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Abstract

Objectives

To identify maternal plasma protein markers for early preeclampsia (delivery <34 weeks of

gestation) and to determine whether the prediction performance is affected by disease

severity and presence of placental lesions consistent with maternal vascular malperfusion

(MVM) among cases.

Study design

This longitudinal case-control study included 90 patients with a normal pregnancy and 33

patients with early preeclampsia. Two to six maternal plasma samples were collected

throughout gestation from each woman. The abundance of 1,125 proteins was measured

using high-affinity aptamer-based proteomic assays, and data were modeled using linear

mixed-effects models. After data transformation into multiples of the mean values for gesta-

tional age, parsimonious linear discriminant analysis risk models were fit for each gesta-

tional-age interval (8–16, 16.1–22, 22.1–28, 28.1–32 weeks). Proteomic profiles of early

preeclampsia cases were also compared to those of a combined set of controls and late
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preeclampsia cases (n = 76) reported previously. Prediction performance was estimated via

bootstrap.

Results

We found that 1) multi-protein models at 16.1–22 weeks of gestation predicted early pre-

eclampsia with a sensitivity of 71% at a false-positive rate (FPR) of 10%. High abundance of

matrix metalloproteinase-7 and glycoprotein IIbIIIa complex were the most reliable predic-

tors at this gestational age; 2) at 22.1–28 weeks of gestation, lower abundance of placental

growth factor (PlGF) and vascular endothelial growth factor A, isoform 121 (VEGF-121), as

well as elevated sialic acid binding immunoglobulin-like lectin 6 (siglec-6) and activin-A,

were the best predictors of the subsequent development of early preeclampsia (81% sensi-

tivity, FPR = 10%); 3) at 28.1–32 weeks of gestation, the sensitivity of multi-protein models

was 85% (FPR = 10%) with the best predictors being activated leukocyte cell adhesion mol-

ecule, siglec-6, and VEGF-121; 4) the increase in siglec-6, activin-A, and VEGF-121 at

22.1–28 weeks of gestation differentiated women who subsequently developed early pre-

eclampsia from those who had a normal pregnancy or developed late preeclampsia (sensi-

tivity 77%, FPR = 10%); 5) the sensitivity of risk models was higher for early preeclampsia

with placental MVM lesions than for the entire early preeclampsia group (90% versus 71%

at 16.1–22 weeks; 87% versus 81% at 22.1–28 weeks; and 90% versus 85% at 28.1–32

weeks, all FPR = 10%); and 6) the sensitivity of prediction models was higher for severe

early preeclampsia than for the entire early preeclampsia group (84% versus 71% at 16.1–

22 weeks).

Conclusion

We have presented herein a catalogue of proteome changes in maternal plasma proteome

that precede the diagnosis of preeclampsia and can distinguish among early and late pheno-

types. The sensitivity of maternal plasma protein models for early preeclampsia is higher in

women with underlying vascular placental disease and in those with a severe phenotype.

Introduction

Preeclampsia is a major obstetrical syndrome [1–3], classified according to the time of its clini-

cal manifestation as “early preeclampsia” if it occurs prior to 34 weeks of gestation and, other-

wise, as “late preeclampsia” [4–10]. The 34-week cut-off is most commonly used [9,11,12]

given the substantial decline in maternal [6,13–17] and neonatal [8,13,18–24] morbidity com-

pared to later gestational ages.

Early preeclampsia accounts for approximately 10% of the cases [8], and its pathophysiol-

ogy involves both maternal predisposing factors and disorders of deep placentation [25,26].

Indeed, in early preeclampsia, the frequency of placental vascular lesions consistent with

maternal vascular malperfusion (MVM) is higher than in late preeclampsia [27–30], suggesting

that the underlying pathological processes leading to this phenotype begin in the early stages

of gestation and involve an angiogenic imbalance [11,31–37]. This finding has clinical implica-

tions given that patients identified to be at risk by the end of the first trimester can benefit

from treatment [38–41].
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Current prediction models for preeclampsia combine maternal risk factors, Doppler veloci-

metry of the uterine arteries, and maternal blood proteins [32,37,42–46]. Although the detec-

tion rate of these models [12,47–50] for the identification of patients at risk for early/preterm

preeclampsia is sufficient to enable preventive strategies [40], the contribution of biochemical

markers in these models is limited. Moreover, Doppler velocimetry required in the current

screening models [47,51–57] to compensate for the sub-optimal prediction by biochemical

markers may not be available in all clinical settings.

Therefore, we used a novel high-affinity aptamer-based proteomic platform to identify lon-

gitudinal changes in maternal plasma proteins that have the potential to improve prediction of

early preeclampsia and to distinguish between the early and late phenotypes. We also investi-

gated whether the predictive performance of protein markers is impacted by disease severity

and the presence of placental lesions consistent with MVM among cases.

Materials and methods

Study design

A nested case-control study was conducted, including patients diagnosed with early pre-

eclampsia (cases, n = 33) and those with a normal pregnancy (controls, n = 90). Women were

enrolled as participants of a longitudinal cohort study conducted at the Center for Advanced

Obstetrical Care and Research of the Perinatology Research Branch, NICHD/NIH/DHHS, the

Detroit Medical Center, and Wayne State University. Women with a multiple gestation, severe

chronic maternal morbidity (i.e., renal insufficiency, congestive heart disease, and/or chronic

respiratory insufficiency), acute maternal morbidity (i.e., asthma exacerbation requiring sys-

temic steroids and/or active hepatitis), or fetal chromosomal abnormalities and congenital

anomalies were excluded from the study.

Plasma samples were collected at the time of each prenatal visit scheduled at four-week

intervals from the first or early second trimester until delivery. All patients provided written

informed consent prior to sample collection. The plasma proteome of each patient was pro-

filed in two to six samples collected from each patient and included, for some of the cases, the

sample collected after the diagnosis of early preeclampsia. Although data collected after diag-

nosis are displayed in longitudinal plots, all analyses reported herein were based only on sam-

ples collected prior to the diagnosis [median (interquartile range or IQR) of 3 (2–4) for cases

and 2 (2–5) for controls].

The analysis presented in this manuscript is based on data and specimens collected under

the protocol entitled “Biological Markers of Disease in the Prediction of Preterm Delivery, Pre-

eclampsia and Intra-Uterine Growth Restriction: A Longitudinal Study.” The study was

approved by the Institutional Review Boards of Wayne State University (WSU

IRB#110605MP2F) and NICHD/NIH/DHHS (OH97-CH-N067).

Clinical definitions

Preeclampsia was defined as new-onset hypertension that developed after 20 weeks of gesta-

tion (systolic or diastolic blood pressure�140 mm Hg and/or�90 mm Hg, respectively, mea-

sured on at least two occasions, 4 hours to 1 week apart) and proteinuria (�300 mg in a

24-hour urine collection, or two random urine specimens obtained 4 hours to 1 week apart

containing�1+ by dipstick or one dipstick demonstrating�2+ protein) [58].

Early preeclampsia was defined as preeclampsia diagnosed and delivered before 34 weeks of

gestation, and late preeclampsia was defined as preeclampsia delivered at or after 34 weeks of

gestation [4]. Severe preeclampsia was diagnosed as preeclampsia with systolic blood

pressure� 160 mmHg, or diastolic blood pressure� 110 mmHg, platelet count< 100,000 per
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mm3, elevated liver enzymes, renal insufficiency, pulmonary edema or cyanosis, new-onset

cerebral/visual disturbances, and/or right upper quadrant or epigastric pain [9,59].

Histologic placental examination

Placentas were examined according to standardized protocols by perinatal pathologists

blinded to clinical diagnoses and obstetrical outcomes, as previously described [60]. Placental

lesions were diagnosed using criteria established by the Perinatal Section of the Society for

Pediatric Pathology [61] and the terminology was updated to be consistent with that recom-

mended by the Amsterdam Placental Workshop Group consensus statement [62]. The defini-

tions of lesions consistent with MVM were previously described [63].

Proteomics analysis

Maternal plasma protein abundance was determined by using the SOMAmer (Slow Off-rate Mod-

ified Aptamer) platform and reagents to profile 1,125 proteins [64,65]. Proteomics profiling ser-

vices were provided by Somalogic, Inc. (Boulder, CO, USA). The plasma samples were diluted and

then incubated with the respective SOMAmer mixes, and after following a suite of steps described

elsewhere [64,65], the signal from the SOMAmer reagents was measured using microarrays.

Statistical analysis

Demographics data analysis. Clinical characteristics of the patient population were sum-

marized as median and IQRs for continuous variables or as percentages for categorical vari-

ables. The comparison of demographic variables between the groups was performed using the

Fisher’s exact test for binary variables and the Wilcoxon rank-sum test for continuous

variables.

Proteomic data transformation. The raw protein abundance data consisted of relative

fluorescence units obtained from scanning the microarrays with a laser scanner. A sample-by-

sample adjustment in the overall signal within a single plate (85 samples processed per plate/

run) was performed in three steps: Hybridization Control Normalization, Median Signal Nor-
malization, and Calibration, using the manufacturer’s protocol. Outlier values (larger than

2×the 98th percentile of all samples) were set to 2×the 98th percentile of all samples (data
thresholding). Protein abundance was then log2 transformed to improve normality. Linear

mixed-effects models with cubic splines (number of knots = 3) were used to model protein

abundance in the control group as a function of gestational age using the lme4 package [66]

under the R statistical language and environment (www.r-project.org). Data for all samples

were then expressed as multiple of the mean (MoM) values for the corresponding gestational

age in the normal pregnancy group. Longitudinal protein abundance averages and confidence

intervals in sub-groups (MVM vs non-MVM, and severe vs mild preeclampsia) were estimated

using generalized additive mixed models implemented in the mgcv package and illustrated

using ggplot2 package in R.

Development of multi-marker prediction models. To develop proteomics prediction

models based on protein abundance collected in each gestational-age interval (8–16, 16.1–22,

22.1–28, 28.1–32, 32.1–36 weeks) and, at the same time, to obtain unbiased prediction perfor-

mance estimates on the available dataset, we implemented advances in predictive modeling

with omics data [67–69]. Log2 MoM values for one protein at a time were used to fit a linear

discriminant analysis (LDA) model and to compute by leave-one-out cross-validation, a classi-

fication performance measure for each protein. With leave-one-out cross-validation, data

from one patient at a time is left out when fitting the LDA model, and then the fitted model is

applied to the data of the subject left out. The resulting predictions were combined over all
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patients to calculate prediction performance. The performance measure considered was the

partial area under the curve (pAUC) of the receiver operating characteristic (ROC) curve

(false-positive rate [FPR]<50%). Proteins that failed to reach at least a 10% change in the aver-

age MoM value between the study groups were filtered out from the analysis. Next, LDA mod-

els were fit by using increasing sets of up to five of the top proteins ranked by the pAUC. To

enforce model parsimony, the inclusion of each additional protein was conditioned on the

increase of 0.01 units in the pAUC statistic.

To obtain an unbiased estimate of the prediction performance of multi-marker models, we

used bootstrap (200 iterations). Each iteration involved the following steps: 1) draw a random

sample with the replacement of 33 cases and 90 controls to create a training set and consider all

patients not selected in the bootstrap sample as a test set; 2) apply all analytical steps involved in

the prediction model development described above (including the selection of predictor pro-

teins) for each gestational-age interval using the training set; 3) apply the resulting prediction

model and determine its prediction performance on data from patients in the test set. The aver-

age performance over 200 test sets was reported as a robust estimate of the prediction perfor-

mance. Alternatively, instead of creating training and test partitions via bootstrap, repeated

(n = 67 times) 3-fold cross-validation was used to generate 201 training and test set pairs, while

keeping all other parameters of the analysis the same as described above for bootstrap.

Differential abundance analysis. The classifier development pipeline described above

identifies a parsimonious set of proteins that predict early preeclampsia, yet it will not neces-

sarily retain all proteins showing evidence of differential abundance between groups. There-

fore, a complementary analysis was performed to identify all proteins with significant

differences in mean log2 MoM values between the cases and controls at each gestational-age

interval. Linear models with coefficient significance evaluated via moderated t-tests were

applied using the limma package [70] of Bioconductor [71]. Significance was inferred based on

the FDR-adjusted p-value (q-value) <0.1 after adjusting for body mass index, smoking status,

maternal age, and parity.

Both prediction model development and differential abundance analyses described above

were also applied, including only controls and early preeclampsia cases i) with placental MVM

lesions and ii) those with a severe phenotype.

Comparison between the proteomic profiles of early and late preeclampsia. To identify

protein changes specific to early onset, but not late onset, of the disease, data from the early

preeclampsia (n = 33) group were compared to a combined group that included both late pre-

eclampsia cases (N = 76) [72] and normal pregnancies (n = 90).

Gene ontology and pathway analysis. Proteins were mapped to Entrez gene identifiers

[73] based on Somalogic, Inc. annotation and, subsequently, to gene ontology [74]. Biological

processes over-represented among the proteins that changed with early preeclampsia were iden-

tified using a Fisher’s exact test. Gene ontology terms with three or more hits and a q-

value< 0.1 were considered significantly enriched. Identification of signaling pathways from

the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database [75] that were

enriched in proteins with differential abundance was performed using a pathway impact analysis

method previously described [76,77]. The analysis was conducted using the web-based imple-

mentation available in iPathwayGuide (http://www.advaitabio.com). All enrichment analyses

used, as reference, the set of all 1,125 proteins that were profiled on the Somalogic platform.

Results

In the early preeclampsia group, 33% (11/33) of the women delivered a small-for-gestational-

age neonate, 73% (24/33) had placental lesions consistent with MVM and 70% (23/33) were
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severe cases. Cases were diagnosed from 24.6 to 33.4 weeks of gestation. Other characteristics

of the study population classified by outcome and presence of placental MVM lesions are

shown in Table 1.

Proteomic prediction models for early preeclampsia by gestational age at

blood draw

The prediction performance indices of the multi-marker models involving up to five proteins

were estimated by bootstrap and are illustrated in Fig 1 and Table 2. Fig 1 presents the sensi-

tivity (10% FPR) of multi-marker models for early preeclampsia at each gestational-age

interval.

At 8–16 weeks of gestation, multi-marker proteomics models predicted early preeclampsia

with 31% sensitivity (FPR = 10%), which was higher than that of PlGF alone (17%). The

importance of individual proteins in the prediction models was evaluated by the percentage of

the 200 bootstrap iterations in which they were included in the best LDA prediction model.

Matrix metalloproteinase 7 (MMP-7) and glycoprotein IIbIIIa (gpIIbIIIa) were chosen in the

best model in 42% and 23% of the iterations, respectively, while high-mobility group protein 1

(HMG-1) and von Willebrand factor were selected in 10% of the iterations (Table 2). Individ-

ual patient longitudinal profiles of MMP-7 and gpIIbIIIa protein abundance are presented in

Fig 2A and 2B, respectively.

At 16.1–22 weeks of gestation, multi-marker prediction models identified women at risk to

develop early preeclampsia with a sensitivity of 71% (FPR = 10%) which was again higher than

the estimate for PlGF alone (18%). MMP-7, gpIIbIIIa, and Soggy-1 were selected in the best

model 90%, 18%, and 10% of the time, respectively. The longitudinal profiles of MMP-7 and

gpIIbIIIa, emphasizing the differences in the samples taken between 16.1 to 22 weeks of gesta-

tion, are presented in Fig 2C and 2D.

At 22.1–28 weeks of gestation, the proteins most often selected in the best risk model for

early preeclampsia out of 200 bootstrap iterations were sialic acid binding immunoglobulin-

like lectin 6 (siglec-6) (58%), PlGF (52%), activin-A (25%), and VEGF121 (18%). Longitudinal

profiles of these four proteins emphasizing the differences in the samples taken between 22.1

and 28 weeks of gestation are shown in Fig 3.

At 28.1–32 weeks of gestation, the bootstrap-estimated sensitivity of multi-marker risk

models was 85% (FPR = 10%), with activated leukocyte cell-adhesion molecule (ALCAM),

siglec-6, and VEGF121 being the most frequently selected markers (38%, 32%, and 32% of the

bootstrap iterations, respectively). The longitudinal profiles of ALCAM are depicted in Fig 4.

Table 1. Demographic characteristics of the study population.

Characteristic Normal pregnancy (n = 90) Early PE (n = 33)

With MVM (n = 24) Without MVM (n = 9)

Gestational age at enrolment (weeks) 9.1 (8.0–10.1) 10.4 (8.3–15.2) [p = 0.024] 13.1 (8.4–14.6) [p = 0.042]

Gestational age at delivery (weeks) 39.4 (39.0–40.4) 31.2 (28.3–33.0) [p<0.001] 33.4 (32.1–33.6) [p<0.001]

Body mass index (kg/m2) 26.5 (22.8–33.2) 26.3 (20.5–30.6) [p = 0.27] 28.2 (22.3–32.9) [p = 0.62]

Maternal age (years) 24 (21.0–27.8) 22 (19.0–25.5) [p = 0.05] 24 (22.0–30.0) [p = 0.88]

Smoking status 18 (20%) 5 (20.83%) [p = 1] 5 (55.56%) [p = 0.03]

Nulliparity 26 (28.9%) 15 (62.5%) [p = 0.004] 1 (11.11%) [p = 0.44]

Data are presented as median (interquartile range) or number (percentage); P-values are given for the comparison to the normal pregnancy group. Early PE: early

preeclampsia; MVM: maternal vascular malperfusion.

https://doi.org/10.1371/journal.pone.0217273.t001
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Of note, prediction performance estimates for early preeclampsia were slightly higher when

estimated by repeated cross-validation (S1 Table) than by bootstrap (Table 2), yet the variance

of the estimates with the former method was somewhat higher (data not shown). The most

predictive proteins retained in the prediction models were similar between the two approaches

(see Tables 2 and S1).

Fig 1. Sensitivity for early preeclampsia using multi-protein markers. Sensitivity (y-axis) at a 10% FPR are shown by gestational-age interval (x-axis)

for early preeclampsia (PE), early PE with placental lesions consistent with MVM, and severe early PE. The vertical bars represent the average (with 95%

confidence intervals) of sensitivity obtained from 200 bootstrap iterations. Early PE: early preeclampsia; FPR: false-positive rate; MVM: maternal vascular

malperfusion.

https://doi.org/10.1371/journal.pone.0217273.g001
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Prediction of early preeclampsia according to the presence of placental

lesions consistent with maternal vascular malperfusion

To determine whether the sub-classification of early preeclampsia cases by placental lesions

can lead to different protein markers and/or better prediction performance, a secondary analy-

sis was performed that included the control group and only cases with placental lesions consis-

tent with MVM. Bootstrap-based sensitivity estimates (at a fixed FPR of 10%) were higher for

cases with MVM compared to those for the overall early preeclampsia group (16.1–22 weeks:

90% versus 71%; 22.1–28 weeks: 87% versus 81%; and 28.1–32 weeks: 90% versus 85%) (see

bars in Fig 1 and Table 2).

In addition to a higher sensitivity for cases with placental MVM lesions compared to the

overall early preeclampsia group, differences in the sets of best predictors also emerged at par-

ticular intervals of gestation (Table 2). For example, angiotensin-converting enzyme 2 (ACE2)

at 8–16 weeks (see raw data in Fig 5) and siglec-6 at 22.1–32 weeks of gestation were more fre-

quently selected as the best markers for early preeclampsia with MVM lesions than for overall

early preeclampsia (see Table 2).

Prediction of early preeclampsia according to disease severity

When only severe early preeclampsia cases were included in the analysis and compared to nor-

mal pregnancy cases, the sensitivity of analysis (10% FPR) was significantly higher than for

overall early preeclampsia (90% vs 71%) in the 16.1–22 week interval. At this gestational-age

interval, but unlike early preeclampsia with MVM that was predicted mostly by an increase in

MMP-7, the prediction for severe early preeclampsia also involved the increase in gpIIbIIIa for

14% of the models trained on bootstrap samples of the original dataset. Other differences in

the set of best predictors for severe early preeclampsia compared to overall early preeclampsia

were noted in the 8–16 weeks gestational-age interval (see Table 2).

Table 2. Summary of bootstrap results for prediction of early preeclampsia vs normal pregnancy.

