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Abstract. The Jensen’s inequality plays a crucial role to obtain inequalities for di-
vergences between probability distributions. In this chapter, we introduce a new
functional, based on the f -divergence functional, and then we obtain some esti-
mates for the new functional, the f -divergence and the Rényi divergence by apply-
ing a cyclic refinement of the Jensen’s inequality. Some inequalities for Rényi and
Shannon entropies are obtained too. Zipf-Mandelbrot law is used to illustrate the
results.
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7.1 Introduction

Divergences between probability distributions have been introduced to measure the dif-
ference between them. A lot of different type of divergences exist, for example the f -
divergence (especially, Kullback–Leibler divergence, Hellinger distance and total variation
distance), Rényi divergence, Jensen–Shannon divergence, etc. (see [45] and [51]). There
are a lot of papers dealing with inequalities for divergences and entropies, see e.g. [44] and
[50] and the references therein. The Jensen’s inequality plays a crucial role some of these
inequalities.
First we give some recent results on integral and discrete Jensens inequalites. We need the
following hypotheses:

(H1) Let 2 ≤ k ≤ n be integers, and let p1, . . . , pn and 1, . . . ,k represent positive
probability distributions.

(H2) Let C be a convex subset of a real vector space V , and f : C→ R be a convex
function.

(H3) Let (X ,B,) be a probability space.
Let l ≥ 2 be a fixed integer. The  -algebra in Xl generated by the projection mappings

prm : