N. benthamiana and S. lycopersicum plants. (A) Panels show log2-fold changes of probes or

genes specific for the investigated gene obtained by microarray analysis (N. benthamiana) or

by RNA-seq (S. lycopersicum). (B) Gene expression changes of regulator genes were investi-

gated by Northern blot hybridization using radioactively labelled probes specific for endoge-

nous genes. EtBr-stained agarose gel served as a loading control.

(TIF)
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S10 Fig. Investigation of the gene expression changes of AGO4 and methyltransferases in

virus-infected plants. Gene expression changes as log2-fold changes of probes or genes spe-

cific for (A) AGO4 and (B) methyltransferases are shown on right panels. (A) Gene expression

changes of AGO4 were investigated by Northern blot hybridization using AGO4-specific

radioactively labelled probe. EtBr-stained agarose gel served as a loading control. (B) Gene

expression changes of methyltransferases are shown also as a column diagram.

(TIF)

S1 Table. Gene expression changes in virus-infected N. benthamiana plants identified by

microarray hybridization. The list of probes that showed differential expression in any of the

virus-infected plants. Log2-fold change values, along with their corresponding p values, are

indicated if higher than 2 and less than 0.05 in CymRSV-, crTMV-, and TCV-infected N.

benthamiana. Description and GO annotation of the probe and its function according to Bin

categories are also indicated.

(XLSX)

S2 Table. Gene expression changes in virus-infected S. lycopersicum plants identified by

RNA seq. List of genes that showed differential expression in any of the virus-infected plants.

Log2-fold change values, along with their corresponding p values, are indicated if higher than

2 and less than 0.05 in PVX- and TMV-U1-infected S. lycopersicum. Description and GO

annotation of the gene and its function according to Bin categories are also indicated.

(XLSX)

S3 Table. Summary of the DEPs that play a role in photosynthetic processes in virus-

infected N. benthamiana plants shown in S4A Fig. Log2-fold change values, along with their

corresponding p values, are indicated if higher than 2 and less than 0.05 in CymRSV-, crTMV-,

and TCV-infected N. benthamiana. Description and GO annotation of the probe and its func-

tion according to Bin categories are also indicated. The corresponding gene from S. lycopersi-

cum is also shown together with its log2-fold and p value if it was identified as a DEG in the

PVX- or TMV-infected tomato.

(XLSX)

S4 Table. Summary of DEGs that play a role in photosynthetic processes in virus-infected

S. lycopersicum plants shown in S4A Fig. Log2-fold change values, along with their corre-

sponding p values, are indicated if higher than 2 and less than 0.05 in PVX- and TMV-infected

S. lycopersicum. Description and GO annotation of the probe and its function according to Bin

categories are also indicated.

(XLSX)

S5 Table. Summary of DEGs that play a role in stress responses in virus-infected N.
benthamiana plants shown in S4B Fig. Log2-fold change values, along with their correspond-

ing p value, are indicated if higher than 2 and less than 0.05 in CymRSV-, crTMV- and TCV-

infected N. benthamiana. Description and GO annotation of the probe and its function

according to Bin categories are also indicated.

(XLSX)

S6 Table. Summary of DEGs that play a role in stress responses in virus-infected S. lycoper-
sicum plants shown in S4B Fig. Log2-fold change values, along with their corresponding p
values, are indicated if higher than 2 and less than 0.05 in PVX- and TMV-infected S. lycopersi-
cum. Description and GO annotation of the probe and its function according to Bin categories

are also indicated.

(XLSX)
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S7 Table. The top 20 probes leading to downregulation in crTMV-, CymRSV- and TCV-

infected N. benthamiana plants. Log2-fold change values, along with their corresponding p
values, are indicated if higher than 2 and less than 0.05 Description and GO annotation of the

probe and its function according to Bin categories are also indicated.

(XLSX)

S8 Table. The top 20 probes leading to upregulation in crTMV-, CymRSV- and TCV-

infected N. benthamiana plants. Log2-fold change values, along with their corresponding p
values, are indicated if higher than 2 and less than 0.05 Description and GO annotation of the

probe and its function according to Bin categories are also indicated.