Outcome Sample GA AUC Sensitivity Specificity Predictor Symbols (% inclusion in best combination)

(weeks)

8–16 0.64 0.31 0.90 MMP-7(42%), gpIIbIIIa(23%), HMG-1(10%), vWF(10%)

All 16.1–22 0.88 0.71 0.90 MMP-7(90%), gpIIbIIIa(18%), Soggy-1(10%),

Early PE 22.1–28 0.90 0.81 0.90 Siglec-6(58%), PlGF(52%), Activin A(25%), VEGF121(18%)

28.1–32 0.94 0.85 0.90 ALCAM(38%), VEGF121(32%), Siglec-6(32%)

8–16 0.63 0.32 0.90 MMP-7(33%), gpIIbIIIa(26%), ACE2(18%)

Early PE 16.1–22 0.96 0.90 0.90 MMP-7(99%),

MVM 22.1–28 0.95 0.87 0.92 Siglec-6(76%), PlGF(21%), Activin A(14%)

28.1–32 0.95 0.90 0.90 Siglec-6(63%), VEGF121(33%), ALCAM(10%)

8–16 0.67 0.35 0.90 MMP-7(44%); gpIIbIIIa(17%); Glutathione S-transferase Pi(12%); SMAC(10%); C4b(10%)

Early PE 16.1–22 0.94 0.84 0.90 MMP-7(97%); gpIIbIIIa(14%)

Severe 22.1–28 0.89 0.81 0.91 Siglec-6(68%); PlGF(34%); VEGF121(24%); Activin A(14%)

28.1–32 0.95 0.88 0.90 Siglec-6(52%); VEGF121(26%); ALCAM(22%)

The number in parentheses following the name of each protein (column Predictor Symbols) represents the percentage of bootstrap iterations in which the protein was

selected in the best model. Only proteins selected in 10% or more of the 200 bootstrap iterations are listed. ACE2: angiotensin converting enzyme 2; ALCAM: activated

leukocyte cell adhesion molecule; AUC: area under the receiver operating characteristic curve; GA: gestational age; gpIIbIIIa: glycoprotein IIb/IIIa; HMG-1: high-

mobility group protein 1; MMP: matrix metalloproteinase; early PE: early preeclampsia; MVM: maternal vascular malperfusion; PE: preeclampsia; PlGF: placental

growth factor; Siglec-6: sialic acid binding immunoglobulin-like lectin; VEGF121: vascular endothelial growth factor A, isoform 121; vWF: von Willebrand factor;

SMAC: Diablo homolog, mitochondrial; C4b: Complement C4b.

https://doi.org/10.1371/journal.pone.0217273.t002
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Fig 2. Longitudinal maternal plasma abundance of MMP-7 and gpIIbIIIA in normal pregnancy and early preeclampsia. Each line corresponds to a single patient

(grey = normal pregnancy, red = early preeclampsia). Individual dots represent samples at 8–16 weeks (A, B) and 16.1–22 weeks (C, D) of gestation. Samples taken at the

time of diagnosis with early preeclampsia are marked with an “x” and were not included in the analysis but only displayed. The thick black line represents the mean value

in normal pregnancy. AUC: area under the receiver operating characteristic curve of the protein using data in the current interval; early PE: early preeclampsia; FC: fold

change; gpIIbIIIa: glycoprotein IIb/IIIa; MMP-7: matrix metalloproteinase 7; MoM: multiples of the mean; p: the nominal significance p-value comparing mean MoM

values between groups with a moderated t-test. Log2FC is the log (base 2) of the fold change between the cases and control groups, with negative values denoting lower

MoM values in cases than in controls.

https://doi.org/10.1371/journal.pone.0217273.g002
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Fig 3. Longitudinal maternal plasma abundance of siglec−6 (A), PlGF (B), VEGF121 (C), and activin-A (D) in normal pregnancy and early preeclampsia cases,

highlighting differences at 22.1–28 weeks. AUC: area under the receiver operating characteristic curve; early PE: early preeclampsia; FC: fold change; PlGF: placental

growth factor; Siglec-6: sialic acid binding immunoglobulin-like lectin; VEGF121: vascular endothelial growth factor A, isoform 121.

https://doi.org/10.1371/journal.pone.0217273.g003
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Proteomic markers that differentiate between early and late preeclampsia

Discrimination between early preeclampsia and both normal pregnancy and late preeclampsia

was rather low in the 8-16-week and 16.1-22-week intervals (21% and 31% sensitivity, respec-

tively, FPR = 10%) and involved different sets of proteins than those found when the compari-

son was only against the normal pregnancy group (Table 3). However, later in gestation, the

sensitivity of multi-marker models to discriminate between early preeclampsia and both the

controls and late preeclampsia increased to 77% and 82% at 16.1-22-week and 22.1-28-week

intervals, respectively (FPR = 10%).

Fig 4. Longitudinal maternal plasma ALCAM abundance in normal pregnancy and early preeclampsia cases, highlighting differences at

28.1–32 weeks. ALCAM: activated leukocyte cell adhesion molecule; AUC: area under the receiver operating characteristic curve; early PE: early

preeclampsia; FC: fold change; MVM: maternal vascular malperfusion.

https://doi.org/10.1371/journal.pone.0217273.g004
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Of note, discriminating early preeclampsia from both normal pregnancy and late pre-

eclampsia cases involved more stringent cut-offs for the same proteins (see Fig 6) and also new

proteins such as ficolin 2 (FCN2) (see Table 3).

Differential protein abundance summary

In addition to the proteins included in the parsimonious models predictive of early preeclamp-

sia at different gestational-age intervals (Table 2), other proteins (total, n = 175) had a signifi-

cant differential abundance (after adjustment for body mass index, smoking status, maternal

age, and parity) in at least one gestational-age interval (q-value < 0.1).

Fig 5. Longitudinal maternal plasma ACE2 abundance in normal pregnancy and early preeclampsia cases, highlighting differences at 8–16

weeks of gestation. See Fig 2 legend for more details. ACE2: angiotensin-converting enzyme 2; AUC: area under the receiver operating

characteristic curve; early PE: early preeclampsia; FC: fold change; MVM: maternal vascular malperfusion.

https://doi.org/10.1371/journal.pone.0217273.g005
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S2 Table presents the linear fold changes of MoM values between the early preeclampsia

and normal pregnancy groups as well as the nominal and FDR-adjusted p-values (q-values)

for each gestational-age interval. Additionally, the heatmap presented in Fig 7 summarizes the

differential abundance patterns across all gestational-age intervals included in this study.

There were 2, 37, 20, and 153 proteins associated with early preeclampsia at 8–16, 16.1–22,

22.1–28, and 28.1–32 weeks of gestation, respectively.

MMP-7 was elevated in three of the four gestational-age intervals. IL-1 R4 (interleukin-1

receptor-like 1), siglec-6, and activin-A were elevated while FCN2, MMP-12, VEGF121, and

PlGF were lower in all three intervals from 16.1 weeks of gestation onward. Differential abun-

dance analyses were also summarized for early preeclampsia with MVM (S3 Table and S1

Table 3. Summary of bootstrap results for prediction of early preeclampsia versus normal pregnancy and late preeclampsia.

Outcome Sample GA (weeks) AUC Sensitivity Specificity Predictor Symbols (% inclusion in best combination)

Early PE 8–16 0.55 0.21 0.90 gpIIbIIIa(34%)

Early PE 16.1–22 0.65 0.31 0.90 Soggy-1(26%); IMDH2(20%); Siglec-6(14%); PKC-D(12%); MMP-12(10%); RBP(10%)

Early PE 22.1–28 0.89 0.77 0.90 Siglec-6(72%); Activin A(63%); VEGF121(34%)

Early PE 28.1–32 0.93 0.82 0.90 Siglec-6(72%); ALCAM(15%); FCN2(14%); VEGF121(12%)

ALCAM: activated leukocyte cell adhesion molecule; AUC: area under the receiver operating characteristic curve; early PE: early preeclampsia; FCN2: ficolin 2; GA:

gestational age; gpIIbIIIa: glycoprotein IIb/IIIa; IMDH2: inosine-5’-monophosphate dehydrogenase (IMDH2); MMP: matrix metalloproteinase; PKC-D: protein kinase

C delta type; RBP: retinol binding protein; Siglec-6: sialic acid binding immunoglobulin-like lectin; VEGF121: vascular endothelial growth factor A, isoform 121. Only

proteins selected in 10% or more of the 200 bootstrap iterations are listed.

https://doi.org/10.1371/journal.pone.0217273.t003

Fig 6. Longitudinal maternal plasma abundance of siglec-6 (A) and activin-A (B) in normal pregnancy and early preeclampsia, highlighting differences at 22.1–28

weeks. Blue dots correspond to samples taken from late preeclampsia cases. AUC: area under the receiver operating characteristic curve; early PE: early preeclampsia; FC:

fold change; late PE: late preeclampsia; Siglec-6: sialic acid binding immunoglobulin-like lectin.

https://doi.org/10.1371/journal.pone.0217273.g006
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Fig), as well as for severe early preeclampsia (S4 Table and S1 Fig) compared to normal

pregnancy.

Biological processes and pathways perturbed in early preeclampsia during

gestation

Gene ontology analysis of the proteins that changed significantly between patients with a nor-

mal pregnancy and those with early preeclampsia was performed for each gestational-age

Fig 7. A summary of differential protein abundance between early preeclampsia and normal pregnancy throughout gestation. The

values shown using a color scheme represent the log2 fold change in MoM values between the cases and controls (green = lower,

red = higher mean MoM in cases versus controls). Fold changes>1.5 (absolute log2 fold change>0.58) were reset to 1.5 to enhance

visualization of the data.

https://doi.org/10.1371/journal.pone.0217273.g007
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interval. At 16.1–22 weeks of gestation, there were 6; at 22.1–28 weeks, there were 7; and at

28.1–32 weeks, there were 30 biological processes significantly associated with early pre-

eclampsia (Table 4). Biological processes associated with protein changes in at least one gesta-

tional age interval included cell adhesion, response to hypoxia, positive regulation of endothelial
cell proliferation, extracellular matrix disassembly, and vascular endothelial growth factor recep-
tor signaling pathway (all: q < 0.1) (Table 4).

No signaling pathways documented in the KEGG database [75] were found to be perturbed

given the differential protein abundance observed in each interval of gestation.

Discussion

Principal findings of the study

The principal findings of the study are as follows: 1) At 16.1–22 weeks of gestation, multi-pro-

tein models predicted early preeclampsia with a sensitivity of 71% (FPR = 10%). The most reli-

able predictors in this interval were an elevated MMP-7 and gpIIbIIIa complex; 2) the best

predictors of the subsequent development of early preeclampsia at 22.1–28 weeks of gestation

were lower PlGF and VEGF121 as well as elevated siglec-6 and activin-A (81% sensitivity,

FPR = 10%); 3) at 28.1–32 weeks of gestation, the sensitivity of multi-protein models was 85%

(FPR = 10%) with the most reliable predictors being ALCAM, siglec-6, and VEGF121; 4) the

increase in siglec-6, activin-A, and VEGF121 at 22.1–28 weeks of gestation differentiated

women who subsequently developed early preeclampsia from those who had a normal preg-

nancy or late preeclampsia (sensitivity 77%, FPR = 10%); 5) the sensitivity of proteomic models

for early preeclampsia in women with placental lesions consistent with MVM was higher than

that of the models reported for the overall early preeclampsia group from 16.1 weeks of gesta-

tion onward; and 6) the sensitivity of prediction models was higher for severe early preeclamp-

sia than for the entire early preeclampsia group (84% versus 71% at 16.1–22 weeks).

Of note, differential protein abundance results and, hence, downstream enrichment analy-

ses are expected to vary among the different intervals of gestation due to several factors, such

as: 1) differences in the sets of patients that contributed one sample in each interval, due to

sample availability or to exclusion from analysis of samples at/or past the gestational age at

diagnosis (see Methods); 2) differences in the magnitude of underlying disease-specific mater-

nal plasma protein changes with preeclampsia; and 3) differences in the level of noise in the

data, contributing non-biological variability.

Proteomics prediction models for the identification of patients with

preeclampsia

Biomarkers for the identification of patients at risk for obstetrical syndromes such as small-

for-gestational-age neonates [34,78–82], spontaneous preterm birth [83–94], fetal death [95–

105], and preeclampsia [12,47,49,50,56,72,106–113] have been proposed. For preeclampsia,

prediction models have evolved from ones that used maternal background characteristics

alone (e.g., obstetrical history, chronic hypertension, familial history of preeclampsia, obesity)

[114,115] to those that combine maternal demographic characteristics, obstetrical history

[116,117], mean blood pressure [118], uterine artery Doppler studies [52,54,119], and molecu-

lar biomarkers [56,120–122] (e.g., PAPP-A [88,123–125] and inhibin-A [124,126–128]). Some

of the most predictive biochemical markers include angiogenic and anti-angiogenic factors

[33,129–134] (PlGF [34,135–137], sVEGFR-1[138–142], and endoglin [143–148]), or their

ratios [34,129,149–155]. A limitation of current screening methods for preeclampsia is the

requirement of Doppler velocimetry, which is not readily available in middle- and low-
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resource populations. The detection rate for early preeclampsia drops to 77% and 57% at FPRs

Table 4. Biological processes enriched in proteins with a differential abundance between early preeclampsia and normal pregnancy.

Interval Name N OR p q

xenobiotic metabolic process 3 47.1 0.000 0.008

negative chemotaxis 3 31.5 0.001 0.008

16.1–22 small molecule metabolic process 10 3.1 0.006 0.0485

weeks regulation of transcription from RNA polymerase II promoter 3 9.5 0.007 0.0485

integrin-mediated signaling pathway 3 7.3 0.014 0.071

extracellular matrix disassembly 5 3.7 0.019 0.0838

positive regulation of endothelial cell proliferation 4 11.7 0.001 0.0128

cellular calcium ion homeostasis 3 7.0 0.014 0.0866

response to hypoxia 3 5.1 0.031 0.0866

22.1–28 cell adhesion 5 3.3 0.033 0.0866

weeks response to drug 4 3.7 0.036 0.0866

positive regulation of angiogenesis 3 4.6 0.040 0.0866

extracellular matrix disassembly 3 4.1 0.053 0.0976

blood coagulation 36 2.7 0.000 0.0042

platelet degranulation 18 3.9 0.000 0.0045

blood coagulation, intrinsic pathway 8 8.9 0.000 0.0123

sprouting angiogenesis 6 13.1 0.000 0.0218

platelet activation 22 2.5 0.001 0.036

vascular endothelial growth factor signaling pathway 4 25.9 0.001 0.063

positive regulation of endothelial cell migration 7 5.8 0.002 0.0683

response to cold 3 Inf 0.002 0.0703

plasminogen activation 3 Inf 0.002 0.0703

nervous system development 12 3.1 0.003 0.071

blood circulation 5 8.1 0.003 0.071

negative regulation of cell-substrate adhesion 4 13.0 0.004 0.071

positive regulation of macrophage activation 4 13.0 0.004 0.071

28.1–32 positive regulation of synapse assembly 4 13.0 0.004 0.071

weeks liver development 6 5.6 0.004 0.071

fibrinolysis 7 4.6 0.004 0.071

response to hypoxia 12 2.9 0.005 0.071

hematopoietic progenitor cell differentiation 4 8.6 0.008 0.086

response to vitamin D 4 8.6 0.008 0.086

negative regulation of fat cell differentiation 4 8.6 0.008 0.086

positive regulation of acute inflammatory response 3 19.3 0.009 0.086

cell-substrate junction assembly 3 19.3 0.009 0.086

negative regulation of ossification 3 19.3 0.009 0.086

negative regulation of B cell differentiation 3 19.3 0.009 0.086

cellular response to follicle-stimulating hormone stimulus 3 19.3 0.009 0.086

negative regulation of angiogenesis 7 3.8 0.009 0.086

negative regulation of cysteine-type endopeptidase activity involved in apoptotic process 7 3.8 0.009 0.086

positive regulation of neuron differentiation 6 4.4 0.010 0.0895

positive regulation of blood vessel endothelial cell migration 5 5.4 0.010 0.0895

positive regulation of MAPK cascade 9 3.0 0.011 0.0953

ID: Gene Ontology (GO) biological processes identifier; N: number of significant proteins assigned to the GO term; OR: odds ratio for enrichment; p: p-value; q: false

discovery rate-adjusted p-value.

https://doi.org/10.1371/journal.pone.0217273.t004
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of 10% and 5%, respectively, in the absence of Doppler information [156]. Therefore, there

would still be a benefit in developing accurate prediction models based solely on molecular

information.

Discovery of molecular markers for obstetrical complications is often undertaken using

“omics” technologies [157–165]: genomics [166,167], transcriptomics [168–175], proteomics

[72,165,176–187], metabolomics [188–192], peptidomics [193–198], and lipidomics [199,200].

In particular, maternal proteomic profiles in preeclampsia were reported in maternal serum/

plasma [175–177,180,201–210], urine [211–213], amniotic fluid [214,215], and the placenta

[179,182,216–228]. However, most maternal plasma/serum proteomics studies to date did not

involve samples collected longitudinally to determine how early molecular markers change

their profiles prior to the disease onset and whether these changes are consistent throughout

pregnancy, or the studies involved a small sample size.

The current study is one of the largest in this field and uses a new proteomics technology

based on aptamers that allows the measurement of 1,125 proteins. Using this platform (Soma-

logic, Inc.), we and other investigators reported the stereotypic longitudinal changes of the

maternal plasma proteome in normal pregnancy [229,230] and late preeclampsia [72]. Our

current report observing that an increased maternal plasma abundance of MMP-7 and gpII-

bIIIa is predictive of early preeclampsia during the first half of pregnancy is novel.

Increased maternal plasma MMP-7 precedes diagnosis of preeclampsia

A possible explanation for the increased maternal plasma MMP-7 in preeclampsia is that it is a

marker of abnormal placentation. MMP-7 is expressed in the decidua and trophoblast

[231,232] and has been proposed to play a role in the process of transformation of the spiral

arteries [233,234]. There is also histological evidence to support the involvement of MMP-7 in

the processes associated with the development of preeclampsia [231] and early preeclampsia

[233]. Additionally, MMP-7 can act as a sheddase for syndecan-1 [235,236], a major trans-

membrane heparan sulfate proteoglycan expressed on the surface (glycocalyx) of epithelial,

endothelial, and syncytiotrophoblast cells [237–239], which are implicated in the pathophysi-

ology of preeclampsia [240–243]. MMP-7 may also be involved in processes leading to the for-

mation of atherosclerotic plaques [244] that show characteristics (e.g., lipid-laden

macrophages) similar to acute atherosis of the spiral arteries associated with preeclampsia

[245,246]. Of note in our previous study that used the same proteomics platform, MMP-7 was

found to be a sensitive biomarker during the first half of pregnancy for the detection of

patients who subsequently developed late preeclampsia [72]; herein, we showed that is also the

case for early preeclampsia.

The role of glycoprotein IIbIIIa in early preeclampsia

To our knowledge, this is the first study to report that changes in the abundance of gpIIbIIIa

in the maternal plasma are predictive of subsequent development of early preeclampsia. In this

patient population, at 8–16 weeks of gestation, gpIIbIIIa performed better than PlGF (cur-

rently used to screen for preeclampsia) [48,50,51,137] for the detection of patients who subse-

quently developed early preeclampsia when profiled with the Somalogic platform (AUC = 0.60

for PlGF and 0.72 for gpIIbIIIa, see Table 2 and Fig 2B).

Glycoprotein IIb-IIIa is a membrane glycoprotein [247], the most common platelet recep-

tor [247,248]. After a conformational change occurring during platelet activation [249], it

interacts with ligands (e.g., von Willebrand factor and fibrinogen) to play a critical role in

platelet aggregation and the cross-linkage of platelets into a hemostatic plug or thrombus

[250–253]. Aspirin inhibits the expression of gpIIbIIIa by platelets [254]. This fact is important
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given that aspirin is currently recommended by regulatory bodies in the United States for the

prevention of preeclampsia [255–257]; moreover, this medication has recently been reported

to reduce the rate of preterm preeclampsia by 62% [40]. Our findings suggest that gpIIbIIIa

inhibitors could be further developed for the prevention of early preeclampsia.

Presence of placental lesions of maternal vascular malperfusion and disease

severity increases the sensitivity of proteomic models for early

preeclampsia

The sensitivity of the proteomic models at each gestational-age interval from 16.1 weeks

onward was higher for cases that had placental lesions consistent with MVM than for the over-

all group of women with early preeclampsia and even compared to those with severe early pre-

eclampsia. Maternal vascular malperfusion is a prevalent placental histologic finding in

patients with early preeclampsia [28], and 73% (24/33) of cases in the current study had these

lesions. These results further support a previous observation that the prediction performance

of angiogenic index-1 (PlGF/sVEGFR-1) for preterm delivery (<34 weeks) is higher for

women with these types of placental lesions [63].

Of interest, even when only patients with lesions consistent with MVM were compared to

those with a normal pregnancy, proteins of placental origin (e.g., PlGF and siglec-6) were still

the most predictive of early preeclampsia, but only after 22 weeks of gestation. This finding is

consistent with our earlier study in late preeclampsia [72] and with previous longitudinal stud-

ies of angiogenic and anti-angiogenic factors [35,46,151]. Moreover, the data presented herein

also support our previous systems biology study in early preeclampsia showing that siglec-6

expression in the placenta increased in the second half of pregnancy due to a hypoxic-ischemic

trophoblastic response to placental malperfusion [258].

Clinical implications

The current study demonstrates the potential of maternal plasma protein changes to identify

women at risk of early preeclampsia based on a single blood test. The use of disease-risk mod-

els based solely on proteomic markers would be similar to first- and second-trimester aneu-

ploidy tests [259–262]. Such an approach can be implemented in various clinical settings,

especially in low-resource areas, where Doppler velocimetry of the uterine arteries is not read-

ily available. Moreover, the proteomics biomarkers identified in this study may assist in the

introduction of novel therapeutic agents (e.g., gpIIbIIIa inhibitors) for the prevention of early

preeclampsia.

Strengths and limitations of the study

The major strengths of this study are its longitudinal design, the number of patients and their

stratification according to placental histology, and the large number of proteins tested. In addi-

tion, best practices in terms of model development and validation were based on our award-

winning classifier development pipeline [67–69]. A limitation of this study is the fact that the

aptamer-based assays did not include internal standards to generate protein concentrations (as

opposed to fluorescence-based abundance); hence, further studies would be needed to gener-

ate protein concentration cut-offs. Additionally, the majority of the patients included in this

study were of African-American lineage, and the generalization of findings to other ethnic

groups needs to be further examined. Lastly, for three of the 33 early preeclampsia cases, the

information regarding 24-hour proteinuria was not available; hence, we were reliant on dip-

stick evaluation.
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Conclusions

Aptamer-based proteomic profiling of maternal plasma identified novel as well as previously

known markers for early preeclampsia. At 16.1–22 weeks of gestation, more than two-thirds of

patients who subsequently develop early preeclampsia can be identified by an elevated MMP-7

and gpIIbIIIa in maternal plasma (10% FPR). High abundance of siglec-6, VEGF121, and acti-

vin-A observed in the maternal circulation at 22.1–28 weeks of gestation was more specific to

early rather than late preeclampsia. Proteomic markers were more sensitive for early pre-

eclampsia cases with placental lesions consistent with MVM as well as those with a severe

phenotype.

Supporting information

S1 Table. Summary of cross-validation results for prediction of early preeclampsia vs nor-

mal pregnancy. The number in parentheses following the name of each protein (column Pre-

dictor Symbols) represents the percentage of folds in which the protein was selected in the best

model. Only proteins selected in 10% or more of the 3x67 = 201 folds are listed. ACE2: angio-

tensin converting enzyme 2; ALCAM: activated leukocyte cell adhesion molecule; AUC: area

under the receiver operating characteristic curve; GA: gestational age; gpIIbIIIa: glycoprotein

IIb/IIIa; HMG-1: high-mobility group protein 1; MMP: matrix metalloproteinase; early PE:

early preeclampsia; MVM: maternal vascular malperfusion; PE: preeclampsia; PlGF: placental

growth factor; Siglec-6: sialic acid binding immunoglobulin-like lectin; VEGF121: vascular

endothelial growth factor A, isoform 121; vWF: von Willebrand factor.

(XLSX)

S2 Table. Summary of the differential abundance analysis between early preeclampsia and

normal pregnancy in four intervals of gestation. List of 175 proteins with significantly differ-

ent abundance between early preeclampsia and normal pregnancy (q< 0.1) in at least one

interval, after adjustment for body mass index, maternal age, parity and smoking status. FC:

linear fold change, with negative values denoting lower levels while positive values denote

higher levels in cases than in controls.

(XLSX)

S3 Table. Summary of the differential abundance analysis between early preeclampsia and

normal pregnancy in four intervals of gestation. List of 76 proteins with significantly differ-

ent abundance between early preeclampsia with MVM and normal pregnancy (q< 0.1) in at

least one interval, after adjustment for body mass index, maternal age, parity and smoking sta-

tus. FC: linear fold change, with negative values denoting lower levels while positive values

denote higher levels in cases than in controls.

(XLSX)

S4 Table. Summary of the differential abundance analysis between early preeclampsia and

normal pregnancy in four intervals of gestation. List of 130 proteins with significantly differ-

ent abundance between severe early preeclampsia and normal pregnancy (q < 0.1) in at least

one interval, after adjustment for body mass index, maternal age, parity and smoking status.

FC: linear fold change, with negative values denoting lower levels while positive values denote

higher levels in cases than in controls.

(XLSX)

S1 File. Proteomics data used in the analyses presented in this study. Protein abundance

data for each sample (rows) and each of the 1125 proteins is given in this table. Note, unlike

for the early preeclampsia group, data for normal pregnancy group is the same as in in [72],
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and included in this file for convenience. ID: anonymized identifier indicator of the patient,

GA: gestational age at sample, GADiagnosis: gestational age at diagnosis for cases; EarlyPE: is

1 for early preeclampsia and 0 for normal pregnancy. EarlyPE_MVM: is 1 for early preeclamp-

sia with maternal vascular malperfusion and 0 for normal pregnancy or early preeclampsia

without maternal vascular malperfusion; EarlyPE_Severe: is 1 for severe early preeclampsia

cases; Protein symbol and names provided by Somalogic, Inc, are the same as S1 File in [72].

(CSV)

S1 Fig. Differential protein abundance analysis by generalized additive mixed models.

Longitudinal differences in protein abundance assessed generalized additive mixed models are

shown for proteins listed in Table 2. For each protein, differences are shown between early

preeclampsia (PE) and controls (top left) as well as between mild or severe PE and controls

(top right) and between PE with or without maternal vascular malperfusion (MVM) and con-

trols. Thick lines show averages while grey bands give the 95% confidence interval.

(PDF)

Acknowledgments

We thank the physicians, nurses, and research assistants from the Center for Advanced Obstet-

rical Care and Research, Intrapartum Unit, PRB Clinical Laboratory, and PRB Perinatal Trans-

lational Science Laboratory for their help with collecting and processing samples.

Author Contributions

Conceptualization: Adi L. Tarca, Roberto Romero, Tinnakorn Chaiworapongsa, Sonia S.

Hassan, Offer Erez.

Data curation: Adi L. Tarca, Neta Benshalom-Tirosh, Percy Pacora, Tinnakorn Chaiwora-

pongsa, Bogdan Panaitescu, Dan Tirosh.

Formal analysis: Adi L. Tarca, Dereje W. Gudicha, Bogdan Done.

Funding acquisition: Roberto Romero, Sonia S. Hassan.

Investigation: Adi L. Tarca, Roberto Romero, Nandor Gabor Than, Percy Pacora, Nardhy

Gomez-Lopez, Sorin Draghici, Sonia S. Hassan, Offer Erez.

Methodology: Adi L. Tarca, Tinnakorn Chaiworapongsa.

Project administration: Adi L. Tarca, Sonia S. Hassan.

Resources: Roberto Romero.

Software: Adi L. Tarca, Sorin Draghici.

Supervision: Adi L. Tarca, Roberto Romero, Sonia S. Hassan, Offer Erez.

Validation: Adi L. Tarca.

Visualization: Adi L. Tarca.

Writing – original draft: Adi L. Tarca, Offer Erez.

Writing – review & editing: Adi L. Tarca, Roberto Romero, Neta Benshalom-Tirosh, Nandor

Gabor Than, Percy Pacora, Tinnakorn Chaiworapongsa, Bogdan Panaitescu, Dan Tirosh,

Nardhy Gomez-Lopez, Sorin Draghici, Sonia S. Hassan, Offer Erez.

The prediction of early preeclampsia: Results from a longitudinal proteomics study

PLOS ONE | https://doi.org/10.1371/journal.pone.0217273 June 4, 2019 20 / 34

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0217273.s006
https://doi.org/10.1371/journal.pone.0217273


References
1. Romero R (1996) The child is the father of the man. Prenat Neonat Med 1: 8–11.

2. Brosens I, Pijnenborg R, Vercruysse L, Romero R (2011) The "Great Obstetrical Syndromes" are

associated with disorders of deep placentation. Am J Obstet Gynecol 204: 193–201. https://doi.org/

10.1016/j.ajog.2010.08.009 PMID: 21094932

3. Romero R, Lockwood C, Oyarzun E, Hobbins JC (1988) Toxemia: new concepts in an old disease.

Semin Perinatol 12: 302–323. PMID: 3065943

4. von Dadelszen P, Magee LA, Roberts JM (2003) Subclassification of preeclampsia. Hypertens Preg-

nancy 22: 143–148. https://doi.org/10.1081/PRG-120021060 PMID: 12908998

5. Vatten LJ, Skjaerven R (2004) Is pre-eclampsia more than one disease? Bjog 111: 298–302. PMID:

15008762

6. Valensise H, Vasapollo B, Gagliardi G, Novelli GP (2008) Early and late preeclampsia: two different

maternal hemodynamic states in the latent phase of the disease. Hypertension 52: 873–880. https://

doi.org/10.1161/HYPERTENSIONAHA.108.117358 PMID: 18824660

7. Raymond D, Peterson E (2011) A critical review of early-onset and late-onset preeclampsia. Obstet

Gynecol Surv 66: 497–506. https://doi.org/10.1097/OGX.0b013e3182331028 PMID: 22018452

8. Lisonkova S, Joseph KS (2013) Incidence of preeclampsia: risk factors and outcomes associated with

early- versus late-onset disease. Am J Obstet Gynecol 209: 544.e541-544.e512.

9. Tranquilli AL, Brown MA, Zeeman GG, Dekker G, Sibai BM (2013) The definition of severe and early-

onset preeclampsia. Statements from the International Society for the Study of Hypertension in Preg-

nancy (ISSHP). Pregnancy Hypertens 3: 44–47. https://doi.org/10.1016/j.preghy.2012.11.001 PMID:

26105740

10. Verlohren S, Melchiorre K, Khalil A, Thilaganathan B (2014) Uterine artery Doppler, birth weight and

timing of onset of pre-eclampsia: providing insights into the dual etiology of late-onset pre-eclampsia.

Ultrasound Obstet Gynecol 44: 293–298. https://doi.org/10.1002/uog.13310 PMID: 24448891

11. Soto E, Romero R, Kusanovic JP, Ogge G, Hussein Y, Yeo L, et al. (2012) Late-onset preeclampsia is

associated with an imbalance of angiogenic and anti-angiogenic factors in patients with and without

placental lesions consistent with maternal underperfusion. J Matern Fetal Neonatal Med 25: 498–507.

https://doi.org/10.3109/14767058.2011.591461 PMID: 21867402

12. Parra-Cordero M, Rodrigo R, Barja P, Bosco C, Rencoret G, Sepulveda-Martinez A, et al. (2013) Pre-

diction of early and late pre-eclampsia from maternal characteristics, uterine artery Doppler and mark-

ers of vasculogenesis during first trimester of pregnancy. Ultrasound Obstet Gynecol 41: 538–544.

https://doi.org/10.1002/uog.12264 PMID: 22807133

13. Kucukgoz Gulec U, Ozgunen FT, Buyukkurt S, Guzel AB, Urunsak IF, Demir SC, et al. (2013) Compar-

ison of clinical and laboratory findings in early- and late-onset preeclampsia. J Matern Fetal Neonatal

Med 26: 1228–1233. https://doi.org/10.3109/14767058.2013.776533 PMID: 23413799

14. Lisonkova S, Sabr Y, Mayer C, Young C, Skoll A, Joseph KS (2014) Maternal morbidity associated

with early-onset and late-onset preeclampsia. Obstet Gynecol 124: 771–781. https://doi.org/10.1097/

AOG.0000000000000472 PMID: 25198279

15. Veerbeek JH, Hermes W, Breimer AY, van Rijn BB, Koenen SV, Mol BW, et al. (2015) Cardiovascular

disease risk factors after early-onset preeclampsia, late-onset preeclampsia, and pregnancy-induced

hypertension. Hypertension 65: 600–606. https://doi.org/10.1161/HYPERTENSIONAHA.114.04850

PMID: 25561694

16. Bokslag A, Teunissen PW, Franssen C, van Kesteren F, Kamp O, Ganzevoort W, et al. (2017) Effect

of early-onset preeclampsia on cardiovascular risk in the fifth decade of life. Am J Obstet Gynecol

216: 523.e521-523.e527.

17. Christensen M, Kronborg CS, Carlsen RK, Eldrup N, Knudsen UB (2017) Early gestational age at pre-

eclampsia onset is associated with subclinical atherosclerosis 12 years after delivery. Acta Obstet

Gynecol Scand 96: 1084–1092. https://doi.org/10.1111/aogs.13173 PMID: 28542803

18. Jelin AC, Cheng YW, Shaffer BL, Kaimal AJ, Little SE, Caughey AB (2010) Early-onset preeclampsia

and neonatal outcomes. J Matern Fetal Neonatal Med 23: 389–392. https://doi.org/10.1080/

14767050903168416 PMID: 19670045

19. Kovo M, Schreiber L, Ben-Haroush A, Gold E, Golan A, Bar J (2012) The placental component in

early-onset and late-onset preeclampsia in relation to fetal growth restriction. Prenat Diagn 32: 632–

637. https://doi.org/10.1002/pd.3872 PMID: 22565848

20. Stubert J, Ullmann S, Dieterich M, Diedrich D, Reimer T (2014) Clinical differences between early- and

late-onset severe preeclampsia and analysis of predictors for perinatal outcome. J Perinat Med 42:

617–627. https://doi.org/10.1515/jpm-2013-0285 PMID: 24778345

The prediction of early preeclampsia: Results from a longitudinal proteomics study

PLOS ONE | https://doi.org/10.1371/journal.pone.0217273 June 4, 2019 21 / 34

https://doi.org/10.1016/j.ajog.2010.08.009
https://doi.org/10.1016/j.ajog.2010.08.009
http://www.ncbi.nlm.nih.gov/pubmed/21094932
http://www.ncbi.nlm.nih.gov/pubmed/3065943
https://doi.org/10.1081/PRG-120021060
http://www.ncbi.nlm.nih.gov/pubmed/12908998
http://www.ncbi.nlm.nih.gov/pubmed/15008762
https://doi.org/10.1161/HYPERTENSIONAHA.108.117358
https://doi.org/10.1161/HYPERTENSIONAHA.108.117358
http://www.ncbi.nlm.nih.gov/pubmed/18824660
https://doi.org/10.1097/OGX.0b013e3182331028
http://www.ncbi.nlm.nih.gov/pubmed/22018452
https://doi.org/10.1016/j.preghy.2012.11.001
http://www.ncbi.nlm.nih.gov/pubmed/26105740
https://doi.org/10.1002/uog.13310
http://www.ncbi.nlm.nih.gov/pubmed/24448891
https://doi.org/10.3109/14767058.2011.591461
http://www.ncbi.nlm.nih.gov/pubmed/21867402
https://doi.org/10.1002/uog.12264
http://www.ncbi.nlm.nih.gov/pubmed/22807133
https://doi.org/10.3109/14767058.2013.776533
http://www.ncbi.nlm.nih.gov/pubmed/23413799
https://doi.org/10.1097/AOG.0000000000000472
https://doi.org/10.1097/AOG.0000000000000472
http://www.ncbi.nlm.nih.gov/pubmed/25198279
https://doi.org/10.1161/HYPERTENSIONAHA.114.04850
http://www.ncbi.nlm.nih.gov/pubmed/25561694
https://doi.org/10.1111/aogs.13173
http://www.ncbi.nlm.nih.gov/pubmed/28542803
https://doi.org/10.1080/14767050903168416
https://doi.org/10.1080/14767050903168416
http://www.ncbi.nlm.nih.gov/pubmed/19670045
https://doi.org/10.1002/pd.3872
http://www.ncbi.nlm.nih.gov/pubmed/22565848
https://doi.org/10.1515/jpm-2013-0285
http://www.ncbi.nlm.nih.gov/pubmed/24778345
https://doi.org/10.1371/journal.pone.0217273


21. Madazli R, Yuksel MA, Imamoglu M, Tuten A, Oncul M, Aydin B, et al. (2014) Comparison of clinical

and perinatal outcomes in early- and late-onset preeclampsia. Arch Gynecol Obstet 290: 53–57.

https://doi.org/10.1007/s00404-014-3176-x PMID: 24549271

22. Khodzhaeva ZS, Kogan YA, Shmakov RG, Klimenchenko NI, Akatyeva AS, Vavina OV, et al. (2016)

Clinical and pathogenetic features of early- and late-onset pre-eclampsia. J Matern Fetal Neonatal

Med 29: 2980–2986. https://doi.org/10.3109/14767058.2015.1111332 PMID: 26527472

23. Mor O, Stavsky M, Yitshak-Sade M, Mastrolia SA, Beer-Weisel R, Rafaeli-Yehudai T, et al. (2016)

Early onset preeclampsia and cerebral palsy: a double hit model? Am J Obstet Gynecol 214: 105.

e101-109.

24. Iacobelli S, Bonsante F, Robillard PY (2017) Comparison of risk factors and perinatal outcomes in

early onset and late onset preeclampsia: A cohort based study in Reunion Island. J Reprod Immunol

123: 12–16. https://doi.org/10.1016/j.jri.2017.08.005 PMID: 28858635

25. Moldenhauer JS, Stanek J, Warshak C, Khoury J, Sibai B (2003) The frequency and severity of pla-

cental findings in women with preeclampsia are gestational age dependent. Am J Obstet Gynecol

189: 1173–1177. PMID: 14586374

26. van der Merwe JL, Hall DR, Wright C, Schubert P, Grove D (2010) Are early and late preeclampsia dis-

tinct subclasses of the disease—what does the placenta reveal? Hypertens Pregnancy 29: 457–467.

https://doi.org/10.3109/10641950903572282 PMID: 20701467

27. Sebire NJ, Goldin RD, Regan L (2005) Term preeclampsia is associated with minimal histopatholog-

ical placental features regardless of clinical severity. J Obstet Gynaecol 25: 117–118. https://doi.org/

10.1080/014436105400041396 PMID: 15814385

28. Ogge G, Chaiworapongsa T, Romero R, Hussein Y, Kusanovic JP, Yeo L, et al. (2011) Placental

lesions associated with maternal underperfusion are more frequent in early-onset than in late-onset

preeclampsia. J Perinat Med 39: 641–652. https://doi.org/10.1515/JPM.2011.098 PMID: 21848483

29. Redman CW, Sargent IL, Staff AC (2014) IFPA Senior Award Lecture: making sense of pre-eclampsia

—two placental causes of preeclampsia? Placenta 35 Suppl: S20–25.

30. Nelson DB, Ziadie MS, McIntire DD, Rogers BB, Leveno KJ (2014) Placental pathology suggesting

that preeclampsia is more than one disease. Am J Obstet Gynecol 210: 66.e61-67.

31. Maynard SE, Min JY, Merchan J, Lim KH, Li J, Mondal S, et al. (2003) Excess placental soluble fms-

like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria

in preeclampsia. J Clin Invest 111: 649–658. https://doi.org/10.1172/JCI17189 PMID: 12618519

32. Lindheimer MD, Romero R (2007) Emerging roles of antiangiogenic and angiogenic proteins in patho-

genesis and prediction of preeclampsia. Hypertension 50: 35–36. https://doi.org/10.1161/

HYPERTENSIONAHA.107.089045 PMID: 17515451

33. Vatten LJ, Eskild A, Nilsen TI, Jeansson S, Jenum PA, Staff AC (2007) Changes in circulating level of

angiogenic factors from the first to second trimester as predictors of preeclampsia. Am J Obstet Gyne-

col 196: 239.e231-236.

