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Triple-coincidence experiment to study the correlated electron emission
in the collision-induced double electron loss of He−
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The double electron loss (DEL) from He− has been investigated in collisions with He atoms at 300-keV impact
energy and at electron energies that satisfy the cusp condition; i.e., the corresponding electron velocities match
the projectile’s velocity. In a time-of-flight experiment the energies of both electrons have been determined
by detecting triple coincidences between the two electrons and the outgoing He+ ion. The coincidence yield
shows a peak as a function of the electron energies at the expected cusp position, providing evidence for the
existence of the two-electron cusp [L. Sarkadi and A. Orbán, Phys. Rev. Lett. 100, 133201 (2008)] in DEL. The
observed energy distribution of the electron pairs is compared with the results of four-body classical trajectory
Monte Carlo calculations carried out applying the soft-Coulomb potential approximation for the inclusion of the
electron-electron interaction.
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I. INTRODUCTION

The behavior of the scattering processes near a reaction
energy threshold has been widely investigated in different
fields of physics since the pioneering work of Wigner [1] (in
atomic and molecular physics see, e.g., the reviews [2,3]). The
continuing interest is mainly explained by the high degree of
universality of the threshold laws governing the processes:
The energy dependence of the cross section in the neighbor-
hood of the threshold energy is determined only by the type
of the interaction (long or short range, attractive or repulsive),
and it is not sensitive to the details of the collision system.
The universality can be traced back to the large de Broglie
wavelength of the slow collision fragments compared to the
characteristic length of the interaction. The latter property is
attractive from a theoretical point of view, because it allows
the application of analytical methods in the description of the
collision dynamics.

In atomic physics the most well-known threshold process
is the near-threshold single ionization of an atom by electron
impact (or photo-double ionization of an atom). Applying
classical mechanics, Wannier [4] showed that the motion of
the two low-energy electrons emerging from the collision is
highly correlated. Exactly at the threshold the electrons move
symmetrically in opposite directions; above the threshold their
angular correlation is expressed by a Gaussian centered at
θ12 = π with a width that depends on the excess energy
of the collision as ∼E1/4. Furthermore, Wannier derived an
E1.127 dependence of the ionization cross section on the excess
energy, and he found a uniform energy sharing between the
two outgoing electrons. We emphasize that the dependence
of the angular correlation and the cross section on the excess
energy is universal for all atomic species. The predictions of
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the Wannier theory have been proved experimentally (see,
e.g., [5–11]) and confirmed by a large number of further
theoretical works (see, e.g., [12–19]) for both (e, 2e) and
(γ , 2e).

In the field of energetic ion-atom collisions the study of
the so-called electron cusp has been proved to be an efficient
tool to check the validity of the threshold laws. The cusp is
a peak (a singularity) appearing in the energy spectrum of
the electrons observed in the forward direction. The peak is
formed by the electrons ejected with velocities approximately
equal to that of the bombarding ion, i.e., they fly with small
velocities relative to the projectile. The cusp is regarded as
a threshold phenomenon, because the final relative electron-
projectile energy is just above the ionization limit. A negative
relative energy would produce the population of the bound
states of the projectile ion characterized by a large principal
quantum number (Rydberg states). The study of the cusp with
different projectiles makes it possible to obtain information
about the threshold laws for various types of interactions
(Coulomb, dipolar, short range; see, e.g., [20–26]). In the
special case of the attractive Coulomb interaction the Wigner
laws predict a nonzero cross section at the threshold (see, e.g.,
[2]), and this leads to a cusp, as we will show in Sec. III B.

On the basis of the universality of the threshold pro-
cesses one may assume that the Wannier-type correlated two-
electron states can be formed also in ion-atom collisions.
Final states consisting of two low-energy electrons in the
field of a positive ion are expected to be formed via si-
multaneous emission of two electrons in forward direction
with the same velocity as that of the projectile. While single
electron emission leads to a cusp in the energy spectrum of
the electrons, it is an interesting question whether the cusp
exists also for double electron emission. In [27] we reported
about an experiment on the existence of the two-electron cusp.
In the experiment the energies of the two electrons result-
ing from the simultaneous target and projectile ionization in
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100-keV He0 + He collisions were measured by detecting
triple coincidence between the electrons and the outgoing He+

ion. The coincidence yield was found to peak at the expected
cusp position as a function of the electron energies, proving
the existence of the two-electron cusp. Furthermore, a strong
correlation between the electron energies in the vicinity of
the cusp was observed which was traced back to an angular
correlation of 180◦ in the projectile frame.

In [27] we presented the results of a Monte Carlo simula-
tion based on Wannier’s theory. In the simulation we randomly
created low-energy electron pairs in the projectile-centered
reference frame. The energy- and angular distribution of the
electrons were taken as predicted by Wannier’s theory. The
paths of the electrons then were tracked until they reached
the detectors. The simulation resulted in an energy correlation
in agreement with the observation, thus providing a strong
indication for the formation of the correlated two-electron
Wannier states in ion-atom collisions.