(XLSX)

S9 Table. The top 20 downregulated genes in PVX- and TMV-infected S. lycopersicum
plants. Log2-fold change values, along with their corresponding p values, are indicated if

higher than 2 and less than 0.05 Description and GO annotation of the probe and its function

according to Bin categories are also indicated.

(XLSX)

S10 Table. The top 20 upregulated genes in PVX- and TMV-infected S. lycopersicum
plants. Log2-fold change values, along with their corresponding p values, are indicated if

higher than 2 and less than 0.05 Description and GO annotation of the probe and its function

according to Bin categories are also indicated.

(XLSX)

S11 Table. List of primers used to amplify parts of the indicated endogenous gene from N.
benthamiana.

(XLSX)

S12 Table. List of primers used to amplify parts of the indicated endogenous gene from S.
lycopersicum.

(XLSX)

S13 Table. Summary of DEGs that play a role in chlorophyll degradation and cell wall

metabolism in virus-infected S. lycopersicum plants shown in Fig 7 and Fig 8. Log2-fold

change values, along with their corresponding p values, are indicated if higher than 2 and less

than 0.05 in PVX- and TMV-infected S. lycopersicum. Description and GO annotation of the

probe and its function according to Bin categories are also indicated.

(XLSX)

S14 Table. Summary of DEGs that play a role in cell wall metabolism in virus-infected N.
benthamiana plants shown in Fig 8. Log2-fold change values, along with their corresponding

p value, are indicated if higher than 2 and less than 0.05 in CymRSV-, crTMV- and TCV-

infected N. benthamiana. Description and GO annotation of the probe and its function

according to Bin categories are also indicated.

(XLSX)

S15 Table. Summary of DEPs that play a role in auxin, brassinosteroid, cytokinin and gib-

berellin metabolism in virus-infected N. benthamiana plants. Log2-fold change values,

along with their corresponding p values, are indicated if higher than 2 and less than 0.05 in

CymRSV-, crTMV-, and TCV-infected N. benthamiana. The description and GO annotation

of the probe and its function according to Bin categories are also indicated. The corresponding

gene from S. lycopersicum is also shown, along with its log2-fold and p value, if it was
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identified as a DEG in PVX- or TMV-infected tomato.

(XLSX)

S16 Table. Summary of DEGs that play a role in auxin, brassinosteroid, cytokinin and gib-

berellin metabolism in virus-infected S. lycopersicum plants. Log2-fold change values, along

with their corresponding p values, are indicated if higher than 2 and less than 0.05 in PVX-and

TMV-infected S. lycopersicum. Description and GO annotation of the probe and its function

according to Bin categories are also indicated.

(XLSX)

S17 Table. Summary of DEPs that play a role in hormone metabolism in virus-infected N.
benthamiana plants summarized in S7 Fig. Log2-fold change values, along with their corre-

sponding p values, are indicated if higher than 2 and less than 0.05 in CymRSV-, crTMV- and

TCV-infected N. benthamiana. Description and GO annotation of the probe and its function

according to Bin categories are also indicated.

(XLSX)

S18 Table. Summary of DEGs that play a role in hormone metabolism in virus-infected S.
lycopersicum plants summarized on S7 Fig. Log2-fold change values together with their cor-

responding p value are indicated if higher than 2 and less than 0.05 in PVX- and TMV-infected

S. lycopersicum. Description and GO annotation of the probe and its function according to

Bin categories are also indicated.

(XLSX)

S19 Table. List of primers used to amplify parts of the indicated viral genomes. PCR prod-

uct amplified with them were used as a template for radioactively labelled virus-specific

probes.

(XLSX)

S1 File. Supporting gene expression results of possible regulators showing altered expres-

sion during acute infection.

(DOCX)
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22. Havelda Z, Várallyay É, Válóczi A, Burgyán J. Plant virus infection-induced persistent host gene down-

regulation in systemically infected leaves. The Plant Journal. 2008; 55(2):278–88. https://doi.org/10.

1111/j.1365-313X.2008.03501.x PMID: 18397378

23. White JL, Kaper JM. A simple method for detection of viral satellite RNAs in small plant tissue samples.

Journal of Virological Methods. 1989; 23(2):83–93. PMID: 2723021
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