34. Erez O, Romero R, Espinoza J, Fu W, Todem D, Kusanovic JP, et al. (2008) The change in concentra-

tions of angiogenic and anti-angiogenic factors in maternal plasma between the first and second tri-

mesters in risk assessment for the subsequent development of preeclampsia and small-for-

gestational age. J Matern Fetal Neonatal Med 21: 279–287. https://doi.org/10.1080/

14767050802034545 PMID: 18446652

35. Romero R, Nien JK, Espinoza J, Todem D, Fu W, Chung H, et al. (2008) A longitudinal study of angio-

genic (placental growth factor) and anti-angiogenic (soluble endoglin and soluble vascular endothelial

growth factor receptor-1) factors in normal pregnancy and patients destined to develop preeclampsia

and deliver a small for gestational age neonate. J Matern Fetal Neonatal Med 21: 9–23. https://doi.

org/10.1080/14767050701830480 PMID: 18175241

36. Gotsch F, Romero R, Kusanovic JP, Chaiworapongsa T, Dombrowski M, Erez O, et al. (2008) Pre-

eclampsia and small-for-gestational age are associated with decreased concentrations of a factor

involved in angiogenesis: soluble Tie-2. J Matern Fetal Neonatal Med 21: 389–402. https://doi.org/10.

1080/14767050802046069 PMID: 18570117

37. Vaisbuch E, Whitty JE, Hassan SS, Romero R, Kusanovic JP, Cotton DB, et al. (2011) Circulating

angiogenic and antiangiogenic factors in women with eclampsia. Am J Obstet Gynecol 204: 152.

e151-159.

38. Bujold E, Roberge S, Lacasse Y, Bureau M, Audibert F, Marcoux S, et al. (2010) Prevention of pre-

eclampsia and intrauterine growth restriction with aspirin started in early pregnancy: a meta-analysis.

Obstet Gynecol 116: 402–414. https://doi.org/10.1097/AOG.0b013e3181e9322a PMID: 20664402

39. Baschat AA (2015) First-trimester screening for pre-eclampsia: moving from personalized risk predic-

tion to prevention. Ultrasound Obstet Gynecol 45: 119–129. https://doi.org/10.1002/uog.14770 PMID:

25627093

The prediction of early preeclampsia: Results from a longitudinal proteomics study

PLOS ONE | https://doi.org/10.1371/journal.pone.0217273 June 4, 2019 22 / 34

https://doi.org/10.1007/s00404-014-3176-x
http://www.ncbi.nlm.nih.gov/pubmed/24549271
https://doi.org/10.3109/14767058.2015.1111332
http://www.ncbi.nlm.nih.gov/pubmed/26527472
https://doi.org/10.1016/j.jri.2017.08.005
http://www.ncbi.nlm.nih.gov/pubmed/28858635
http://www.ncbi.nlm.nih.gov/pubmed/14586374
https://doi.org/10.3109/10641950903572282
http://www.ncbi.nlm.nih.gov/pubmed/20701467
https://doi.org/10.1080/014436105400041396
https://doi.org/10.1080/014436105400041396
http://www.ncbi.nlm.nih.gov/pubmed/15814385
https://doi.org/10.1515/JPM.2011.098
http://www.ncbi.nlm.nih.gov/pubmed/21848483
https://doi.org/10.1172/JCI17189
http://www.ncbi.nlm.nih.gov/pubmed/12618519
https://doi.org/10.1161/HYPERTENSIONAHA.107.089045
https://doi.org/10.1161/HYPERTENSIONAHA.107.089045
http://www.ncbi.nlm.nih.gov/pubmed/17515451
https://doi.org/10.1080/14767050802034545
https://doi.org/10.1080/14767050802034545
http://www.ncbi.nlm.nih.gov/pubmed/18446652
https://doi.org/10.1080/14767050701830480
https://doi.org/10.1080/14767050701830480
http://www.ncbi.nlm.nih.gov/pubmed/18175241
https://doi.org/10.1080/14767050802046069
https://doi.org/10.1080/14767050802046069
http://www.ncbi.nlm.nih.gov/pubmed/18570117
https://doi.org/10.1097/AOG.0b013e3181e9322a
http://www.ncbi.nlm.nih.gov/pubmed/20664402
https://doi.org/10.1002/uog.14770
http://www.ncbi.nlm.nih.gov/pubmed/25627093
https://doi.org/10.1371/journal.pone.0217273


40. Rolnik DL, Wright D, Poon LC, O’Gorman N, Syngelaki A, de Paco Matallana C, et al. (2017) Aspirin

versus Placebo in Pregnancies at High Risk for Preterm Preeclampsia. N Engl J Med 377: 613–622.

https://doi.org/10.1056/NEJMoa1704559 PMID: 28657417

41. Groom KM, David AL (2018) The role of aspirin, heparin, and other interventions in the prevention and

treatment of fetal growth restriction. Am J Obstet Gynecol 218: S829–s840. https://doi.org/10.1016/j.

ajog.2017.11.565 PMID: 29229321

42. Stampalija T, Chaiworapongsa T, Romero R, Chaemsaithong P, Korzeniewski SJ, Schwartz AG, et al.

(2013) Maternal plasma concentrations of sST2 and angiogenic/anti-angiogenic factors in preeclamp-

sia. J Matern Fetal Neonatal Med 26: 1359–1370. https://doi.org/10.3109/14767058.2013.784256

PMID: 23488689

43. Baschat AA, Magder LS, Doyle LE, Atlas RO, Jenkins CB, Blitzer MG (2014) Prediction of preeclamp-

sia utilizing the first trimester screening examination. Am J Obstet Gynecol 211: 514.e511-517.

44. Gallo DM, Wright D, Casanova C, Campanero M, Nicolaides KH (2016) Competing risks model in

screening for preeclampsia by maternal factors and biomarkers at 19–24 weeks’ gestation. Am J

Obstet Gynecol 214: 619 e611-619 e617.

45. Tsiakkas A, Saiid Y, Wright A, Wright D, Nicolaides KH (2016) Competing risks model in screening for

preeclampsia by maternal factors and biomarkers at 30–34 weeks’ gestation. Am J Obstet Gynecol

215: 87 e81-87 e17.

46. Romero R, Chaemsaithong P, Tarca AL, Korzeniewski SJ, Maymon E, Pacora P, et al. (2017) Mater-

nal plasma-soluble ST2 concentrations are elevated prior to the development of early and late onset

preeclampsia—a longitudinal study. J Matern Fetal Neonatal Med: 1–15.

47. Akolekar R, Syngelaki A, Poon L, Wright D, Nicolaides KH (2013) Competing risks model in early

screening for preeclampsia by biophysical and biochemical markers. Fetal Diagn Ther 33: 8–15.

https://doi.org/10.1159/000341264 PMID: 22906914

48. Myers JE, Kenny LC, McCowan LM, Chan EH, Dekker GA, Poston L, et al. (2013) Angiogenic factors

combined with clinical risk factors to predict preterm pre-eclampsia in nulliparous women: a predictive

test accuracy study. Bjog 120: 1215–1223. https://doi.org/10.1111/1471-0528.12195 PMID:

23906160

49. O’Gorman N, Wright D, Syngelaki A, Akolekar R, Wright A, Poon LC, et al. (2016) Competing risks

model in screening for preeclampsia by maternal factors and biomarkers at 11–13 weeks gestation.

Am J Obstet Gynecol 214: 103.e101-103.e112.

50. Crovetto F, Figueras F, Triunfo S, Crispi F, Rodriguez-Sureda V, Dominguez C, et al. (2015) First tri-

mester screening for early and late preeclampsia based on maternal characteristics, biophysical

parameters, and angiogenic factors. Prenat Diagn 35: 183–191. https://doi.org/10.1002/pd.4519

51. Espinoza J, Romero R, Nien JK, Gomez R, Kusanovic JP, Goncalves LF, et al. (2007) Identification of

patients at risk for early onset and/or severe preeclampsia with the use of uterine artery Doppler veloci-

metry and placental growth factor. Am J Obstet Gynecol 196: 326.e321-313.

52. Crispi F, Llurba E, Dominguez C, Martin-Gallan P, Cabero L, Gratacos E (2008) Predictive value of

angiogenic factors and uterine artery Doppler for early- versus late-onset pre-eclampsia and intrauter-

ine growth restriction. Ultrasound Obstet Gynecol 31: 303–309. https://doi.org/10.1002/uog.5184

PMID: 18058842

53. Melchiorre K, Wormald B, Leslie K, Bhide A, Thilaganathan B (2008) First-trimester uterine artery

Doppler indices in term and preterm pre-eclampsia. Ultrasound Obstet Gynecol 32: 133–137. https://

doi.org/10.1002/uog.5400 PMID: 18615872

54. Llurba E, Carreras E, Gratacos E, Juan M, Astor J, Vives A, et al. (2009) Maternal history and uterine

artery Doppler in the assessment of risk for development of early- and late-onset preeclampsia and

intrauterine growth restriction. Obstet Gynecol Int 2009: 275613. https://doi.org/10.1155/2009/275613

PMID: 19936122

55. Poon LC, Staboulidou I, Maiz N, Plasencia W, Nicolaides KH (2009) Hypertensive disorders in preg-

nancy: screening by uterine artery Doppler at 11–13 weeks. Ultrasound Obstet Gynecol 34: 142–148.

https://doi.org/10.1002/uog.6452 PMID: 19644947

56. Audibert F, Boucoiran I, An N, Aleksandrov N, Delvin E, Bujold E, et al. (2010) Screening for pre-

eclampsia using first-trimester serum markers and uterine artery Doppler in nulliparous women. Am J

Obstet Gynecol 203: 383.e381-388.

57. Ventura W, De Paco Matallana C, Prieto-Sanchez MT, Macizo MI, Pertegal M, Nieto A, et al. (2015)

Uterine and umbilical artery Doppler at 28 weeks for predicting adverse pregnancy outcomes in

women with abnormal uterine artery Doppler findings in the early second trimester. Prenat Diagn 35:

294–298. https://doi.org/10.1002/pd.4542 PMID: 25483940

58. (2002) ACOG practice bulletin. Diagnosis and management of preeclampsia and eclampsia. Number

33, January 2002. Obstet Gynecol 99: 159–167. PMID: 16175681

The prediction of early preeclampsia: Results from a longitudinal proteomics study

PLOS ONE | https://doi.org/10.1371/journal.pone.0217273 June 4, 2019 23 / 34

https://doi.org/10.1056/NEJMoa1704559
http://www.ncbi.nlm.nih.gov/pubmed/28657417
https://doi.org/10.1016/j.ajog.2017.11.565
https://doi.org/10.1016/j.ajog.2017.11.565
http://www.ncbi.nlm.nih.gov/pubmed/29229321
https://doi.org/10.3109/14767058.2013.784256
http://www.ncbi.nlm.nih.gov/pubmed/23488689
https://doi.org/10.1159/000341264
http://www.ncbi.nlm.nih.gov/pubmed/22906914
https://doi.org/10.1111/1471-0528.12195
http://www.ncbi.nlm.nih.gov/pubmed/23906160
https://doi.org/10.1002/pd.4519
https://doi.org/10.1002/uog.5184
http://www.ncbi.nlm.nih.gov/pubmed/18058842
https://doi.org/10.1002/uog.5400
https://doi.org/10.1002/uog.5400
http://www.ncbi.nlm.nih.gov/pubmed/18615872
https://doi.org/10.1155/2009/275613
http://www.ncbi.nlm.nih.gov/pubmed/19936122
https://doi.org/10.1002/uog.6452
http://www.ncbi.nlm.nih.gov/pubmed/19644947
https://doi.org/10.1002/pd.4542
http://www.ncbi.nlm.nih.gov/pubmed/25483940
http://www.ncbi.nlm.nih.gov/pubmed/16175681
https://doi.org/10.1371/journal.pone.0217273


59. Chaiworapongsa T, Chaemsaithong P, Yeo L, Romero R (2014) Pre-eclampsia part 1: current under-

standing of its pathophysiology. Nat Rev Nephrol 10: 466–480. https://doi.org/10.1038/nrneph.2014.

102 PMID: 25003615

60. Romero R, Kim YM, Pacora P, Kim CJ, Benshalom-Tirosh N, Jaiman S, et al. (2018) The frequency

and type of placental histologic lesions in term pregnancies with normal outcome. J Perinat Med 46:

613–630. https://doi.org/10.1515/jpm-2018-0055 PMID: 30044764

61. Redline RW, Heller D, Keating S, Kingdom J (2005) Placental diagnostic criteria and clinical correla-

tion—a workshop report. Placenta 26 Suppl A: S114–117.

62. Khong TY, Mooney EE, Ariel I, Balmus NC, Boyd TK, Brundler MA, et al. (2016) Sampling and Defini-

tions of Placental Lesions: Amsterdam Placental Workshop Group Consensus Statement. Arch Pathol

Lab Med 140: 698–713. https://doi.org/10.5858/arpa.2015-0225-CC PMID: 27223167

63. Korzeniewski SJ, Romero R, Chaiworapongsa T, Chaemsaithong P, Kim CJ, Kim YM, et al. (2016)

Maternal plasma angiogenic index-1 (placental growth factor/soluble vascular endothelial growth fac-

tor receptor-1) is a biomarker for the burden of placental lesions consistent with uteroplacental under-

perfusion: a longitudinal case-cohort study. Am J Obstet Gynecol 214: 629.e621-629.e617.

64. Gold L, Ayers D, Bertino J, Bock C, Bock A, Brody EN, et al. (2010) Aptamer-based multiplexed prote-

omic technology for biomarker discovery. PLoS One 5: e15004. https://doi.org/10.1371/journal.pone.

0015004 PMID: 21165148

65. Davies DR, Gelinas AD, Zhang C, Rohloff JC, Carter JD, O’Connell D, et al. (2012) Unique motifs and

hydrophobic interactions shape the binding of modified DNA ligands to protein targets. Proc Natl Acad

Sci U S A 109: 19971–19976. https://doi.org/10.1073/pnas.1213933109 PMID: 23139410

66. Bates D, Maechler M, Bolker B, Walker S (2014) lme4: Linear mixed-effects models using Eigen and

S4. http://arxivorg/abs/14065823

67. Tarca AL, Than N. G., Romero R. (2013) Methodological approach from the Best Overall Team in the

sbv IMPROVER Diagnostic Signature Challenge. Systems Biomedicine 1: 217–227.

68. Tarca AL, Lauria M, Unger M, Bilal E, Boue S, Kumar Dey K, et al. (2013) Strengths and limitations of

microarray-based phenotype prediction: lessons learned from the IMPROVER Diagnostic Signature

Challenge. Bioinformatics 29: 2892–2899. https://doi.org/10.1093/bioinformatics/btt492 PMID:

23966112

69. Dayarian A, Romero R, Wang Z, Biehl M, Bilal E, Hormoz S, et al. (2014) Predicting protein phosphory-

lation from gene expression: top methods from the IMPROVER Species Translation Challenge. Bioin-

formatics: 462–470. https://doi.org/10.1093/bioinformatics/btu490 PMID: 25061067

70. Smyth GK (2012) Limma: linear models for microarray data. In: Gentleman R, Carey VJ, Huber W, Iri-

zarry RA, Dudoit S, editors. Bioinformatics and Computational Biology Solutions Using R and Biocon-

ductor: Springer. pp. 397–420.

71. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, et al. (2004) Bioconductor: open

software development for computational biology and bioinformatics. Genome Biol 5: R80. https://doi.

org/10.1186/gb-2004-5-10-r80 PMID: 15461798

72. Erez O, Romero R, Maymon E, Chaemsaithong P, Done B, Pacora P, et al. (2017) The prediction of

late-onset preeclampsia: Results from a longitudinal proteomics study. PLoS One 12: e0181468.

https://doi.org/10.1371/journal.pone.0181468 PMID: 28738067

73. Maglott D, Ostell J, Pruitt KD, Tatusova T (2005) Entrez Gene: gene-centered information at NCBI.

Nucleic Acids Res 33: D54–58. https://doi.org/10.1093/nar/gki031 PMID: 15608257

74. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. (2000) Gene ontology: tool for

the unification of biology. The Gene Ontology Consortium. Nat Genet 25: 25–29. https://doi.org/10.

1038/75556 PMID: 10802651

75. Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M (1999) KEGG: Kyoto Encyclopedia of

Genes and Genomes. Nucleic Acids Res 27: 29–34. https://doi.org/10.1093/nar/27.1.29 PMID:

9847135

76. Draghici S, Khatri P, Tarca AL, Amin K, Done A, Voichita C, et al. (2007) A systems biology approach

for pathway level analysis. Genome Res 17: 1537–1545. https://doi.org/10.1101/gr.6202607 PMID:

17785539

77. Tarca AL, Draghici S, Khatri P, Hassan SS, Mittal P, Kim JS, et al. (2009) A novel signaling pathway

impact analysis. Bioinformatics 25: 75–82. https://doi.org/10.1093/bioinformatics/btn577 PMID:

18990722

78. Bobrow CS, Holmes RP, Muttukrishna S, Mohan A, Groome N, Murphy DJ, et al. (2002) Maternal

serum activin A, inhibin A, and follistatin in pregnancies with appropriately grown and small-for-gesta-

tional-age fetuses classified by umbilical artery Doppler ultrasound. Am J Obstet Gynecol 186: 283–

287. PMID: 11854651

The prediction of early preeclampsia: Results from a longitudinal proteomics study

PLOS ONE | https://doi.org/10.1371/journal.pone.0217273 June 4, 2019 24 / 34

https://doi.org/10.1038/nrneph.2014.102
https://doi.org/10.1038/nrneph.2014.102
http://www.ncbi.nlm.nih.gov/pubmed/25003615
https://doi.org/10.1515/jpm-2018-0055
http://www.ncbi.nlm.nih.gov/pubmed/30044764
https://doi.org/10.5858/arpa.2015-0225-CC
http://www.ncbi.nlm.nih.gov/pubmed/27223167
https://doi.org/10.1371/journal.pone.0015004
https://doi.org/10.1371/journal.pone.0015004
http://www.ncbi.nlm.nih.gov/pubmed/21165148
https://doi.org/10.1073/pnas.1213933109
http://www.ncbi.nlm.nih.gov/pubmed/23139410
http://arxivorg/abs/14065823
https://doi.org/10.1093/bioinformatics/btt492
http://www.ncbi.nlm.nih.gov/pubmed/23966112
https://doi.org/10.1093/bioinformatics/btu490
http://www.ncbi.nlm.nih.gov/pubmed/25061067
https://doi.org/10.1186/gb-2004-5-10-r80
https://doi.org/10.1186/gb-2004-5-10-r80
http://www.ncbi.nlm.nih.gov/pubmed/15461798
https://doi.org/10.1371/journal.pone.0181468
http://www.ncbi.nlm.nih.gov/pubmed/28738067
https://doi.org/10.1093/nar/gki031
http://www.ncbi.nlm.nih.gov/pubmed/15608257
https://doi.org/10.1038/75556
https://doi.org/10.1038/75556
http://www.ncbi.nlm.nih.gov/pubmed/10802651
https://doi.org/10.1093/nar/27.1.29
http://www.ncbi.nlm.nih.gov/pubmed/9847135
https://doi.org/10.1101/gr.6202607
http://www.ncbi.nlm.nih.gov/pubmed/17785539
https://doi.org/10.1093/bioinformatics/btn577
http://www.ncbi.nlm.nih.gov/pubmed/18990722
http://www.ncbi.nlm.nih.gov/pubmed/11854651
https://doi.org/10.1371/journal.pone.0217273


79. Melchiorre K, Leslie K, Prefumo F, Bhide A, Thilaganathan B (2009) First-trimester uterine artery

Doppler indices in the prediction of small-for-gestational age pregnancy and intrauterine growth restric-

tion. Ultrasound Obstet Gynecol 33: 524–529. https://doi.org/10.1002/uog.6368 PMID: 19382287

80. Karagiannis G, Akolekar R, Sarquis R, Wright D, Nicolaides KH (2011) Prediction of small-for-gesta-

tion neonates from biophysical and biochemical markers at 11–13 weeks. Fetal Diagn Ther 29: 148–

154. https://doi.org/10.1159/000321694 PMID: 21079385

81. Crovetto F, Triunfo S, Crispi F, Rodriguez-Sureda V, Roma E, Dominguez C, et al. (2016) First-trimes-

ter screening with specific algorithms for early- and late-onset fetal growth restriction. Ultrasound

Obstet Gynecol 48: 340–348. https://doi.org/10.1002/uog.15879 PMID: 26846589

82. Parry S, Sciscione A, Haas DM, Grobman WA, Iams JD, Mercer BM, et al. (2017) Role of early sec-

ond-trimester uterine artery Doppler screening to predict small-for-gestational-age babies in nullipa-

rous women. Am J Obstet Gynecol: 30749–30744.

83. Spencer K, Cowans NJ, Molina F, Kagan KO, Nicolaides KH (2008) First-trimester ultrasound and bio-

chemical markers of aneuploidy and the prediction of preterm or early preterm delivery. Ultrasound

Obstet Gynecol 31: 147–152. https://doi.org/10.1002/uog.5163 PMID: 17992705

84. Antsaklis P, Daskalakis G, Pilalis A, Papantoniou N, Mesogitis S, Antsaklis A (2011) The role of cervi-

cal length measurement at 11–14 weeks for the prediction of preterm delivery. J Matern Fetal Neonatal

Med 24: 465–470. https://doi.org/10.3109/14767058.2010.501124 PMID: 20608797

85. Bakalis SP, Poon LC, Vayna AM, Pafilis I, Nicolaides KH (2012) C-reactive protein at 11–13 weeks’

gestation in spontaneous early preterm delivery. J Matern Fetal Neonatal Med 25: 2475–2478. https://

doi.org/10.3109/14767058.2012.717127 PMID: 22900797

86. Gervasi MT, Romero R, Bracalente G, Erez O, Dong Z, Hassan SS, et al. (2012) Midtrimester amniotic

fluid concentrations of interleukin-6 and interferon-gamma-inducible protein-10: evidence for heteroge-

neity of intra-amniotic inflammation and associations with spontaneous early (<32 weeks) and late

(>32 weeks) preterm delivery. J Perinat Med 40: 329–343. https://doi.org/10.1515/jpm-2012-0034

PMID: 22752762

87. Greco E, Gupta R, Syngelaki A, Poon LC, Nicolaides KH (2012) First-trimester screening for sponta-

neous preterm delivery with maternal characteristics and cervical length. Fetal Diagn Ther 31: 154–

161. https://doi.org/10.1159/000335686 PMID: 22399065

88. Goetzinger KR, Cahill AG, Kemna J, Odibo L, Macones GA, Odibo AO (2012) First-trimester prediction

of preterm birth using ADAM12, PAPP-A, uterine artery Doppler, and maternal characteristics. Prenat

Diagn 32: 1002–1007. https://doi.org/10.1002/pd.3949 PMID: 22847849

89. Stout MJ, Goetzinger KR, Tuuli MG, Cahill AG, Macones GA, Odibo AO (2013) First trimester serum

analytes, maternal characteristics and ultrasound markers to predict pregnancies at risk for preterm

birth. Placenta 34: 14–19. https://doi.org/10.1016/j.placenta.2012.10.013 PMID: 23199792

90. Conde-Agudelo A, Romero R (2014) Prediction of preterm birth in twin gestations using biophysical

and biochemical tests. Am J Obstet Gynecol 211: 583–595. https://doi.org/10.1016/j.ajog.2014.07.

047 PMID: 25072736

91. Parra-Cordero M, Sepulveda-Martinez A, Rencoret G, Valdes E, Pedraza D, Munoz H (2014) Is there

a role for cervical assessment and uterine artery Doppler in the first trimester of pregnancy as a

screening test for spontaneous preterm delivery? Ultrasound Obstet Gynecol 43: 291–296. https://

doi.org/10.1002/uog.12465 PMID: 23526790

92. Ekin A, Gezer C, Kulhan G, Avci ME, Taner CE (2015) Can platelet count and mean platelet volume

during the first trimester of pregnancy predict preterm premature rupture of membranes? J Obstet

Gynaecol Res 41: 23–28. https://doi.org/10.1111/jog.12484 PMID: 25130327

93. Quezada MS, Francisco C, Dumitrascu-Biris D, Nicolaides KH, Poon LC (2015) Fetal fraction of cell-

free DNA in maternal plasma in the prediction of spontaneous preterm delivery. Ultrasound Obstet

Gynecol 45: 101–105. https://doi.org/10.1002/uog.14666 PMID: 25251634

94. Kim SM, Romero R, Lee J, Chaemsaithong P, Lee MW, Chaiyasit N, et al. (2016) About one-half of

early spontaneous preterm deliveries can be identified by a rapid matrix metalloproteinase-8 (MMP-8)

bedside test at the time of mid-trimester genetic amniocentesis. J Matern Fetal Neonatal Med 29:

2414–2422. https://doi.org/10.3109/14767058.2015.1094049 PMID: 26643648

95. Chaiworapongsa T, Romero R, Korzeniewski SJ, Kusanovic JP, Soto E, Lam J, et al. (2013) Maternal

plasma concentrations of angiogenic/antiangiogenic factors in the third trimester of pregnancy to iden-

tify the patient at risk for stillbirth at or near term and severe late preeclampsia. Am J Obstet Gynecol

208: 287.e281-287.e215.

96. Conde-Agudelo A, Bird S, Kennedy SH, Villar J, Papageorghiou AT (2015) First- and second-trimester

tests to predict stillbirth in unselected pregnant women: a systematic review and meta-analysis. Bjog

122: 41–55. https://doi.org/10.1111/1471-0528.13096 PMID: 25236870

The prediction of early preeclampsia: Results from a longitudinal proteomics study

PLOS ONE | https://doi.org/10.1371/journal.pone.0217273 June 4, 2019 25 / 34

https://doi.org/10.1002/uog.6368
http://www.ncbi.nlm.nih.gov/pubmed/19382287
https://doi.org/10.1159/000321694
http://www.ncbi.nlm.nih.gov/pubmed/21079385
https://doi.org/10.1002/uog.15879
http://www.ncbi.nlm.nih.gov/pubmed/26846589
https://doi.org/10.1002/uog.5163
http://www.ncbi.nlm.nih.gov/pubmed/17992705
https://doi.org/10.3109/14767058.2010.501124
http://www.ncbi.nlm.nih.gov/pubmed/20608797
https://doi.org/10.3109/14767058.2012.717127
https://doi.org/10.3109/14767058.2012.717127
http://www.ncbi.nlm.nih.gov/pubmed/22900797
https://doi.org/10.1515/jpm-2012-0034
http://www.ncbi.nlm.nih.gov/pubmed/22752762
https://doi.org/10.1159/000335686
http://www.ncbi.nlm.nih.gov/pubmed/22399065
https://doi.org/10.1002/pd.3949
http://www.ncbi.nlm.nih.gov/pubmed/22847849
https://doi.org/10.1016/j.placenta.2012.10.013
http://www.ncbi.nlm.nih.gov/pubmed/23199792
https://doi.org/10.1016/j.ajog.2014.07.047
https://doi.org/10.1016/j.ajog.2014.07.047
http://www.ncbi.nlm.nih.gov/pubmed/25072736
https://doi.org/10.1002/uog.12465
https://doi.org/10.1002/uog.12465
http://www.ncbi.nlm.nih.gov/pubmed/23526790
https://doi.org/10.1111/jog.12484
http://www.ncbi.nlm.nih.gov/pubmed/25130327
https://doi.org/10.1002/uog.14666
http://www.ncbi.nlm.nih.gov/pubmed/25251634
https://doi.org/10.3109/14767058.2015.1094049
http://www.ncbi.nlm.nih.gov/pubmed/26643648
https://doi.org/10.1111/1471-0528.13096
http://www.ncbi.nlm.nih.gov/pubmed/25236870
https://doi.org/10.1371/journal.pone.0217273


97. Akolekar R, Machuca M, Mendes M, Paschos V, Nicolaides KH (2016) Prediction of stillbirth from pla-

cental growth factor at 11–13 weeks. Ultrasound Obstet Gynecol 48: 618–623. https://doi.org/10.

1002/uog.17288 PMID: 27854388

98. Aupont JE, Akolekar R, Illian A, Neonakis S, Nicolaides KH (2016) Prediction of stillbirth from placental

growth factor at 19–24 weeks. Ultrasound Obstet Gynecol 48: 631–635. https://doi.org/10.1002/uog.

17229 PMID: 27854395

99. Familiari A, Scala C, Morlando M, Bhide A, Khalil A, Thilaganathan B (2016) Mid-pregnancy fetal

growth, uteroplacental Doppler indices and maternal demographic characteristics: role in prediction of

stillbirth. Acta Obstet Gynecol Scand 95: 1313–1318. https://doi.org/10.1111/aogs.13012 PMID:

27588413

100. Akolekar R, Tokunaka M, Ortega N, Syngelaki A, Nicolaides KH (2016) Prediction of stillbirth from

maternal factors, fetal biometry and uterine artery Doppler at 19–24 weeks. Ultrasound Obstet Gyne-

col 48: 624–630. https://doi.org/10.1002/uog.17295 PMID: 27854387

101. Kayode GA, Grobbee DE, Amoakoh-Coleman M, Adeleke IT, Ansah E, de Groot JA, et al. (2016) Pre-

dicting stillbirth in a low resource setting. BMC Pregnancy Childbirth 16: 274. https://doi.org/10.1186/

s12884-016-1061-2 PMID: 27649795

102. Khalil A, Morales-Rosello J, Townsend R, Morlando M, Papageorghiou A, Bhide A, et al. (2016) Value

of third-trimester cerebroplacental ratio and uterine artery Doppler indices as predictors of stillbirth and

perinatal loss. Ultrasound Obstet Gynecol 47: 74–80. https://doi.org/10.1002/uog.15729 PMID:

26327300

103. Mastrodima S, Akolekar R, Yerlikaya G, Tzelepis T, Nicolaides KH (2016) Prediction of stillbirth from

biochemical and biophysical markers at 11–13 weeks. Ultrasound Obstet Gynecol 48: 613–617.

https://doi.org/10.1002/uog.17289 PMID: 27561595

104. Yerlikaya G, Akolekar R, McPherson K, Syngelaki A, Nicolaides KH (2016) Prediction of stillbirth from

maternal demographic and pregnancy characteristics. Ultrasound Obstet Gynecol 48: 607–612.

https://doi.org/10.1002/uog.17290 PMID: 27561693

105. Trudell AS, Tuuli MG, Colditz GA, Macones GA, Odibo AO (2017) A stillbirth calculator: Development

and internal validation of a clinical prediction model to quantify stillbirth risk. PLoS One 12: e0173461.

https://doi.org/10.1371/journal.pone.0173461 PMID: 28267756

106. Madazli R, Kuseyrioglu B, Uzun H, Uludag S, Ocak V (2005) Prediction of preeclampsia with maternal

mid-trimester placental growth factor, activin A, fibronectin and uterine artery Doppler velocimetry. Int

J Gynaecol Obstet 89: 251–257. https://doi.org/10.1016/j.ijgo.2005.02.008 PMID: 15919391

107. Poon LC, Karagiannis G, Leal A, Romero XC, Nicolaides KH (2009) Hypertensive disorders in preg-

nancy: screening by uterine artery Doppler imaging and blood pressure at 11–13 weeks. Ultrasound

Obstet Gynecol 34: 497–502. https://doi.org/10.1002/uog.7439 PMID: 19827052

108. Conde-Agudelo A, Romero R, James MR (2015) Tests to Predict Preeclampsia In: Taylor RN, Roberts

JM, Cunningham FG, Lindheimer MD, Chesley LC, editors. Chesley’s Hypertensive disorders in preg-

nancy. Fourth Edition. ed. Amsterdam; Boston: Elsevier/AP, Academic Press is an imprint of

Elsevier,. pp. 221–251.

109. Yliniemi A, Makikallio K, Korpimaki T, Kouru H, Marttala J, Ryynanen M (2015) Combination of

PAPPA, fhCGbeta, AFP, PlGF, sTNFR1, and Maternal Characteristics in Prediction of Early-onset

Preeclampsia. Clin Med Insights Reprod Health 9: 13–20. https://doi.org/10.4137/CMRH.S21865

PMID: 26106266

110. Brunelli VB, Prefumo F (2015) Quality of first trimester risk prediction models for pre-eclampsia: a sys-

tematic review. Bjog 122: 904–914. https://doi.org/10.1111/1471-0528.13334 PMID: 25761437

111. Scazzocchio E, Crovetto F, Triunfo S, Gratacos E, Figueras F (2017) Validation of a first-trimester

screening model for pre-eclampsia in an unselected population. Ultrasound Obstet Gynecol 49: 188–

193. https://doi.org/10.1002/uog.15982 PMID: 27257033

112. Guizani M, Valsamis J, Dutemeyer V, Kang X, Ceccoti V, Khalife J, et al. (2017) First-Trimester Com-

bined Multimarker Prospective Study for the Detection of Pregnancies at a High Risk of Developing

Preeclampsia Using the Fetal Medicine Foundation-Algorithm. Fetal Diagn Ther: 1–8.

113. Park HJ, Kim SH, Jung YW, Shim SS, Kim JY, Cho YK, et al. (2014) Screening models using multiple

markers for early detection of late-onset preeclampsia in low-risk pregnancy. BMC Pregnancy Child-

birth 14: 35. https://doi.org/10.1186/1471-2393-14-35 PMID: 24444293

114. Sibai BM, Gordon T, Thom E, Caritis SN, Klebanoff M, McNellis D, et al. (1995) Risk factors for pre-

eclampsia in healthy nulliparous women: a prospective multicenter study. The National Institute of

Child Health and Human Development Network of Maternal-Fetal Medicine Units. Am J Obstet Gyne-

col 172: 642–648. PMID: 7856699

The prediction of early preeclampsia: Results from a longitudinal proteomics study

PLOS ONE | https://doi.org/10.1371/journal.pone.0217273 June 4, 2019 26 / 34

https://doi.org/10.1002/uog.17288
https://doi.org/10.1002/uog.17288
http://www.ncbi.nlm.nih.gov/pubmed/27854388
https://doi.org/10.1002/uog.17229
https://doi.org/10.1002/uog.17229
http://www.ncbi.nlm.nih.gov/pubmed/27854395
https://doi.org/10.1111/aogs.13012
http://www.ncbi.nlm.nih.gov/pubmed/27588413
https://doi.org/10.1002/uog.17295
http://www.ncbi.nlm.nih.gov/pubmed/27854387
https://doi.org/10.1186/s12884-016-1061-2
https://doi.org/10.1186/s12884-016-1061-2
http://www.ncbi.nlm.nih.gov/pubmed/27649795
https://doi.org/10.1002/uog.15729
http://www.ncbi.nlm.nih.gov/pubmed/26327300
https://doi.org/10.1002/uog.17289
http://www.ncbi.nlm.nih.gov/pubmed/27561595
https://doi.org/10.1002/uog.17290
http://www.ncbi.nlm.nih.gov/pubmed/27561693
https://doi.org/10.1371/journal.pone.0173461
http://www.ncbi.nlm.nih.gov/pubmed/28267756
https://doi.org/10.1016/j.ijgo.2005.02.008
http://www.ncbi.nlm.nih.gov/pubmed/15919391
https://doi.org/10.1002/uog.7439
http://www.ncbi.nlm.nih.gov/pubmed/19827052
https://doi.org/10.4137/CMRH.S21865
http://www.ncbi.nlm.nih.gov/pubmed/26106266
https://doi.org/10.1111/1471-0528.13334
http://www.ncbi.nlm.nih.gov/pubmed/25761437
https://doi.org/10.1002/uog.15982
http://www.ncbi.nlm.nih.gov/pubmed/27257033
https://doi.org/10.1186/1471-2393-14-35
http://www.ncbi.nlm.nih.gov/pubmed/24444293
http://www.ncbi.nlm.nih.gov/pubmed/7856699
https://doi.org/10.1371/journal.pone.0217273


115. Sibai BM, Ewell M, Levine RJ, Klebanoff MA, Esterlitz J, Catalano PM, et al. (1997) Risk factors asso-

ciated with preeclampsia in healthy nulliparous women. The Calcium for Preeclampsia Prevention

(CPEP) Study Group. Am J Obstet Gynecol 177: 1003–1010. PMID: 9396883

116. Poon LC, Kametas NA, Chelemen T, Leal A, Nicolaides KH (2010) Maternal risk factors for hyperten-

sive disorders in pregnancy: a multivariate approach. J Hum Hypertens 24: 104–110. https://doi.org/

10.1038/jhh.2009.45 PMID: 19516271

117. Wright D, Syngelaki A, Akolekar R, Poon LC, Nicolaides KH (2015) Competing risks model in screen-

ing for preeclampsia by maternal characteristics and medical history. Am J Obstet Gynecol 213: 62.

e61-10.

118. Rocha RS, Alves JA, Maia EHMSB, Araujo Junior E, Peixoto AB, Santana EF, et al. (2017) Simple

approach based on maternal characteristics and mean arterial pressure for the prediction of pre-

eclampsia in the first trimester of pregnancy. J Perinat Med.

119. Crispi F, Dominguez C, Llurba E, Martin-Gallan P, Cabero L, Gratacos E (2006) Placental angiogenic

growth factors and uterine artery Doppler findings for characterization of different subsets in pre-

eclampsia and in isolated intrauterine growth restriction. Am J Obstet Gynecol 195: 201–207. https://

doi.org/10.1016/j.ajog.2006.01.014 PMID: 16545329

120. Kuc S, Wortelboer EJ, van Rijn BB, Franx A, Visser GH, Schielen PC (2011) Evaluation of 7 serum bio-

markers and uterine artery Doppler ultrasound for first-trimester prediction of preeclampsia: a system-

atic review. Obstet Gynecol Surv 66: 225–239. https://doi.org/10.1097/OGX.0b013e3182227027

PMID: 21756405

121. Tobinaga CM, Torloni MR, Gueuvoghlanian-Silva BY, Pendeloski KP, Akita PA, Sass N, et al. (2014)

Angiogenic factors and uterine Doppler velocimetry in early- and late-onset preeclampsia. Acta Obstet

Gynecol Scand 93: 469–476. https://doi.org/10.1111/aogs.12366 PMID: 24580069

122. Seravalli V, Grimpel YI, Meiri H, Blitzer M, Baschat AA (2016) Relationship between first-trimester

serum placental protein-13 and maternal characteristics, placental Doppler studies and pregnancy out-

come. J Perinat Med 44: 543–549. https://doi.org/10.1515/jpm-2015-0324 PMID: 26910737

123. Spencer K, Yu CK, Cowans NJ, Otigbah C, Nicolaides KH (2005) Prediction of pregnancy complica-

tions by first-trimester maternal serum PAPP-A and free beta-hCG and with second-trimester uterine

artery Doppler. Prenat Diagn 25: 949–953. https://doi.org/10.1002/pd.1251 PMID: 16086443

124. Spencer K, Yu CK, Savvidou M, Papageorghiou AT, Nicolaides KH (2006) Prediction of pre-eclampsia

by uterine artery Doppler ultrasonography and maternal serum pregnancy-associated plasma protein-

A, free beta-human chorionic gonadotropin, activin A and inhibin A at 22 + 0 to 24 + 6 weeks’ gestation.