In subsequent theoretical works on the two-electron cusp
[19,28] attempts were made to reproduce the observed energy
correlation. In these works a simpler collision system was
considered, namely, the double ionization (DI) of He by
He2+, instead of the complicated mutual ionization of the
target and projectile in He0 + He collision. In the former
collision DI leads to low-energy electrons relative to the
projectile by a special process, known as electron capture
into the continuum (ECC). The calculations were made in
two models. Both approaches treated the electron emission in
the independent particle model using the continuum distorted
wave method, but applied different correction methods for the
inclusion of the electron correlation. Gulyás et al. [28] pro-
posed a correction procedure based on the Coulomb density
of states approximation. In their model the electron-electron
interaction was taken into account in the final continuum
state of the electrons by introducing a dynamically screened
effective charge in the Coulomb normalization factor of the
wave function. Barrachina et al. [19] considered the quantum
mechanical version of Wannier’s theory, and derived a correla-
tion factor within the WKB approximation. The predictions of
both models were found only in qualitative agreement with the
experiment.

In the present paper we continued the experimental in-
vestigation of the two-electron cusp. Now we considered a
collision system in which the two electrons originate from
the same collision partner, facilitating thereby the theoretical
description. One possible choice is the double ECC in He2+

+ He collision considered in the above theoretical models, as
well as the double electron loss (DEL) of He0 in collision with
He. However, test experiments for these systems resulted in
very low triple-coincidence yields, which can be explained by
the large binding energies of the electrons in He. A reasonable
coincidence yield is expected for an atom (ion) having two
loosely bound electrons. A good choice from this point of
view is the He− ion that exists only in the core-excited
(1s2s2p) 4Po state. Considering that the energy of this state is
−2.178 a.u. [29], the total binding energy of the outer 2s and
2p electron with respect to the 1s core state is only −0.178 a.u.
(−4.84 eV). The (1s2s2p) 4Po state is metastable. However, its
lifetime is relatively long, 359 μs [30], which enables the use
of He− in collision experiments (see, e.g., [23,31,32]).

Based on the above arguments, we chose the double elec-
tron loss of He− induced by collisions with He atoms for
the present investigation of the two-electron cusp. At first
glance, this five-electron system seems to be too complex; the
detection of a triple coincidence of an electron pair with the
outgoing He+ ion does not identify unambiguously the DEL
of He−. However, we may assume that at the chosen impact
energy (300 keV) the ionization of the loosely bound 2s and
2p electrons is dominant in the collision; the strongly bound
electrons in the He target and the 1s core electron of the He−

projectile practically remain intact.
The organization of the paper is as follows. In Sec. II, we

summarize the applied experimental procedure. In Sec. III, we
present a four-body classical trajectory Monte Carlo (CTMC)
model worked out for the interpretation of the results of the
present experiment, as well as a Monte Carlo simulation by
which the energy correlation pattern of the electron pairs can
be generated according to Wannier’s theory. In Sec. IV, we
compare the obtained experimental data with the results of
the CTMC calculations. Furthermore, using the Monte Carlo
simulation we analyze how far the experimental data reflect
the Wannier-type electron correlation.

II. EXPERIMENTAL METHOD

The measurements were performed at the 1.5-MV Van de
Graaff accelerator of Atomki. The experimental setup was
an upgraded version [25] of the arrangement that had been
applied in the previous investigation of the two-electron cusp
[27]. The 300-keV He− beam was produced from the He+

beam of the accelerator via charge exchange with the residual
gas of the beam channel. The negative ion component was
selected from the original beam with a four-stage electro-
static charge-state selector [20]. The final beam of diameter
0.75 mm, containing about 106 ions/s, was formed by a
collimator of length 45 cm.

The electrons ejected in forward direction from the interac-
tion of the ion beam and an effusive He gas target are reflected
by an electrostatic mirror [33] into backward angles (≈160◦),
while the projectile passes through the mirror. The reflected
electrons fly through a drift tube and are then detected by two
channel electron multipliers (CEMs). The outgoing projectile
ion is charge-state analyzed by means of an electrostatic
deflector and detected by an ion detector [34]. The energies
of the electrons are determined from the time of flight (TOF)
of the electrons, obtained as the difference between the arrival
time of the electrons and that of the charge-state selected He+

ion. The data acquisition was made in list mode applying a
time-to-digital converter developed in Atomki. The time reso-
lution was 5 ns. It was determined practically by the electron
and ion detection (including electronics); the contribution of
the time dispersion in the mirror was negligible.

The base pressure in the collision chamber was 1.5 ×
10−6 mbar. It increased to 6 × 10−6 mbar when the gas target
was turned on. The single-collision condition was checked by
measuring the triple-coincidence yield as a function of the tar-
get gas pressure. We found a linear dependence. Typical rates
of the ions, electrons, and double and triple coincidences were
as follows: He+ ions, 20 kHz; electrons, 0.5 kHz; electron-ion
coincidences, 20 Hz; triple coincidences, 0.03 Hz.
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The upgrade of the setup involved the replacement of the
drift tube by a three times longer one, which substantially im-
proved the energy and angular resolution. Furthermore, in the
tube we built in a five-element electrostatics lens for focusing,
accelerating, or decelerating the electrons. One of the lens
elements was constructed as a four-electrode steering system
to correct the electron trajectories [35]. An axial magnetic
field serving to guide the electrons towards the detectors can
also be produced by a solenoid coil mounted on the tube.

As we emphasized in [33], one of the most important
requirements in the design of TOF was the minimized sec-
ondary electron production in the parts of the spectrometer.
This was achieved mainly by constructing the mirror without
a grid. However, secondary electrons may also be produced
on the surface of the input apertures of the two CEMs. The
CEMs are parts of a detector array consisting of four CEMs
(Sjuts Optotechnik, type KBLA 510-4). The apertures have
rectangular shape; their size is 5 × 10 mm2. The neighboring
apertures are separated by 1 mm, therefore electrons hitting
the surface of the separating area of 1 × 10 mm2 may eject
a secondary electron. To suppress the false electron-electron
coincidences due to the secondary electron production, as a
further upgrade of the setup we mounted on the detector array
an electrode system consisting of two additional apertures of
the same shape as that of the input apertures. Furthermore, to
reduce the effective surface of the secondary electron produc-
tion, we applied a Soller collimator built up from five copper
plates of 0.1-mm thickness. By applying suitable voltages
on the electrodes, we completely reduced the effect of the
secondary electrons.

In the present triple-coincidence experiment the electron
energy covered a range between 28 and 56 eV. To achieve a
reasonable energy resolution, the electrons were decelerated
by −20 V. In the considered range the relative energy reso-
lution of TOF changed almost linearly from 0.5 to 2.6%, i.e.,
the energy resolution varied from 0.15 to 1.5 eV.

For the energy calibration of TOF we determined the
relationship between the energy and time of flight of the
electrons following their path from the target to the detec-
tors. For tracking the trajectories in the mirror and in the
lens we used the SIMION three-dimensional (3D) ion optics
computer program (version 8.0). The calibration was checked
by measuring the energy position of the single electron cusp
for different collision systems at several impact energies in
the range between 150 and 300 keV. The measured positions
agreed well with the expected values, (m/M )Ep, where m is
the mass of the electron, and M and Ep are the mass and the
energy of the projectile, respectively. The energy dispersion
of the ion beam and its energy loss due to the ionization
were negligible (0.5 and 0.015%, respectively) compared to
the relative energy resolution of TOF, which was 1.4% at the
cusp position.

As far as the angular resolution is concerned, it was
limited by the low triple-coincidence yield, i.e., we had to
operate TOF with a modest resolution. At the same time, a
pronounced cusp can only be obtained with a relatively good
angular resolution. This means that we optimized TOF in a
way to achieve an acceptable (narrow enough) cusp shape and
a reasonable coincidence yield. The optimization was made
by varying both the electrode voltages of the lens and the

magnetic field in the drift tube. We note that at a given value
of deceleration the optimization of the angular resolution had
only a small effect on the energy resolution, because the
variation of the voltages of the lens electrodes caused only
small changes in the time of flight of the electrons.

Due to the complexity of TOF, we could not determine
the acceptance (half) angle of the electron detection purely
from the geometry and focusing properties of the system.
Considering that the knowledge of this parameter is unavoid-
able in the theoretical analysis of the experimental results,
we estimated it by performing a separate experiment and
theoretical calculations. In the experiment we measured the
single electron ECC cusp in 300-keV He2+ + He collisions by
coincident detection of the electrons with the outgoing He2+

ions under the same conditions used in the triple-coincidence
experiment. We compared the measured cusp shape with the
result of CTMC calculations. We used a three-body version of
CTMC, applying a screened Coulomb potential for the target
core. This model proved to be efficient in the description of the
electron emission in ion-atom collisions, including the cusp
(see, e.g., [36]). We calculated the cusp using different values
for the acceptance angle. We found good agreement between
the calculated and measured shape at �ϑ1/2 ≈ 1◦.

In the same way, we determined the energy-dependent
electron detection efficiency (transmission of TOF and de-
tection efficiency of the channeltrons for the two electron
branches) by taking the ratio of measured and calculated
electron energy spectra. We measured only relative cross
sections for the two-electron cusp, therefore we determined
only relative efficiency. For this purpose we considered the
150-keV H0 + He collision, in which the electrons are dom-
inantly produced by the ionization of the projectile (single
electron loss, SEL). The process was identified by detecting
the electrons in coincidence with the outgoing protons. The
impact energy was chosen in a way to avoid the cusp region.
In the vicinity of the cusp the spectrum changes rapidly, and
the determination of the efficiency is uncertain. For 150-keV
H0 impact the cusp appears at 81.6 eV; i.e., the energy range
of the triple-coincidence experiment (28–56 eV) is located
well below the cusp maximum. For the theoretical derivation
of the spectrum we used the above CTMC model. For the
description of SEL we considered the inverse reaction, i.e.,
the ionization of the hydrogen target atom by the completely
screened helium atom projectile. Since the coincidence con-
dition did not exclude the simultaneous ionization of both
the target and projectile, the contribution of this process was
also included in the CTMC calculations. As a cross checking,
we repeated the procedure at 300-keV impact energy. We
obtained a reasonable agreement, and the final efficiency was
taken as the average of the 150- and 300-keV results.