Ultrasound Obstet Gynecol 27: 658–663. https://doi.org/10.1002/uog.2676 PMID: 16493628

125. Poon LC, Stratieva V, Piras S, Piri S, Nicolaides KH (2010) Hypertensive disorders in pregnancy: com-

bined screening by uterine artery Doppler, blood pressure and serum PAPP-A at 11–13 weeks. Prenat

Diagn 30: 216–223. https://doi.org/10.1002/pd.2440 PMID: 20108221

126. Ay E, Kavak ZN, Elter K, Gokaslan H, Pekin T (2005) Screening for pre-eclampsia by using maternal

serum inhibin A, activin A, human chorionic gonadotropin, unconjugated estriol, and alpha-fetoprotein

levels and uterine artery Doppler in the second trimester of pregnancy. Aust N Z J Obstet Gynaecol

45: 283–288. https://doi.org/10.1111/j.1479-828X.2005.00412.x PMID: 16029293

127. Akolekar R, Minekawa R, Veduta A, Romero XC, Nicolaides KH (2009) Maternal plasma inhibin A at

11–13 weeks of gestation in hypertensive disorders of pregnancy. Prenat Diagn 29: 753–760. https://

doi.org/10.1002/pd.2279 PMID: 19412915

128. Yu J, Shixia CZ, Wu Y, Duan T (2011) Inhibin A, activin A, placental growth factor and uterine artery

Doppler pulsatility index in the prediction of pre-eclampsia. Ultrasound Obstet Gynecol 37: 528–533.

https://doi.org/10.1002/uog.8800 PMID: 20737451

129. Levine RJ, Maynard SE, Qian C, Lim KH, England LJ, Yu KF, et al. (2004) Circulating angiogenic fac-

tors and the risk of preeclampsia. N Engl J Med 350: 672–683. https://doi.org/10.1056/

NEJMoa031884 PMID: 14764923

130. Moore AG, Young H, Keller JM, Ojo LR, Yan J, Simas TA, et al. (2012) Angiogenic biomarkers for pre-

diction of maternal and neonatal complications in suspected preeclampsia. J Matern Fetal Neonatal

Med 25: 2651–2657. https://doi.org/10.3109/14767058.2012.713055 PMID: 22861812

131. Villa PM, Hamalainen E, Maki A, Raikkonen K, Pesonen AK, Taipale P, et al. (2013) Vasoactive agents

for the prediction of early- and late-onset preeclampsia in a high-risk cohort. BMC Pregnancy Childbirth

13: 110. https://doi.org/10.1186/1471-2393-13-110 PMID: 23663420

132. Allen RE, Rogozinska E, Cleverly K, Aquilina J, Thangaratinam S (2014) Abnormal blood biomarkers

in early pregnancy are associated with preeclampsia: a meta-analysis. Eur J Obstet Gynecol Reprod

Biol 182: 194–201. https://doi.org/10.1016/j.ejogrb.2014.09.027 PMID: 25305662

133. Wataganara T, Pratumvinit B, Lahfahroengron P, Pooliam J, Talungchit P, Leetheeragul J, et al.

(2017) Circulating soluble fms-like tyrosine kinase-1 and placental growth factor from 10 to 40 weeks’

The prediction of early preeclampsia: Results from a longitudinal proteomics study

PLOS ONE | https://doi.org/10.1371/journal.pone.0217273 June 4, 2019 27 / 34

http://www.ncbi.nlm.nih.gov/pubmed/9396883
https://doi.org/10.1038/jhh.2009.45
https://doi.org/10.1038/jhh.2009.45
http://www.ncbi.nlm.nih.gov/pubmed/19516271
https://doi.org/10.1016/j.ajog.2006.01.014
https://doi.org/10.1016/j.ajog.2006.01.014
http://www.ncbi.nlm.nih.gov/pubmed/16545329
https://doi.org/10.1097/OGX.0b013e3182227027
http://www.ncbi.nlm.nih.gov/pubmed/21756405
https://doi.org/10.1111/aogs.12366
http://www.ncbi.nlm.nih.gov/pubmed/24580069
https://doi.org/10.1515/jpm-2015-0324
http://www.ncbi.nlm.nih.gov/pubmed/26910737
https://doi.org/10.1002/pd.1251
http://www.ncbi.nlm.nih.gov/pubmed/16086443
https://doi.org/10.1002/uog.2676
http://www.ncbi.nlm.nih.gov/pubmed/16493628
https://doi.org/10.1002/pd.2440
http://www.ncbi.nlm.nih.gov/pubmed/20108221
https://doi.org/10.1111/j.1479-828X.2005.00412.x
http://www.ncbi.nlm.nih.gov/pubmed/16029293
https://doi.org/10.1002/pd.2279
https://doi.org/10.1002/pd.2279
http://www.ncbi.nlm.nih.gov/pubmed/19412915
https://doi.org/10.1002/uog.8800
http://www.ncbi.nlm.nih.gov/pubmed/20737451
https://doi.org/10.1056/NEJMoa031884
https://doi.org/10.1056/NEJMoa031884
http://www.ncbi.nlm.nih.gov/pubmed/14764923
https://doi.org/10.3109/14767058.2012.713055
http://www.ncbi.nlm.nih.gov/pubmed/22861812
https://doi.org/10.1186/1471-2393-13-110
http://www.ncbi.nlm.nih.gov/pubmed/23663420
https://doi.org/10.1016/j.ejogrb.2014.09.027
http://www.ncbi.nlm.nih.gov/pubmed/25305662
https://doi.org/10.1371/journal.pone.0217273


pregnancy in normotensive women. J Perinat Med 45: 895–901. https://doi.org/10.1515/jpm-2017-

0093 PMID: 28665791

134. Luo Q, Han X (2017) Second-trimester maternal serum markers in the prediction of preeclampsia. J

Perinat Med 45: 809–816. https://doi.org/10.1515/jpm-2016-0249 PMID: 27935854

135. Wikstrom AK, Larsson A, Eriksson UJ, Nash P, Norden-Lindeberg S, Olovsson M (2007) Placental

growth factor and soluble FMS-like tyrosine kinase-1 in early-onset and late-onset preeclampsia.

Obstet Gynecol 109: 1368–1374. https://doi.org/10.1097/01.AOG.0000264552.85436.a1 PMID:

17540809

136. Kurtoglu E, Avci B, Kokcu A, Celik H, Cengiz Dura M, Malatyalioglu E, et al. (2016) Serum VEGF and

PGF may be significant markers in prediction of severity of preeclampsia. J Matern Fetal Neonatal

Med 29: 1987–1992. https://doi.org/10.3109/14767058.2015.1072157 PMID: 26333278

137. Tsiakkas A, Cazacu R, Wright A, Wright D, Nicolaides KH (2016) Maternal serum placental growth fac-

tor at 12, 22, 32 and 36 weeks’ gestation in screening for pre-eclampsia. Ultrasound Obstet Gynecol

47: 472–477. https://doi.org/10.1002/uog.15816 PMID: 26582455

138. Tsatsaris V, Goffin F, Munaut C, Brichant JF, Pignon MR, Noel A, et al. (2003) Overexpression of the

soluble vascular endothelial growth factor receptor in preeclamptic patients: pathophysiological conse-

quences. J Clin Endocrinol Metab 88: 5555–5563. https://doi.org/10.1210/jc.2003-030528 PMID:

14602804

139. Koga K, Osuga Y, Yoshino O, Hirota Y, Ruimeng X, Hirata T, et al. (2003) Elevated serum soluble vas-

cular endothelial growth factor receptor 1 (sVEGFR-1) levels in women with preeclampsia. J Clin

Endocrinol Metab 88: 2348–2351. https://doi.org/10.1210/jc.2002-021942 PMID: 12727995

140. Chaiworapongsa T, Romero R, Espinoza J, Bujold E, Mee Kim Y, Goncalves LF, et al. (2004) Evi-

dence supporting a role for blockade of the vascular endothelial growth factor system in the pathophys-

iology of preeclampsia. Young Investigator Award. Am J Obstet Gynecol 190: 1541–1547; discussion

1547–1550. https://doi.org/10.1016/j.ajog.2004.03.043 PMID: 15284729

141. Chung JY, Song Y, Wang Y, Magness RR, Zheng J (2004) Differential expression of vascular endothe-

lial growth factor (VEGF), endocrine gland derived-VEGF, and VEGF receptors in human placentas

from normal and preeclamptic pregnancies. J Clin Endocrinol Metab 89: 2484–2490. https://doi.org/

10.1210/jc.2003-031580 PMID: 15126581

142. Chaiworapongsa T, Romero R, Kim YM, Kim GJ, Kim MR, Espinoza J, et al. (2005) Plasma soluble

vascular endothelial growth factor receptor-1 concentration is elevated prior to the clinical diagnosis of

pre-eclampsia. J Matern Fetal Neonatal Med 17: 3–18. https://doi.org/10.1080/14767050400028816

PMID: 15804781

143. Levine RJ, Lam C, Qian C, Yu KF, Maynard SE, Sachs BP, et al. (2006) Soluble endoglin and other cir-

culating antiangiogenic factors in preeclampsia. N Engl J Med 355: 992–1005. https://doi.org/10.

1056/NEJMoa055352 PMID: 16957146

144. Stepan H, Geipel A, Schwarz F, Kramer T, Wessel N, Faber R (2008) Circulatory soluble endoglin and

its predictive value for preeclampsia in second-trimester pregnancies with abnormal uterine perfusion.

Am J Obstet Gynecol 198: 175 e171-176.

145. Chaiworapongsa T, Romero R, Kusanovic JP, Mittal P, Kim SK, Gotsch F, et al. (2010) Plasma soluble

endoglin concentration in pre-eclampsia is associated with an increased impedance to flow in the

maternal and fetal circulations. Ultrasound Obstet Gynecol 35: 155–162. https://doi.org/10.1002/uog.

7491 PMID: 20101637

146. Foidart JM, Munaut C, Chantraine F, Akolekar R, Nicolaides KH (2010) Maternal plasma soluble endo-

glin at 11–13 weeks’ gestation in pre-eclampsia. Ultrasound Obstet Gynecol 35: 680–687. https://doi.

org/10.1002/uog.7621 PMID: 20205159

147. Rana S, Cerdeira AS, Wenger J, Salahuddin S, Lim KH, Ralston SJ, et al. (2012) Plasma concentra-

tions of soluble endoglin versus standard evaluation in patients with suspected preeclampsia. PLoS

One 7: e48259. https://doi.org/10.1371/journal.pone.0048259 PMID: 23110221

148. Lai J, Syngelaki A, Poon LC, Nucci M, Nicolaides KH (2013) Maternal serum soluble endoglin at 30–33

weeks in the prediction of preeclampsia. Fetal Diagn Ther 33: 149–155. https://doi.org/10.1159/

000343220 PMID: 23154616

149. De Vivo A, Baviera G, Giordano D, Todarello G, Corrado F, D’Anna R (2008) Endoglin, PlGF and sFlt-

1 as markers for predicting pre-eclampsia. Acta Obstet Gynecol Scand 87: 837–842. https://doi.org/

10.1080/00016340802253759 PMID: 18607829

150. Baumann MU, Bersinger NA, Mohaupt MG, Raio L, Gerber S, Surbek DV (2008) First-trimester serum

levels of soluble endoglin and soluble fms-like tyrosine kinase-1 as first-trimester markers for late-

onset preeclampsia. Am J Obstet Gynecol 199: 266.e261-266.

151. Kusanovic JP, Romero R, Chaiworapongsa T, Erez O, Mittal P, Vaisbuch E, et al. (2009) A prospective

cohort study of the value of maternal plasma concentrations of angiogenic and anti-angiogenic factors

The prediction of early preeclampsia: Results from a longitudinal proteomics study

PLOS ONE | https://doi.org/10.1371/journal.pone.0217273 June 4, 2019 28 / 34

https://doi.org/10.1515/jpm-2017-0093
https://doi.org/10.1515/jpm-2017-0093
http://www.ncbi.nlm.nih.gov/pubmed/28665791
https://doi.org/10.1515/jpm-2016-0249
http://www.ncbi.nlm.nih.gov/pubmed/27935854
https://doi.org/10.1097/01.AOG.0000264552.85436.a1
http://www.ncbi.nlm.nih.gov/pubmed/17540809
https://doi.org/10.3109/14767058.2015.1072157
http://www.ncbi.nlm.nih.gov/pubmed/26333278
https://doi.org/10.1002/uog.15816
http://www.ncbi.nlm.nih.gov/pubmed/26582455
https://doi.org/10.1210/jc.2003-030528
http://www.ncbi.nlm.nih.gov/pubmed/14602804
https://doi.org/10.1210/jc.2002-021942
http://www.ncbi.nlm.nih.gov/pubmed/12727995
https://doi.org/10.1016/j.ajog.2004.03.043
http://www.ncbi.nlm.nih.gov/pubmed/15284729
https://doi.org/10.1210/jc.2003-031580
https://doi.org/10.1210/jc.2003-031580
http://www.ncbi.nlm.nih.gov/pubmed/15126581
https://doi.org/10.1080/14767050400028816
http://www.ncbi.nlm.nih.gov/pubmed/15804781
https://doi.org/10.1056/NEJMoa055352
https://doi.org/10.1056/NEJMoa055352
http://www.ncbi.nlm.nih.gov/pubmed/16957146
https://doi.org/10.1002/uog.7491
https://doi.org/10.1002/uog.7491
http://www.ncbi.nlm.nih.gov/pubmed/20101637
https://doi.org/10.1002/uog.7621
https://doi.org/10.1002/uog.7621
http://www.ncbi.nlm.nih.gov/pubmed/20205159
https://doi.org/10.1371/journal.pone.0048259
http://www.ncbi.nlm.nih.gov/pubmed/23110221
https://doi.org/10.1159/000343220
https://doi.org/10.1159/000343220
http://www.ncbi.nlm.nih.gov/pubmed/23154616
https://doi.org/10.1080/00016340802253759
https://doi.org/10.1080/00016340802253759
http://www.ncbi.nlm.nih.gov/pubmed/18607829
https://doi.org/10.1371/journal.pone.0217273


in early pregnancy and midtrimester in the identification of patients destined to develop preeclampsia.

J Matern Fetal Neonatal Med 22: 1021–1038. https://doi.org/10.3109/14767050902994754 PMID:

19900040

152. Cindrova-Davies T, Sanders DA, Burton GJ, Charnock-Jones DS (2011) Soluble FLT1 sensitizes

endothelial cells to inflammatory cytokines by antagonizing VEGF receptor-mediated signalling. Cardi-

ovasc Res 89: 671–679. https://doi.org/10.1093/cvr/cvq346 PMID: 21139021

153. Aggarwal PK, Chandel N, Jain V, Jha V (2012) The relationship between circulating endothelin-1, solu-

ble fms-like tyrosine kinase-1 and soluble endoglin in preeclampsia. J Hum Hypertens 26: 236–241.

https://doi.org/10.1038/jhh.2011.29 PMID: 21451568

154. Cim N, Kurdoglu M, Ege S, Yoruk I, Yaman G, Yildizhan R (2016) An analysis on the roles of angiogen-

esis-related factors including serum vitamin D, soluble endoglin (sEng), soluble fms-like tyrosine

kinase 1 (sFlt1), and vascular endothelial growth factor (VEGF) in the diagnosis and severity of late-

onset preeclampsia. J Matern Fetal Neonatal Med: 1–6.

155. Perales A, Delgado JL, de la Calle M, Garcia-Hernandez JA, Escudero AI, Campillos JM, et al. (2017)

sFlt-1/PlGF for prediction of early-onset pre-eclampsia: STEPS (Study of Early Pre-eclampsia in

Spain). Ultrasound Obstet Gynecol 50: 373–382. https://doi.org/10.1002/uog.17373 PMID: 27883242

156. O’Gorman N, Nicolaides KH, Poon LC (2016) The use of ultrasound and other markers for early detec-

tion of preeclampsia. Womens Health (Lond) 12: 199–207.

157. Romero R, Kuivaniemi H, Tromp G (2002) Functional genomics and proteomics in term and preterm

parturition. J Clin Endocrinol Metab 87: 2431–2434. https://doi.org/10.1210/jcem.87.6.8689 PMID:

12050194

158. Romero R, Espinoza J, Gotsch F, Kusanovic JP, Friel LA, Erez O, et al. (2006) The use of high-dimen-

sional biology (genomics, transcriptomics, proteomics, and metabolomics) to understand the preterm

parturition syndrome. Bjog 113 Suppl 3: 118–135.

159. Romero R, Tromp G (2006) High-dimensional biology in obstetrics and gynecology: functional geno-

mics in microarray studies. Am J Obstet Gynecol 195: 360–363. https://doi.org/10.1016/j.ajog.2006.

06.077 PMID: 16890547

160. Blankley RT, Robinson NJ, Aplin JD, Crocker IP, Gaskell SJ, Whetton AD, et al. (2010) A gel-free

quantitative proteomics analysis of factors released from hypoxic-conditioned placentae. Reprod Sci

17: 247–257. https://doi.org/10.1177/1933719109351320 PMID: 19907055

161. Cox J, Mann M (2011) Quantitative, high-resolution proteomics for data-driven systems biology. Annu

Rev Biochem 80: 273–299. https://doi.org/10.1146/annurev-biochem-061308-093216 PMID:

21548781

162. Klein J, Buffin-Meyer B, Mullen W, Carty DM, Delles C, Vlahou A, et al. (2014) Clinical proteomics in

obstetrics and neonatology. Expert Rev Proteomics 11: 75–89. https://doi.org/10.1586/14789450.

2014.872564 PMID: 24404900

163. Hernandez-Nunez J, Valdes-Yong M (2015) Utility of proteomics in obstetric disorders: a review. Int J

Womens Health 7: 385–391. https://doi.org/10.2147/IJWH.S79577 PMID: 25926758

164. Edlow AG, Slonim DK, Wick HC, Hui L, Bianchi DW (2015) The pathway not taken: understanding

’omics data in the perinatal context. Am J Obstet Gynecol 213: 59.e51-172.

165. Kolialexi A, Mavreli D, Papantoniou N (2017) Proteomics for early prenatal screening of pregnancy

complications: a 2017 perspective. Expert Rev Proteomics 14: 113–115. https://doi.org/10.1080/

14789450.2017.1275574 PMID: 28002974

166. Nejatizadeh A, Stobdan T, Malhotra N, Pasha MA (2008) The genetic aspects of pre-eclampsia:

achievements and limitations. Biochem Genet 46: 451–479. https://doi.org/10.1007/s10528-008-

9163-9 PMID: 18437552

167. Johnson M, Brennecke S, Iversen AC, East C, Olsen G, Kent J, et al. (2012) OS046. Genome-wide

association scans identify novel maternalsusceptibility loci for preeclampsia. Pregnancy Hypertens 2:

202.

168. Chaiworapongsa T, Romero R, Whitten A, Tarca AL, Bhatti G, Draghici S, et al. (2013) Differences

and similarities in the transcriptional profile of peripheral whole blood in early and late-onset pre-

eclampsia: insights into the molecular basis of the phenotype of preeclampsiaa. J Perinat Med 41:

485–504. https://doi.org/10.1515/jpm-2013-0082 PMID: 23793063

169. Xu P, Zhao Y, Liu M, Wang Y, Wang H, Li YX, et al. (2014) Variations of microRNAs in human pla-

centas and plasma from preeclamptic pregnancy. Hypertension 63: 1276–1284. https://doi.org/10.

1161/HYPERTENSIONAHA.113.02647 PMID: 24664294

170. Yong HE, Melton PE, Johnson MP, Freed KA, Kalionis B, Murthi P, et al. (2015) Genome-wide tran-

scriptome directed pathway analysis of maternal pre-eclampsia susceptibility genes. PLoS One 10:

e0128230. https://doi.org/10.1371/journal.pone.0128230 PMID: 26010865

The prediction of early preeclampsia: Results from a longitudinal proteomics study

PLOS ONE | https://doi.org/10.1371/journal.pone.0217273 June 4, 2019 29 / 34

https://doi.org/10.3109/14767050902994754
http://www.ncbi.nlm.nih.gov/pubmed/19900040
https://doi.org/10.1093/cvr/cvq346
http://www.ncbi.nlm.nih.gov/pubmed/21139021
https://doi.org/10.1038/jhh.2011.29
http://www.ncbi.nlm.nih.gov/pubmed/21451568
https://doi.org/10.1002/uog.17373
http://www.ncbi.nlm.nih.gov/pubmed/27883242
https://doi.org/10.1210/jcem.87.6.8689
http://www.ncbi.nlm.nih.gov/pubmed/12050194
https://doi.org/10.1016/j.ajog.2006.06.077
https://doi.org/10.1016/j.ajog.2006.06.077
http://www.ncbi.nlm.nih.gov/pubmed/16890547
https://doi.org/10.1177/1933719109351320
http://www.ncbi.nlm.nih.gov/pubmed/19907055
https://doi.org/10.1146/annurev-biochem-061308-093216
http://www.ncbi.nlm.nih.gov/pubmed/21548781
https://doi.org/10.1586/14789450.2014.872564
https://doi.org/10.1586/14789450.2014.872564
http://www.ncbi.nlm.nih.gov/pubmed/24404900
https://doi.org/10.2147/IJWH.S79577
http://www.ncbi.nlm.nih.gov/pubmed/25926758
https://doi.org/10.1080/14789450.2017.1275574
https://doi.org/10.1080/14789450.2017.1275574
http://www.ncbi.nlm.nih.gov/pubmed/28002974
https://doi.org/10.1007/s10528-008-9163-9
https://doi.org/10.1007/s10528-008-9163-9
http://www.ncbi.nlm.nih.gov/pubmed/18437552
https://doi.org/10.1515/jpm-2013-0082
http://www.ncbi.nlm.nih.gov/pubmed/23793063
https://doi.org/10.1161/HYPERTENSIONAHA.113.02647
https://doi.org/10.1161/HYPERTENSIONAHA.113.02647
http://www.ncbi.nlm.nih.gov/pubmed/24664294
https://doi.org/10.1371/journal.pone.0128230
http://www.ncbi.nlm.nih.gov/pubmed/26010865
https://doi.org/10.1371/journal.pone.0217273


171. Sober S, Reiman M, Kikas T, Rull K, Inno R, Vaas P, et al. (2015) Extensive shift in placental transcrip-

tome profile in preeclampsia and placental origin of adverse pregnancy outcomes. Sci Rep 5: 13336.

https://doi.org/10.1038/srep13336 PMID: 26268791

172. Whitehead CL, Walker SP, Tong S (2016) Measuring circulating placental RNAs to non-invasively

assess the placental transcriptome and to predict pregnancy complications. Prenat Diagn 36: 997–

1008. https://doi.org/10.1002/pd.4934 PMID: 27711965

173. Luo S, Cao N, Tang Y, Gu W (2017) Identification of key microRNAs and genes in preeclampsia by

bioinformatics analysis. PLoS One 12: e0178549. https://doi.org/10.1371/journal.pone.0178549

PMID: 28594854

174. Ashar-Patel A, Kaymaz Y, Rajakumar A, Bailey JA, Karumanchi SA, Moore MJ (2017) FLT1 and tran-

scriptome-wide polyadenylation site (PAS) analysis in preeclampsia. Sci Rep 7: 12139. https://doi.

org/10.1038/s41598-017-11639-6 PMID: 28939845

175. Than NG, Romero R, Tarca AL, Kekesi KA, Xu Y, Xu Z, et al. (2018) Integrated Systems Biology

Approach Identifies Novel Maternal and Placental Pathways of Preeclampsia. Front Immunol 9: 1661.

https://doi.org/10.3389/fimmu.2018.01661 PMID: 30135684

176. Kolla V, Jeno P, Moes S, Lapaire O, Hoesli I, Hahn S (2012) Quantitative proteomic (iTRAQ) analysis

of 1st trimester maternal plasma samples in pregnancies at risk for preeclampsia. J Biomed Biotechnol

2012: 305964. https://doi.org/10.1155/2012/305964 PMID: 22570525

177. Myers JE, Tuytten R, Thomas G, Laroy W, Kas K, Vanpoucke G, et al. (2013) Integrated proteomics

pipeline yields novel biomarkers for predicting preeclampsia. Hypertension 61: 1281–1288. https://

doi.org/10.1161/HYPERTENSIONAHA.113.01168 PMID: 23547239

178. Law KP, Han TL, Tong C, Baker PN (2015) Mass spectrometry-based proteomics for pre-eclampsia

and preterm birth. Int J Mol Sci 16: 10952–10985. https://doi.org/10.3390/ijms160510952 PMID:

26006232

179. Founds S, Zeng X, Lykins D, Roberts JM (2015) Developing Potential Candidates of Preclinical Pre-

eclampsia. Int J Mol Sci 16: 27208–27227. https://doi.org/10.3390/ijms161126023 PMID: 26580600

180. Lu Q, Liu C, Liu Y, Zhang N, Deng H, Zhang Z (2016) Serum markers of pre-eclampsia identified on

proteomics. J Obstet Gynaecol Res 42: 1111–1118. https://doi.org/10.1111/jog.13037 PMID:

27279411

181. Jin X, Xu Z, Cao J, Shao P, Zhou M, Qin Z, et al. (2017) Proteomics analysis of human placenta

reveals glutathione metabolism dysfunction as the underlying pathogenesis for preeclampsia. Biochim

Biophys Acta 1865: 1207–1214.

182. Qi WH, Zheng MY, Li C, Xu L, Xu JE (2017) Screening of differential proteins of placenta tissues in

patients with pre-eclampsia by iTRAQ proteomics techniques. Minerva Med 108: 389–395. https://doi.

org/10.23736/S0026-4806.17.05080-7 PMID: 28728340

183. Lynch AM, Wagner BD, Deterding RR, Giclas PC, Gibbs RS, Janoff EN, et al. (2015) The relationship

of circulating proteins in early pregnancy with preterm birth. Am J Obstet Gynecol 214: 517.e511-518.

184. Myers J, Macleod M, Reed B, Harris N, Mires G, Baker P (2004) Use of proteomic patterns as a novel

screening tool in pre-eclampsia. J Obstet Gynaecol 24: 873–874. https://doi.org/10.1080/

01443610400018791 PMID: 16147639

185. Webster RP, Myatt L (2007) Elucidation of the molecular mechanisms of preeclampsia using proteo-

mic technologies. Proteomics Clin Appl 1: 1147–1155. https://doi.org/10.1002/prca.200700128 PMID:

21136764

186. Baker PN, Myers JE (2009) Preeclamptic toxemia: a disease ripe for proteomic discovery. Expert Rev

Proteomics 6: 107–110. https://doi.org/10.1586/epr.09.5 PMID: 19385936

187. Carty DM, Schiffer E, Delles C (2013) Proteomics in hypertension. J Hum Hypertens 27: 211–216.

https://doi.org/10.1038/jhh.2012.30 PMID: 22874797

188. Bahado-Singh RO, Akolekar R, Mandal R, Dong E, Xia J, Kruger M, et al. (2012) Metabolomics and

first-trimester prediction of early-onset preeclampsia. J Matern Fetal Neonatal Med 25: 1840–1847.

https://doi.org/10.3109/14767058.2012.680254 PMID: 22494326

189. Kuc S, Koster MP, Pennings JL, Hankemeier T, Berger R, Harms AC, et al. (2014) Metabolomics pro-

filing for identification of novel potential markers in early prediction of preeclampsia. PLoS One 9:

e98540. https://doi.org/10.1371/journal.pone.0098540 PMID: 24873829

190. Austdal M, Tangeras LH, Skrastad RB, Salvesen K, Austgulen R, Iversen AC, et al. (2015) First Tri-

mester Urine and Serum Metabolomics for Prediction of Preeclampsia and Gestational Hypertension:

A Prospective Screening Study. Int J Mol Sci 16: 21520–21538. https://doi.org/10.3390/

ijms160921520 PMID: 26370975

The prediction of early preeclampsia: Results from a longitudinal proteomics study

PLOS ONE | https://doi.org/10.1371/journal.pone.0217273 June 4, 2019 30 / 34

https://doi.org/10.1038/srep13336
http://www.ncbi.nlm.nih.gov/pubmed/26268791
https://doi.org/10.1002/pd.4934
http://www.ncbi.nlm.nih.gov/pubmed/27711965
https://doi.org/10.1371/journal.pone.0178549
http://www.ncbi.nlm.nih.gov/pubmed/28594854
https://doi.org/10.1038/s41598-017-11639-6
https://doi.org/10.1038/s41598-017-11639-6
http://www.ncbi.nlm.nih.gov/pubmed/28939845
https://doi.org/10.3389/fimmu.2018.01661
http://www.ncbi.nlm.nih.gov/pubmed/30135684
https://doi.org/10.1155/2012/305964
http://www.ncbi.nlm.nih.gov/pubmed/22570525
https://doi.org/10.1161/HYPERTENSIONAHA.113.01168
https://doi.org/10.1161/HYPERTENSIONAHA.113.01168
http://www.ncbi.nlm.nih.gov/pubmed/23547239
https://doi.org/10.3390/ijms160510952
http://www.ncbi.nlm.nih.gov/pubmed/26006232
https://doi.org/10.3390/ijms161126023
http://www.ncbi.nlm.nih.gov/pubmed/26580600
https://doi.org/10.1111/jog.13037
http://www.ncbi.nlm.nih.gov/pubmed/27279411
https://doi.org/10.23736/S0026-4806.17.05080-7
https://doi.org/10.23736/S0026-4806.17.05080-7
http://www.ncbi.nlm.nih.gov/pubmed/28728340
https://doi.org/10.1080/01443610400018791
https://doi.org/10.1080/01443610400018791
http://www.ncbi.nlm.nih.gov/pubmed/16147639
https://doi.org/10.1002/prca.200700128
http://www.ncbi.nlm.nih.gov/pubmed/21136764
https://doi.org/10.1586/epr.09.5
http://www.ncbi.nlm.nih.gov/pubmed/19385936
https://doi.org/10.1038/jhh.2012.30
http://www.ncbi.nlm.nih.gov/pubmed/22874797
https://doi.org/10.3109/14767058.2012.680254
http://www.ncbi.nlm.nih.gov/pubmed/22494326
https://doi.org/10.1371/journal.pone.0098540
http://www.ncbi.nlm.nih.gov/pubmed/24873829
https://doi.org/10.3390/ijms160921520
https://doi.org/10.3390/ijms160921520
http://www.ncbi.nlm.nih.gov/pubmed/26370975
https://doi.org/10.1371/journal.pone.0217273


191. Koster MP, Vreeken RJ, Harms AC, Dane AD, Kuc S, Schielen PC, et al. (2015) First-Trimester

Serum Acylcarnitine Levels to Predict Preeclampsia: A Metabolomics Approach. Dis Markers 2015:

857108. https://doi.org/10.1155/2015/857108 PMID: 26146448

192. Benton SJ, Ly C, Vukovic S, Bainbridge SA (2016) Andree Gruslin award lecture: Metabolomics as an

important modality to better understand preeclampsia. Placenta: 1–9.

193. de Groot CJ, Guzel C, Steegers-Theunissen RP, de Maat M, Derkx P, Roes EM, et al. (2007) Specific

peptides identified by mass spectrometry in placental tissue from pregnancies complicated by early

onset preeclampsia attained by laser capture dissection. Proteomics Clin Appl 1: 325–335. https://doi.

org/10.1002/prca.200600911 PMID: 21136682

194. Hamamura K, Nonaka D, Ishikawa H, Banzai M, Yanagida M, Nojima M, et al. (2016) Simple quantita-

tion for potential serum disease biomarker peptides, primarily identified by a peptidomics approach in

the serum with hypertensive disorders of pregnancy. Ann Clin Biochem 53: 85–96. https://doi.org/10.

1177/0004563215583697 PMID: 25838414

195. Kononikhin AS, Starodubtseva NL, Bugrova AE, Shirokova VA, Chagovets VV, Indeykina MI, et al.

(2016) An untargeted approach for the analysis of the urine peptidome of women with preeclampsia. J

Proteomics 149: 38–43. https://doi.org/10.1016/j.jprot.2016.04.024 PMID: 27109351

196. Kedia K, Smith SF, Wright AH, Barnes JM, Tolley HD, Esplin MS, et al. (2016) Global "omics" evalua-

tion of human placental responses to preeclamptic conditions. Am J Obstet Gynecol 215: 238.e231-

238.e220.

197. Dai X, Song X, Rui C, Meng L, Xue X, Ding H, et al. (2017) Peptidome Analysis of Human Serum From

Normal and Preeclamptic Pregnancies. J Cell Biochem: 1–8.

198. Qian Y, Zhang L, Rui C, Ding H, Mao P, Ruan H, et al. (2017) Peptidome analysis of amniotic fluid

from pregnancies with preeclampsia. Mol Med Rep: 7337–7344. https://doi.org/10.3892/mmr.2017.

7582 PMID: 28944906

199. Anand S, Young S, Esplin MS, Peaden B, Tolley HD, Porter TF, et al. (2016) Detection and confirma-

tion of serum lipid biomarkers for preeclampsia using direct infusion mass spectrometry. J Lipid Res

57: 687–696. https://doi.org/10.1194/jlr.P064451 PMID: 26891737

200. Brown SH, Eather SR, Freeman DJ, Meyer BJ, Mitchell TW (2016) A Lipidomic Analysis of Placenta in

Preeclampsia: Evidence for Lipid Storage. PLoS One 11: e0163972. https://doi.org/10.1371/journal.

pone.0163972 PMID: 27685997

201. Watanabe H, Hamada H, Yamada N, Sohda S, Yamakawa-Kobayashi K, Yoshikawa H, et al. (2004)

Proteome analysis reveals elevated serum levels of clusterin in patients with preeclampsia. Proteo-

mics 4: 537–543. https://doi.org/10.1002/pmic.200300565 PMID: 14760726

202. Blankley RT, Gaskell SJ, Whetton AD, Dive C, Baker PN, Myers JE (2009) A proof-of-principle gel-

free proteomics strategy for the identification of predictive biomarkers for the onset of pre-eclampsia.

Bjog 116: 1473–1480. https://doi.org/10.1111/j.1471-0528.2009.02283.x PMID: 19663911

203. Auer J, Camoin L, Guillonneau F, Rigourd V, Chelbi ST, Leduc M, et al. (2010) Serum profile in pre-

eclampsia and intra-uterine growth restriction revealed by iTRAQ technology. J Proteomics 73: 1004–

1017. https://doi.org/10.1016/j.jprot.2009.12.014 PMID: 20079470

204. Rasanen J, Girsen A, Lu X, Lapidus JA, Standley M, Reddy A, et al. (2010) Comprehensive maternal

serum proteomic profiles of preclinical and clinical preeclampsia. J Proteome Res 9: 4274–4281.

https://doi.org/10.1021/pr100198m PMID: 20568817

205. Liu C, Zhang N, Yu H, Chen Y, Liang Y, Deng H, et al. (2011) Proteomic analysis of human serum for

finding pathogenic factors and potential biomarkers in preeclampsia. Placenta 32: 168–174. https://

doi.org/10.1016/j.placenta.2010.11.007 PMID: 21145106

206. Hsu TY, Hsieh TT, Yang KD, Tsai CC, Ou CY, Cheng BH, et al. (2015) Proteomic profiling reveals

alpha1-antitrypsin, alpha1-microglobulin, and clusterin as preeclampsia-related serum proteins in

pregnant women. Taiwan J Obstet Gynecol 54: 499–504. https://doi.org/10.1016/j.tjog.2014.01.007

PMID: 26522099

207. Kolialexi A, Gourgiotis D, Daskalakis G, Marmarinos A, Lykoudi A, Mavreli D, et al. (2015) Validation of

serum biomarkers derived from proteomic analysis for the early screening of preeclampsia. Dis Mark-

ers 2015: 121848. https://doi.org/10.1155/2015/121848 PMID: 25628472

208. Anand S, Bench Alvarez TM, Johnson WE, Esplin MS, Merrell K, Porter TF, et al. (2015) Serum bio-

markers predictive of pre-eclampsia. Biomark Med 9: 563–575. https://doi.org/10.2217/bmm.15.21

PMID: 26079961

209. Kim SM, Cho BK, Kang MJ, Norwitz ER, Lee SM, Lee J, et al. (2016) Expression changes of proteins

associated with the development of preeclampsia in maternal plasma: A case-control study. Proteo-

mics 16: 1581–1589. https://doi.org/10.1002/pmic.201500381 PMID: 27001287

The prediction of early preeclampsia: Results from a longitudinal proteomics study

PLOS ONE | https://doi.org/10.1371/journal.pone.0217273 June 4, 2019 31 / 34

https://doi.org/10.1155/2015/857108
http://www.ncbi.nlm.nih.gov/pubmed/26146448
https://doi.org/10.1002/prca.200600911
https://doi.org/10.1002/prca.200600911
http://www.ncbi.nlm.nih.gov/pubmed/21136682
https://doi.org/10.1177/0004563215583697
https://doi.org/10.1177/0004563215583697
http://www.ncbi.nlm.nih.gov/pubmed/25838414
https://doi.org/10.1016/j.jprot.2016.04.024
http://www.ncbi.nlm.nih.gov/pubmed/27109351
https://doi.org/10.3892/mmr.2017.7582
https://doi.org/10.3892/mmr.2017.7582
http://www.ncbi.nlm.nih.gov/pubmed/28944906
https://doi.org/10.1194/jlr.P064451
http://www.ncbi.nlm.nih.gov/pubmed/26891737
https://doi.org/10.1371/journal.pone.0163972
https://doi.org/10.1371/journal.pone.0163972
http://www.ncbi.nlm.nih.gov/pubmed/27685997
https://doi.org/10.1002/pmic.200300565
http://www.ncbi.nlm.nih.gov/pubmed/14760726
https://doi.org/10.1111/j.1471-0528.2009.02283.x
http://www.ncbi.nlm.nih.gov/pubmed/19663911
https://doi.org/10.1016/j.jprot.2009.12.014
http://www.ncbi.nlm.nih.gov/pubmed/20079470
https://doi.org/10.1021/pr100198m
http://www.ncbi.nlm.nih.gov/pubmed/20568817
https://doi.org/10.1016/j.placenta.2010.11.007
https://doi.org/10.1016/j.placenta.2010.11.007
http://www.ncbi.nlm.nih.gov/pubmed/21145106
https://doi.org/10.1016/j.tjog.2014.01.007
http://www.ncbi.nlm.nih.gov/pubmed/26522099
https://doi.org/10.1155/2015/121848
http://www.ncbi.nlm.nih.gov/pubmed/25628472
https://doi.org/10.2217/bmm.15.21
http://www.ncbi.nlm.nih.gov/pubmed/26079961
https://doi.org/10.1002/pmic.201500381
http://www.ncbi.nlm.nih.gov/pubmed/27001287
https://doi.org/10.1371/journal.pone.0217273


210. Kolialexi A, Tsangaris GT, Sifakis S, Gourgiotis D, Katsafadou A, Lykoudi A, et al. (2017) Plasma bio-

markers for the identification of women at risk for early-onset preeclampsia. Expert Rev Proteomics

14: 269–276. https://doi.org/10.1080/14789450.2017.1291345 PMID: 28222616

211. Chen G, Zhang Y, Jin X, Zhang L, Zhou Y, Niu J, et al. (2011) Urinary proteomics analysis for renal

injury in hypertensive disorders of pregnancy with iTRAQ labeling and LC-MS/MS. Proteomics Clin

Appl 5: 300–310. https://doi.org/10.1002/prca.201000100 PMID: 21538910

212. Lee SM, Park JS, Norwitz ER, Kim SM, Kim BJ, Park CW, et al. (2011) Characterization of discrimina-

tory urinary proteomic biomarkers for severe preeclampsia using SELDI-TOF mass spectrometry. J

Perinat Med 39: 391–396. https://doi.org/10.1515/JPM.2011.028 PMID: 21557676

213. Kolialexi A, Mavreli D, Tounta G, Mavrou A, Papantoniou N (2015) Urine proteomic studies in pre-

eclampsia. Proteomics Clin Appl 9: 501–506. https://doi.org/10.1002/prca.201400092 PMID:

25644222

214. Vascotto C, Salzano AM, D’Ambrosio C, Fruscalzo A, Marchesoni D, di Loreto C, et al. (2007) Oxi-

dized transthyretin in amniotic fluid as an early marker of preeclampsia. J Proteome Res 6: 160–170.

https://doi.org/10.1021/pr060315z PMID: 17203960

215. Park JS, Oh KJ, Norwitz ER, Han JS, Choi HJ, Seong HS, et al. (2008) Identification of proteomic bio-

markers of preeclampsia in amniotic fluid using SELDI-TOF mass spectrometry. Reprod Sci 15: 457–

468. https://doi.org/10.1177/1933719108316909 PMID: 18579854

216. Webster RP, Pitzer BA, Roberts VH, Brockman D, Myatt L (2007) Differences in the proteome profile

in placenta from normal term and preeclamptic preterm pregnancies. Proteomics Clin Appl 1: 446–

456. https://doi.org/10.1002/prca.200600745 PMID: 21136696

217. Sun LZ, Yang NN, De W, Xiao YS (2007) Proteomic analysis of proteins differentially expressed in pre-

eclamptic trophoblasts. Gynecol Obstet Invest 64: 17–23. https://doi.org/10.1159/000098399 PMID:

17199091

218. Kim YN, Kim HK, Warda M, Kim N, Park WS, Prince Adel B, et al. (2007) Toward a better understand-

ing of preeclampsia: Comparative proteomic analysis of preeclamptic placentas. Proteomics Clin Appl

1: 1625–1636. https://doi.org/10.1002/prca.200700034 PMID: 21136660

219. Jin H, Ma KD, Hu R, Chen Y, Yang F, Yao J, et al. (2008) Analysis of expression and comparative pro-

file of normal placental tissue proteins and those in preeclampsia patients using proteomic

approaches. Anal Chim Acta 629: 158–164. https://doi.org/10.1016/j.aca.2008.09.015 PMID:

18940332

220. Gharesi-Fard B, Zolghadri J, Kamali-Sarvestani E (2010) Proteome differences of placenta between

pre-eclampsia and normal pregnancy. Placenta 31: 121–125. https://doi.org/10.1016/j.placenta.2009.