The contribution of the accidental coincidence events to
the true triple-coincidence events was not negligible, and we
determined it as follows. The accidental coincidence events
have four sources, as it is seen in the 3D representation of the
distribution of the detected triple coincidences as a function
of the time of flight of the two electrons, �t1 and �t2 [see Fig.
1(a)]: (i) true He+ – e1 correlated events in random coinci-
dence with e2 producing the ridge at a constant �t1 value;
(ii) true He+ – e2 correlated events in random coinci-
dence with e1 producing the ridge at a constant �t2 value;
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FIG. 1. (a) The distribution of the measured triple-coincidence
events as a function of the time of flight of the two electrons emitted
by DEL of He−. (b) The contribution of the accidental coincidences
reconstructed from the measured ion-electron and electron-electron
double-coincidence distributions. The fully random coincidences be-
tween the three particles are accounted for by a uniform distribution.

(iii) true e1 – e2 correlated events in random coincidence
with He+ producing the ridge at �t1 ≈ �t2; and (iv) fully
random coincidences between the three particles producing
a uniform distribution. The shapes of the distributions of the
“semirandom” events can be deduced from the corresponding
double-coincidence time spectra. The latter are known very
accurately due to the good counting statistics accumulated
during the long-time triple-coincidence measurements. The
total accidental “background” reconstructed from the mea-
sured ion-electron and electron-electron double-coincidence
distributions is seen in Fig. 1(b). The contribution of ion-
electron-electron random coincidences is accounted for by a
uniform distribution. The weights of the different components

of the accidental background were determined by a suitable
normalization of the reconstructed distribution to the mea-
sured one. This was done by selecting areas in the �t1-�t2
plane, where only the regarded component is expected to
contribute to the random coincidences.

As a result of the above procedure we obtained that at the
maximum of the measured triple-coincidence distribution the
contribution of the accidental coincidences was about 9%.

III. THEORY

A. Classical trajectory Monte Carlo calculations

The CTMC method [37] is based on the solution of the
classical mechanical equations of motion of the particles par-
ticipating in the collision. We applied the three-dimensional,
nonrelativistic, four-body version of the theory for the in-
terpretation of the present experimental results. The He−

projectile ion was considered consisting of three particles: two
loosely bound electrons around the partially screened core.
The He target atom was taken as a single particle, interacting
with the other three particles through a completely screened
Coulomb force. We made the calculations for the inverse
collision system; i.e., we considered the double ionization
of the He− ion as target (T) by the impact of the neutral
helium atom as projectile (P). The final results were obtained
by Galilean transformation of the calculated momenta of the
particles.

In the classical treatment of the collisions involving two
interacting electrons one is faced with the difficulty caused by
the instability of the classical multielectron atoms. Since clas-
sically the energy exchange between electrons is not limited,
after a time one of the electrons gains enough energy to escape
the atom, i.e., autoionization occurs. In quantum mechanics
the energy exchange is limited by the Heisenberg uncertainty
principle, acting as a repulsing potential in the vicinity of the
nucleus. In the classical theoretical models several methods
have been proposed to prevent the autoionization (for a review
see, e.g., [38]). In the present paper we stabilized the He−

ion by replacing the Coulomb potential for the e-T and e-e
interactions with a soft potential defined as [39]

Vi j = ZiZ j√
r2

i j + c2
αβ

. (1)

Here cαβ is generally different for the e-T and e-e interaction.
The completely screened Coulomb potential around the He

projectile was approximated by the model potential developed
by Green et al. [40] on the basis of Hartree-Fock calculations.
For an atom it has the following general form:

V (r) = Z − (N − 1)[1 − 	(r)]

r
, (2)

where N is the number of the electrons in the atom (ion), Z is
the nuclear charge, and

	(r) = {(η/ξ )[exp(ξr) − 1] + 1}−1. (3)

For the neutral He atom the potential was evaluated using Z =
2, N = 3, η = 1.067, and ξ = 1.188 [41].

Considering the choice of the initial position and momen-
tum coordinates of the electrons in a two-electron atom (ion),
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unlike the one-electron case [42], there is no unambiguous
procedure for the sampling of the microcanonical assembly.
We applied a similar trial and error method as that proposed
by Cohen [38]. In the first step of our procedure we consider
the two electrons independently. We choose the magnitude of
their position and momentum randomly in a given interval
with uniform distribution. We determine their angular coor-
dinates also randomly in the same way as prescribed in the
one-electron case [42]. Then we determine the total energy
of the two electrons including their interaction. The sam-
pling was accepted if the difference between the calculated
energy and the binding energy (−0.178 a.u.; see above) was
within 1%.

The cαβ parameters in Eq. (1) were not known for the He−

ion. We varied their values until the stability of the ion was
achieved. In the optimization procedure we had to change also
the charge of the partially screened core ZT, because the ion
turned out to be unstable for ZT = 1. Stability was achieved at
somewhat larger value, ZT = 1.3. For ceT and cee we obtained
the values 8.296 and 0.05 a.u., respectively. The stability of
He− was checked by performing CTMC calculations for a
large number of collision events in a way that we turned off
all the interactions with the projectile. For 104 collisions we
did not observe autoionization.