11.004 PMID: 19954843

221. Centlow M, Hansson SR, Welinder C (2010) Differential proteome analysis of the preeclamptic pla-

centa using optimized protein extraction. J Biomed Biotechnol 2010: 458748. https://doi.org/10.1155/

2010/458748 PMID: 19756160

222. Shin JK, Baek JC, Kang MY, Park JK, Lee SA, Lee JH, et al. (2011) Proteomic analysis reveals an ele-

vated expression of heat shock protein 27 in preeclamptic placentas. Gynecol Obstet Invest 71: 151–

157. https://doi.org/10.1159/000315162 PMID: 21335933

223. Feng YL, Zhou CJ, Li XM, Liang XQ (2012) Alpha-1-antitrypsin acts as a preeclampsia-related protein:

a proteomic study. Gynecol Obstet Invest 73: 252–259. https://doi.org/10.1159/000334820 PMID:

22414876

224. Epiney M, Ribaux P, Arboit P, Irion O, Cohen M (2012) Comparative analysis of secreted proteins from

normal and preeclamptic trophoblastic cells using proteomic approaches. J Proteomics 75: 1771–

1777. https://doi.org/10.1016/j.jprot.2011.12.021 PMID: 22234358

225. Baig S, Kothandaraman N, Manikandan J, Rong L, Ee KH, Hill J, et al. (2014) Proteomic analysis of

human placental syncytiotrophoblast microvesicles in preeclampsia. Clin Proteomics 11: 40. https://

doi.org/10.1186/1559-0275-11-40 PMID: 25469110

226. Ma K, Jin H, Hu R, Xiong Y, Zhou S, Ting P, et al. (2014) A proteomic analysis of placental trophoblas-

tic cells in preeclampsia-eclampsia. Cell Biochem Biophys 69: 247–258. https://doi.org/10.1007/

s12013-013-9792-4 PMID: 24343450

227. Yang JI, Kong TW, Kim HS, Kim HY (2015) The Proteomic Analysis of Human Placenta with Pre-

eclampsia and Normal Pregnancy. J Korean Med Sci 30: 770–778. https://doi.org/10.3346/jkms.

2015.30.6.770 PMID: 26028931

228. Mary S, Kulkarni MJ, Malakar D, Joshi SR, Mehendale SS, Giri AP (2017) Placental Proteomics Pro-

vides Insights into Pathophysiology of Pre-Eclampsia and Predicts Possible Markers in Plasma. J Pro-

teome Res 16: 1050–1060. https://doi.org/10.1021/acs.jproteome.6b00955 PMID: 28030762

The prediction of early preeclampsia: Results from a longitudinal proteomics study

PLOS ONE | https://doi.org/10.1371/journal.pone.0217273 June 4, 2019 32 / 34

https://doi.org/10.1080/14789450.2017.1291345
http://www.ncbi.nlm.nih.gov/pubmed/28222616
https://doi.org/10.1002/prca.201000100
http://www.ncbi.nlm.nih.gov/pubmed/21538910
https://doi.org/10.1515/JPM.2011.028
http://www.ncbi.nlm.nih.gov/pubmed/21557676
https://doi.org/10.1002/prca.201400092
http://www.ncbi.nlm.nih.gov/pubmed/25644222
https://doi.org/10.1021/pr060315z
http://www.ncbi.nlm.nih.gov/pubmed/17203960
https://doi.org/10.1177/1933719108316909
http://www.ncbi.nlm.nih.gov/pubmed/18579854
https://doi.org/10.1002/prca.200600745
http://www.ncbi.nlm.nih.gov/pubmed/21136696
https://doi.org/10.1159/000098399
http://www.ncbi.nlm.nih.gov/pubmed/17199091
https://doi.org/10.1002/prca.200700034
http://www.ncbi.nlm.nih.gov/pubmed/21136660
https://doi.org/10.1016/j.aca.2008.09.015
http://www.ncbi.nlm.nih.gov/pubmed/18940332
https://doi.org/10.1016/j.placenta.2009.11.004
https://doi.org/10.1016/j.placenta.2009.11.004
http://www.ncbi.nlm.nih.gov/pubmed/19954843
https://doi.org/10.1155/2010/458748
https://doi.org/10.1155/2010/458748
http://www.ncbi.nlm.nih.gov/pubmed/19756160
https://doi.org/10.1159/000315162
http://www.ncbi.nlm.nih.gov/pubmed/21335933
https://doi.org/10.1159/000334820
http://www.ncbi.nlm.nih.gov/pubmed/22414876
https://doi.org/10.1016/j.jprot.2011.12.021
http://www.ncbi.nlm.nih.gov/pubmed/22234358
https://doi.org/10.1186/1559-0275-11-40
https://doi.org/10.1186/1559-0275-11-40
http://www.ncbi.nlm.nih.gov/pubmed/25469110
https://doi.org/10.1007/s12013-013-9792-4
https://doi.org/10.1007/s12013-013-9792-4
http://www.ncbi.nlm.nih.gov/pubmed/24343450
https://doi.org/10.3346/jkms.2015.30.6.770
https://doi.org/10.3346/jkms.2015.30.6.770
http://www.ncbi.nlm.nih.gov/pubmed/26028931
https://doi.org/10.1021/acs.jproteome.6b00955
http://www.ncbi.nlm.nih.gov/pubmed/28030762
https://doi.org/10.1371/journal.pone.0217273


229. Romero R, Erez O, Maymon E, Chaemsaithong P, Xu Z, Pacora P, et al. (2017) The maternal plasma

proteome changes as a function of gestational age in normal pregnancy: a longitudinal study. Am J

Obstet Gynecol 217: 67.e61-67.e21.

230. Aghaeepour N, Lehallier B, Baca Q, Ganio EA, Wong RJ, Ghaemi MS, et al. (2018) A proteomic clock

of human pregnancy. Am J Obstet Gynecol 218: 347.e341-347.e314.

231. Vettraino IM, Roby J, Tolley T, Parks WC (1996) Collagenase-I, stromelysin-I, and matrilysin are

expressed within the placenta during multiple stages of human pregnancy. Placenta 17: 557–563.

PMID: 8916203

232. Weiss A, Goldman S, Shalev E (2007) The matrix metalloproteinases (MMPS) in the decidua and fetal

membranes. Front Biosci 12: 649–659. PMID: 17127325

233. Reister F, Kingdom JC, Ruck P, Marzusch K, Heyl W, Pauer U, et al. (2006) Altered protease expres-

sion by periarterial trophoblast cells in severe early-onset preeclampsia with IUGR. J Perinat Med 34:

272–279. https://doi.org/10.1515/JPM.2006.052 PMID: 16856814

234. Smith SD, Dunk CE, Aplin JD, Harris LK, Jones RL (2009) Evidence for immune cell involvement in

decidual spiral arteriole remodeling in early human pregnancy. Am J Pathol 174: 1959–1971. https://

doi.org/10.2353/ajpath.2009.080995 PMID: 19349361

235. Li Q, Park PW, Wilson CL, Parks WC (2002) Matrilysin shedding of syndecan-1 regulates chemokine

mobilization and transepithelial efflux of neutrophils in acute lung injury. Cell 111: 635–646. PMID:

12464176

236. Manon-Jensen T, Multhaupt HA, Couchman JR (2013) Mapping of matrix metalloproteinase cleavage

sites on syndecan-1 and syndecan-4 ectodomains. FEBS J 280: 2320–2331. https://doi.org/10.1111/

febs.12174 PMID: 23384311

237. Jokimaa V, Inki P, Kujari H, Hirvonen O, Ekholm E, Anttila L (1998) Expression of syndecan-1 in

human placenta and decidua. Placenta 19: 157–163. PMID: 9548182

238. Stepp MA, Pal-Ghosh S, Tadvalkar G, Pajoohesh-Ganji A (2015) Syndecan-1 and Its Expanding List

of Contacts. Adv Wound Care (New Rochelle) 4: 235–249.

239. Teng YH, Aquino RS, Park PW (2012) Molecular functions of syndecan-1 in disease. Matrix Biol 31:

3–16. https://doi.org/10.1016/j.matbio.2011.10.001 PMID: 22033227

240. Gandley RE, Althouse A, Jeyabalan A, Bregand-White JM, McGonigal S, Myerski AC, et al. (2016)

Low Soluble Syndecan-1 Precedes Preeclampsia. PLoS One 11: e0157608. https://doi.org/10.1371/

journal.pone.0157608 PMID: 27299886

241. Alici Davutoglu E, Akkaya Firat A, Ozel A, Yilmaz N, Uzun I, Temel Yuksel I, et al. (2018) Evaluation of

maternal serum hypoxia inducible factor-1alpha, progranulin and syndecan-1 levels in pregnancies

with early- and late-onset preeclampsia. J Matern Fetal Neonatal Med 31: 1976–1982. https://doi.org/

10.1080/14767058.2017.1333098 PMID: 28574293

242. Jokimaa VI, Kujari HP, Ekholm EM, Inki PL, Anttila L (2000) Placental expression of syndecan 1 is

diminished in preeclampsia. Am J Obstet Gynecol 183: 1495–1498. https://doi.org/10.1067/mob.

2000.107320 PMID: 11120517

243. Szabo S, Xu Y, Romero R, Fule T, Karaszi K, Bhatti G, et al. (2013) Changes of placental syndecan-1

expression in preeclampsia and HELLP syndrome. Virchows Arch 463: 445–458. https://doi.org/10.

1007/s00428-013-1426-0 PMID: 23807541

244. Halpert I, Sires UI, Roby JD, Potter-Perigo S, Wight TN, Shapiro SD, et al. (1996) Matrilysin is

expressed by lipid-laden macrophages at sites of potential rupture in atherosclerotic lesions and local-

izes to areas of versican deposition, a proteoglycan substrate for the enzyme. Proc Natl Acad Sci U S

A 93: 9748–9753. https://doi.org/10.1073/pnas.93.18.9748 PMID: 8790402

245. Katabuchi H, Yih S, Ohba T, Matsui K, Takahashi K, Takeya M, et al. (2003) Characterization of mac-

rophages in the decidual atherotic spiral artery with special reference to the cytology of foam cells.

Med Electron Microsc 36: 253–262. https://doi.org/10.1007/s00795-003-0223-2 PMID: 16228658

246. Kim YM, Chaemsaithong P, Romero R, Shaman M, Kim CJ, Kim JS, et al. (2015) The frequency of

acute atherosis in normal pregnancy and preterm labor, preeclampsia, small-for-gestational age, fetal

death and midtrimester spontaneous abortion. J Matern Fetal Neonatal Med 28: 2001–2009. https://

doi.org/10.3109/14767058.2014.976198 PMID: 25308204

247. Elangbam CS, Qualls CW Jr., Dahlgren RR (1997) Cell adhesion molecules—update. Vet Pathol 34:

61–73. https://doi.org/10.1177/030098589703400113 PMID: 9150551

248. Tomer A (2004) Platelet activation as a marker for in vivo prothrombotic activity: detection by flow

cytometry. J Biol Regul Homeost Agents 18: 172–177. PMID: 15471223

249. Takagi J, Petre BM, Walz T, Springer TA (2002) Global conformational rearrangements in integrin

extracellular domains in outside-in and inside-out signaling. Cell 110: 599–511. PMID: 12230977

The prediction of early preeclampsia: Results from a longitudinal proteomics study

PLOS ONE | https://doi.org/10.1371/journal.pone.0217273 June 4, 2019 33 / 34

http://www.ncbi.nlm.nih.gov/pubmed/8916203
http://www.ncbi.nlm.nih.gov/pubmed/17127325
https://doi.org/10.1515/JPM.2006.052
http://www.ncbi.nlm.nih.gov/pubmed/16856814
https://doi.org/10.2353/ajpath.2009.080995
https://doi.org/10.2353/ajpath.2009.080995
http://www.ncbi.nlm.nih.gov/pubmed/19349361
http://www.ncbi.nlm.nih.gov/pubmed/12464176
https://doi.org/10.1111/febs.12174
https://doi.org/10.1111/febs.12174
http://www.ncbi.nlm.nih.gov/pubmed/23384311
http://www.ncbi.nlm.nih.gov/pubmed/9548182
https://doi.org/10.1016/j.matbio.2011.10.001
http://www.ncbi.nlm.nih.gov/pubmed/22033227
https://doi.org/10.1371/journal.pone.0157608
https://doi.org/10.1371/journal.pone.0157608
http://www.ncbi.nlm.nih.gov/pubmed/27299886
https://doi.org/10.1080/14767058.2017.1333098
https://doi.org/10.1080/14767058.2017.1333098
http://www.ncbi.nlm.nih.gov/pubmed/28574293
https://doi.org/10.1067/mob.2000.107320
https://doi.org/10.1067/mob.2000.107320
http://www.ncbi.nlm.nih.gov/pubmed/11120517
https://doi.org/10.1007/s00428-013-1426-0
https://doi.org/10.1007/s00428-013-1426-0
http://www.ncbi.nlm.nih.gov/pubmed/23807541
https://doi.org/10.1073/pnas.93.18.9748
http://www.ncbi.nlm.nih.gov/pubmed/8790402
https://doi.org/10.1007/s00795-003-0223-2
http://www.ncbi.nlm.nih.gov/pubmed/16228658
https://doi.org/10.3109/14767058.2014.976198
https://doi.org/10.3109/14767058.2014.976198
http://www.ncbi.nlm.nih.gov/pubmed/25308204
https://doi.org/10.1177/030098589703400113
http://www.ncbi.nlm.nih.gov/pubmed/9150551
http://www.ncbi.nlm.nih.gov/pubmed/15471223
http://www.ncbi.nlm.nih.gov/pubmed/12230977
https://doi.org/10.1371/journal.pone.0217273


250. Pytela R, Pierschbacher MD, Ginsberg MH, Plow EF, Ruoslahti E (1986) Platelet membrane glycopro-

tein IIb/IIIa: member of a family of Arg-Gly-Asp—specific adhesion receptors. Science 231: 1559–

1562. PMID: 2420006

251. Janes SL, Goodall AH (1994) Flow cytometric detection of circulating activated platelets and platelet

hyper-responsiveness in pre-eclampsia and pregnancy. Clin Sci (Lond) 86: 731–739.

252. Hodivala-Dilke KM, McHugh KP, Tsakiris DA, Rayburn H, Crowley D, Ullman-Cullere M, et al. (1999)

Beta3-integrin-deficient mice are a model for Glanzmann thrombasthenia showing placental defects

and reduced survival. J Clin Invest 103: 229–238. https://doi.org/10.1172/JCI5487 PMID: 9916135

253. Tronik-Le Roux D, Roullot V, Poujol C, Kortulewski T, Nurden P, Marguerie G (2000) Thrombasthenic

mice generated by replacement of the integrin alpha(IIb) gene: demonstration that transcriptional acti-

vation of this megakaryocytic locus precedes lineage commitment. Blood 96: 1399–1408. PMID:

10942384

254. McKenzie ME, Malinin AI, Bell CR, Dzhanashvili A, Horowitz ED, Oshrine BR, et al. (2003) Aspirin

inhibits surface glycoprotein IIb/IIIa, P-selectin, CD63, and CD107a receptor expression on human

platelets. Blood Coagul Fibrinolysis 14: 249–253. https://doi.org/10.1097/01.mbc.0000046182.72384.

ab PMID: 12695747

255. LeFevre ML (2014) Low-dose aspirin use for the prevention of morbidity and mortality from preeclamp-

sia: U.S. Preventive Services Task Force recommendation statement. Ann Intern Med 161: 819–826.

https://doi.org/10.7326/M14-1884 PMID: 25200125

256. ACOG American College of Obstetricians and Gynecologists: Practice advisory on low-dose aspirin

and prevention of preeclampsia: updated recommendations. Washington, DC: 2016. https://www.

acog.org/About-ACOG/News-Room/Practice-Advisories/Practice-Advisory-Low-Dose-Aspirin-and-

Prevention-of-Preeclampsia-Updated-Recommendations.

257. Seidler AL, Askie L, Ray JG (2018) Optimal aspirin dosing for preeclampsia prevention. Am J Obstet

Gynecol 219: 117–118. https://doi.org/10.1016/j.ajog.2018.03.018 PMID: 29588190

258. Than N, Romero R, Tarca A, Kekesi K, Xu Y, Juhasz K, et al. (2017) Systems biology identifies key

molecular networks and hub factors in placental pathways of preeclampsia. Reproductive Sciences,

24(1 Suppl), 278A.

259. Spencer K, Macri JN, Aitken DA, Connor JM (1992) Free beta-hCG as first-trimester marker for fetal

trisomy. Lancet 339: 1480.

260. Spencer K (2000) Second-trimester prenatal screening for Down syndrome and the relationship of

maternal serum biochemical markers to pregnancy complications with adverse outcome. Prenat

Diagn 20: 652–656. PMID: 10951476

261. Kagan KO, Wright D, Spencer K, Molina FS, Nicolaides KH (2008) First-trimester screening for trisomy

21 by free beta-human chorionic gonadotropin and pregnancy-associated plasma protein-A: impact of

maternal and pregnancy characteristics. Ultrasound Obstet Gynecol 31: 493–502. https://doi.org/10.

1002/uog.5332 PMID: 18432600

262. Colosi E, D’Ambrosio V, Periti E (2016) First trimester contingent screening for trisomies 21,18,13: is

this model cost efficient and feasible in public health system? J Matern Fetal Neonatal Med: 1–13.

The prediction of early preeclampsia: Results from a longitudinal proteomics study

PLOS ONE | https://doi.org/10.1371/journal.pone.0217273 June 4, 2019 34 / 34

http://www.ncbi.nlm.nih.gov/pubmed/2420006
https://doi.org/10.1172/JCI5487
http://www.ncbi.nlm.nih.gov/pubmed/9916135
http://www.ncbi.nlm.nih.gov/pubmed/10942384
https://doi.org/10.1097/01.mbc.0000046182.72384.ab
https://doi.org/10.1097/01.mbc.0000046182.72384.ab
http://www.ncbi.nlm.nih.gov/pubmed/12695747
https://doi.org/10.7326/M14-1884
http://www.ncbi.nlm.nih.gov/pubmed/25200125
https://www.acog.org/About-ACOG/News-Room/Practice-Advisories/Practice-Advisory-Low-Dose-Aspirin-and-Prevention-of-Preeclampsia-Updated-Recommendations
https://www.acog.org/About-ACOG/News-Room/Practice-Advisories/Practice-Advisory-Low-Dose-Aspirin-and-Prevention-of-Preeclampsia-Updated-Recommendations
https://www.acog.org/About-ACOG/News-Room/Practice-Advisories/Practice-Advisory-Low-Dose-Aspirin-and-Prevention-of-Preeclampsia-Updated-Recommendations
https://doi.org/10.1016/j.ajog.2018.03.018
http://www.ncbi.nlm.nih.gov/pubmed/29588190
http://www.ncbi.nlm.nih.gov/pubmed/10951476
https://doi.org/10.1002/uog.5332
https://doi.org/10.1002/uog.5332
http://www.ncbi.nlm.nih.gov/pubmed/18432600
https://doi.org/10.1371/journal.pone.0217273