To prove the existence of the two-electron cusp, the actual
calculations had to be made under extreme conditions. Since
the cusp is formed by the low-energy electrons emitted in
the projectile-centered reference frame, the main requirement
was the reliable treatment of the emission of the low-energy
electron pairs following the double ionization of He−. The
minimum electron energy needed to be determined can be
estimated from the experimental energy resolution �E =
0.67 eV at the cusp maximum, E0 = 40.8 eV. One obtains
from velocity transformation that the range �E around E0

is built up by electrons emitted in the projectile frame with
energies <2.7 meV.

The integration of Newton’s equations of motion was
started at a distance of 104 a.u. between the target and pro-
jectile. Such large distance is explained by the time needed to
reach the equilibrium in the distribution of the phase-space
coordinates of the two electrons in He− well before the
collision. The reaction channels (excitation and single and
double ionization) in the outgoing phase were checked at even
larger distance, at 5 × 104 a.u. This choice was justified by the
enhanced probability of the transitions between the reactions
channels for such extremely small excitation and emission
energies as those discussed above. In the case of double
ionization the integration was continued logarithmically until
1012-a.u. separation.

The calculations were very time consuming due to the
small number of the double-ionization events leading to for-
ward electron emission of an electron pair. We followed the
history of altogether 109 collisions.

In Sec. II we presented our procedure applied for the
estimation of the acceptance (half) angle of the electron
detection. Using the present CTMC results we could also
estimate �ϑ1/2. For this purpose we considered the measured
electron energy spectrum belonging to the e – He+ double-
coincidence events. This spectrum is inclusive in the sense
that only one of the electrons is detected at ϑ ≈ 0◦; the
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FIG. 2. Single electron cusp spectra following DEL of He−. The
open circles denote the distribution measured by detecting double
coincidences between the electrons and the outgoing He+ ions. The
full circles represent the result of the CTMC calculations obtained
for acceptance (half) angle �ϑ1/2 = 1.2◦. The peaks are normalized
at their maxima. Here and in the following figures the dashed line
shows the expected position of the cusp.

other electron is emitted with an unknown momentum into
the full solid angle. This means that the double-coincidence
spectrum is less influenced by the electron correlation effects,
and thereby the shape of the DEL cusp, particularly its width,
is expected to depend mainly on �ϑ1/2, as it is known from
the single electron cusp studies [43]. Assuming that the same
holds for our CTMC model, from the calculated trajectories
we generated the corresponding inclusive DEL spectrum for
a series of �ϑ1/2 values, and compared them with the mea-
sured one. The best agreement was found at �ϑ1/2 = 1.2◦
(see Fig. 2), confirming the result presented in Sec. II.

In the knowledge of the energy and angular resolution of
the electron detection the minimum energy of the threshold
electrons in the projectile frame can be estimated. In principle,
the energy resolution of 0.6 eV at the center of the cusp allows
one to discriminate electrons emitted from the projectile with
energy as low as 0.5 meV. However, according to a simple
calculation, no information can be obtained about the forward
and backward angular correlation of such extremely low-
energy electrons because of the relatively large acceptance
angle �ϑ1/2. At this angular resolution the forward and back-
ward emission (ϑ ′

1/2 � π/2) will be observable in the labora-
tory energy spectrum only for threshold energies �12 meV.
The corresponding range in the laboratory spectrum is ±
1.4 eV around the center of the cusp. Within this range the
information about the angular correlation is limited.

B. Monte Carlo simulation based on Wannier’s theory

As it is discussed in Sec. I, the two-electron cusp can most
likely be interpreted as a result of formation of a correlated
two-electron Wannier state during the collision. The purpose
of the Monte Carlo simulation was to obtain information
about how far the experimental data reflect the properties of
such a state. In our procedure we randomly create individual
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trajectories for the two electrons with the theoretically
predicted energy and angular distribution, and track the path
of the electrons until they reach the detectors. Using this
method, the experimental conditions of the electron detection
can easily be taken into account.

Wannier’s theory predicts (e.g., [13]) that the angular cor-
relation of the electron pair is characterized by the Gaussian
distribution

d4σ

dE ′
1 d	′

1 dE ′
2 d	′

2

∝ exp

[
− 1

2w2
(θ ′

12 − π )2

]
, (4)

where d4σ/dE ′
1 d	′

1 dE ′
2 d	′

2 is the fourfold differential cross
section (FDCS) for the two-electron emission differential in
the electron energies E ′

1, E ′
2 and solid angles 	′

1, 	′
2. w is

the width of the Gaussian, and θ ′
12 is the angle between the

velocity vectors of the electrons. Primed quantities are used
for the description of the electron emission in the projectile
frame. The FWHM (full width at half maximum) of the
distribution depends on the total energy, E ′

t = E ′
1 + E ′

2; it is
a slowly increasing function of E ′

t :

FWHM = 2
√

2 ln 2 w = α E ′ 1/4
t . (5)

The simulation starts with a random creation of electron
pairs in the projectile frame with the angular correlation ex-
pressed by Eq. (4). We assume that at the time moment when
the simulation starts the collision fragments have already
separated from each other to asymptotically large distances;
i.e., they fly freely without any interaction between them.
We assume, furthermore, that the electron pairs are emitted
isotropically. In Eq. (5) the value of α was derived from
the angular correlation obtained by Barrachina et al. [19]
considering the quantum-mechanical version of Wannier’s
theory:

d4σ

dE ′
1 d	′

1 dE ′
2 d	′

2

∝ exp

[
− 1

16

√
(9 − 4ZT)(4ZT − 1)

E
(θ ′

12 − π )2

]
. (6)

For ZT = 1 and 1.3 one obtains α = 3.38 and 3.33, respec-
tively. We note that α = 3.0 was obtained theoretically by
Bartlett and Stelbovics [17] for electron-impact ionization
of hydrogen, and was verified experimentally by Williams
et al. [11].

For electron-impact ionization the total electron energy E ′
t

in Eq. (5) is the excess energy above the ionization threshold
which is uniquely determined by the impact energy. In ion-
atom collision E ′

t has a continuous spectrum; its value depends
on the amount of the transferred energy. We may assume that
for small excitations above the threshold the cross section for
the two-electron emission differential in E ′

t can be expressed
by a linear function:

dσ

dE ′
t

∼ c0 + c1E ′
t . (7)

This is justified by the small energy of the electrons contribut-
ing to the cusp in the projectile-centered reference system.
The laboratory electron energy range of our measurements is
28–56 eV. In the projectile system this corresponds to forward

and backward emission with only maximum 1-eV energy. The
coefficients c0 and c1 are free parameters of the model. In
the experiment we measured relative cross sections, therefore
only the ratio of the two coefficients has to be considered.

As a further justification of Eq. (7) let us consider the cross
section integrated over E ′

t :

σ ∼ c0E ′
t + c1E ′2

t /2. (8)

At very small values of E ′
t the quadratic term is negligible, i.e.,

σ ∼ E ′
t . This is very close to the prediction of the Wannier

theory, σ ∼ E1.127.
It is important to note that the fact that the differential cross

section in Eq. (7) does not vanish at E ′
t = 0 automatically

leads to the appearance of the cusp. To show this, let us
consider the FDCS of the two-electron ejection which is dif-
ferential in the electron velocities, d4σ/dv1dv2. This quantity
is invariant with respect to the reference frame transformation.
Accordingly, we have the following relationship between the
FDCS in the laboratory and projectile frame:

d4σ

v2
1dv1 d	1 v2

2dv2 d	2
= d4σ ′

v′2
1 dv′

1 d	′
1 v′2

2 dv′
2 d	′

2

. (9)

Since v2
i dvi can be expressed as vi dEi (also for the primed

quantities), we obtain

d4σ

dE1 d	1 dE2 d	2
= v1v2

v′
1v

′
2

d4σ ′

dE ′
1 d	′

1 dE ′
2 d	′

2

. (10)

It can be seen that if the FDCS in the projectile frame does
not vanish at E ′

1 = E ′
2 = 0 then the FDCS in the laboratory

frame is divergent for the ejection of both electrons; i.e., the
two-electron cusp appears. The c0 �= 0 in Eq. (7) together
with other assumptions of our model ensures the nonvanish-
ing FDCS in the projectile frame, and thereby provides the
possibility for the formation of the two-electron cusp.

In the simulation the electron energies E ′
1 and E ′

2 are
obtained as follows. First we select the value of the total
electron energy E ′

t randomly with the distribution defined by
Eq. (7). Then we share E ′

t between the two electrons assuming
uniform distribution. The angular correlation given by Eqs. (4)
and (5) and the uniform energy share are the most important
predictions of the Wannier threshold theories (see, e.g., [13]).
The latter prediction has been verified experimentally [5,9].

Using the obtained electron energies and emission angles,
we determine the velocity vectors of the electrons. The en-
ergies E1 and E2 in the laboratory frame are calculated by
Galilean transformation of the velocities. All the characteris-
tics of the time-of-flight measurement (acceptance angle, time
resolution, finite projectile beam size, extended gas target) are
taken into account in the simulation.

IV. RESULTS AND DISCUSSION

From the measured triple-coincidence yields we deter-
mined relative FDCSs by subtracting the random coincidences
and applying corrections for the detection efficiency of the
two electron branches. The result is displayed in Fig. 3. In
panel (a) the 3D representation of FDCS clearly shows a
peak at the expected cusp position for both electrons, giving
evidence for existence of the two-electron cusp in DEL of
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FIG. 3. The measured relative FDCS for the two-electron emis-
sion in DEL of He− as a function of the energies of the electron
pairs. In panels (a) and (b) the scale of the FDCS is linear. For the
explanation of the dotted line in panel (b) see the main text.

He−. According to the contour plot of the data in panel (b),
the emission of the electron pairs is highly anticorrelated:
An electron ejected with an energy higher (lower) than the
cusp energy (E0 = 40.8 eV) is most likely accompanied by an
electron ejected with an energy lower (higher) than E0. In the
projectile frame this corresponds to back-to-back emission.

The dotted line in the contour plot shows the correlation
that could be observed in the limit of infinitely sharp angular
correlation of 180◦, for infinitely good angular and energy
resolution, and for equal energy share between the electrons
in the projectile frame. Its equation

E2 = 4E0 + E1 − 4
√

E0E1 (11)

is obtained by solving the system of equations v1 = v0 + v′
and v2 = v0 − v′, where v1 and v2 are the laboratory-frame
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FIG. 4. The relative FDCS for the two-electron emission in DEL
of He− obtained by the present CTMC calculations.

velocities, and ±v′ are the projectile-frame velocities of the
electrons.

The distribution of the energies of the electron pairs forms
a ridge. In the vicinity of the peak the ridge follows well
the line given by Eq. (11). Farther from the peak the ridge
increasingly deviates from this line towards larger energies.
This is in contrast to the correlation pattern observed in our
first experiment on the two-electron cusp [27], which had a
butterfly shape and showed almost a mirror symmetry with
respect to the line of the complete anticorrelation.

Figure 4 shows the results of the CTMC calculations. Ac-
cording to panel (a), the existence of the two-electron cusp is
uncertain. Although the distribution has a peak at the expected
cusp position, it is not well pronounced; one cannot exclude
that it is only a statistical fluctuation of the intense, long ridge
dominating the distribution. At the same time, as is seen in
panel (b), CTMC predicts highly anticorrelated emission of
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FIG. 5. Energy spectra of the electron e1 emitted from DEL of
He− with the condition that the energy of e2 lies in the interval
(a) 35.6–40.1 eV, (b) 40.1–41.6 eV and (c) 41.6–46.1 eV. The full
circles denote the experimental data. The open circles represent
the CTMC calculations. The experimental and theoretical data are
normalized at the peak maxima.

the two electrons, in accordance with the experiment. How-
ever, in this case the ridge of the calculated FDCSs follows
the line given by Eq. (11) through the entire considered
energy range. Furthermore, the distribution of FDCSs shows
a mirror symmetry with respect to the latter line, in strong
disagreement with the experiment.

The above mirror symmetry of the calculated FDCSs can
be well understood physically. In the final state of the collision
the only charged particles are the two electrons and the projec-
tile core. The screened Coulomb field of the receding neutral
target atom has practically no effect on the motion of the
other three particles. In other words, the Wannier two-electron
state is unperturbed, and the motion of the two electrons is
symmetric. In this context we mention that in our first study
of the two-electron cusp [27] this was not the case. There the
two electrons originated from the mutual ionization of the
projectile and target, therefore in the final state the motion
of the electrons was influenced by the Coulomb field of the
receding ionized target, too. This postcollision interaction
(PCI) effect resulted in a small deviation of the distribution
of FDCSs from the mirror symmetry towards lower energies.

For a detailed comparison between the experiment and the-
ory we considered some specific ranges of FDCS. In Fig. 5 we
displayed measured and calculated energy spectra of one of
the electrons, e1, ejected from DEL of He− with the condition
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FIG. 6. Results of the Monte Carlo simulations. Panel (a) repre-
sents the correlation pattern expected from Wannier’s theory. Panel
(b) shows the distribution perturbed by postcollision interaction.

that the energy of the other electron, e2, lies in a narrow
range. We compare only the shapes of the spectra, therefore
we normalized the calculated spectra to the experimental
ones at the peak maxima. According to the figure, CTMC
provides only a qualitative description of the experimental
data: For cases displayed in Figs. 5(a) and 5(c) it predicts
larger shifts and broadening of the peak than those observed in
the experiment. For the case shown in Fig. 5(b) (E2 ≈ E0) the
calculated peak is considerably narrower than the measured
one.

In the following we discuss the results obtained by our
Monte Carlo simulations (see Sec. III B). Figure 6(a) shows
the contour plot of the distribution of the energies of the
electron pairs created according to Wannier’s theory, i.e.,
assuming the angular correlation given by Eqs. (4) and (5)
and uniform share of the total excitation energy. In Eq. (5)
α = 3.38 was used, and the experimentally observed intensity
of the two-electron cusp was reproduced by taking c0/c1 =
1.67 × 10−3 in Eq. (7). From comparison of Figs. 3(b) and
6(a) one can conclude that the prediction of Wannier’s theory
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is in complete disagreement with the experiment. At the same
time, the agreement between the simulation and the CTMC
result shown in Fig. 4(b) is somewhat better.

There are two striking differences between the measured
and simulated correlation patterns.

(i) The simulated distribution has a butterfly shape which
is due to the increasing width of the angular correlation with
increasing total excitation energy E ′

t according to Eq. (5). In
contrast to this, the measured distribution is more concen-
trated along a ridge, indicating almost a constant width of the
angular correlation.

(ii) The simulated distribution shows a mirror symmetry
with respect to the line given by Eq. (11). The measured
distribution does not show this symmetry; the ridge strongly
curves from the line of symmetry towards larger energies.

We attempted to reproduce the experimental correlation
pattern by suitable choice of the parameters of the Monte
Carlo simulation. The model allowed us to reconstruct only
the main features of the experimental distribution. The best
result is shown in Fig. 6(b). It was obtained by the following
parameters. We used a constant width of the angular correla-
tion, FWHM = π/8. A two-electron cusp comparable with
the measured one was obtained with a modified function for
dσ/dE ′

t ,

dσ

dE ′
t

∼ c0 + c1E ′ 1/2
t , (12)

with the choice c0/c1 = 6.67 × 10−3. The deviation of the
distribution from the mirror symmetry was accounted for by
increasing the velocity of both electrons in the projectile frame
by �v′ = 3 v′ 3/2.

On the basis of the modified Monte Carlo simulation we
tried to understand the physical process leading to the two-
electron cusp in DEL of He−. It is clear that the main mech-
anism is not the formation of the Wannier-type correlated
two-electron state. This is excluded by the constant width
of the angular correlation. The increased velocities of the
electrons in the projectile frame indicate the presence of a PCI
effect. As it was mentioned above, we found evidence of the
role of PCI in the formation of the two-electron cusp in our
previous study of the process [44]. In that case PCI was due
to the Coulomb field of the ionized target which attracted the
electrons backward. In the simulation this was expressed by
decreasing the velocity of the electrons in the projectile frame;
i.e., the sign of �v′ was negative.

The positive �v′ found in the present investigations means
a repulsive PCI. The most obvious candidate for such an
interaction is that exerted by a third electron. As we mentioned
in Sec. I, the coincidence conditions did not exclude the
simultaneous ionization of the target. However, the probability
of the process is very small due to the strongly bound electrons
in He. A repulsive force may also arise as a result of the
polarization of the target by the Coulomb field of the projectile
core. In principle, the dipolar force has long range [24], and
thereby it may perturb the motion of the two electrons. How-
ever, the collision-induced dipole momentum in the He atom
is not permanent [23,24], and therefore its effect is uncer-
tain at asymptotically large separation between the collision
partners.
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R
el

at
iv

e 
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C
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0

FIG. 7. Relative triply differential cross section obtained by inte-
gration of the measured relative FDCS over the energy of one of the
two electrons ejected in DEL of He−.

A closer look at the measured relative FDCS shown in
Fig. 3 reveals some structure: A shoulder is seen on both
sides of the peak at electron energies at E1(2) = 39 eV and
E2(1) = 43 eV. The structure is very uncertain due to the poor
statistics. To confirm its existence, we integrated the FDCS
over the energy of one of the two electrons. The obtained
spectrum (relative triply differential cross section, TDCS) is
plotted in Fig. 7. It shows a cusp that is shifted to lower
energies. On the high-energy side of the peak the shoulder
(or peak) is clearly visible at 43-eV electron energy. We note
that the shift of the cusp can probably be explained by the
contribution of the unresolved low-energy shoulder at 39 eV.
If it is so, the two shoulders are located symmetrically on
the low- and high-energy side of the cusp. The shape of
the spectrum suggests two mechanisms of the two-electron
emission: Direct double ionization of He− leading to the cusp
and a resonant process resulting in the structure superimposed
on the cusp. Resonantly two low-energy electrons may be
emitted as a result of single electron detachment of He− and
subsequent shakeoff of the neutralized He. Since the shakeoff
is delayed with respect to the primary process, the question
arises how far the motions of the electrons are anticorrelated.
Another possible resonant process is the formation of a triply
excited state of He− (for a review see, e.g., [45]) followed
by simultaneous double-Auger (DA) decay [46]. In this case
strong angular correlation is expected between the electrons
[47]. For He− the DA process was observed for the triply
excited 2s2p2 4P state [48]. Since this state decays to the 1s
state of He+, the energies of the emitted electrons are too
large to be observed in our experiment. Small DA energies
are expected only from the decay of highly excited nln′l ′n′′l ′′
states, where n, n′, and n′′ have large values. Lacking any
information about such states and their decay properties, we
cannot estimate the contribution of the DA process to the
relative FDCS measured in the present paper. We note that
for the inclusion of the resonant processes their interference
with the direct process has to be also considered.
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V. CONCLUSIONS

We carried out a triple-coincidence experiment for the
study of the two-electron cusp formed in DEL of He− induced
by collisions with He atoms at 300-keV impact energy. We
established the existence of the cusp in the energy distribution
of the forward emitted electron pairs. We found that the
motions of the electrons contributing to the cusp are strongly
anticorrelated. Our Monte Carlo simulations revealed that the
observed cusp cannot be understood in terms of Wannier’s
theory. The most striking deviation from the theory is that
the width of the angular correlation of the electron pairs does
not increase with the total excitation energy. Furthermore, the
energy distribution of the electron pairs does not show mirror
symmetry with respect to the line of the complete anticorre-
lation. We considered as a reason for the latter deviation PCI
exerted by a third emitted electron or by the polarized target
on the electron pairs.

We compared our experimental data also with the results
of four-body CTMC calculations carried out applying the

soft-Coulomb potential approximation for the inclusion of the
electron-electron interaction. The calculations do not prove
unambiguously the existence of the two-electron cusp. The
obtained energy correlation pattern of the electron pairs is in
disagreement with the measured data; rather, it is in accor-
dance with the expectation of Wannier’s theory.

A further result of the present investigations is the obser-
vation of a structure in the measured relative FDCS. The most
probable explanation of the structure is the formation of a
high-lying, triply excited state of He− followed by simulta-
neous double-Auger decay. This observation calls for a new
way of exploring the triply excited states of He− by means of
zero-degree electron spectroscopy.
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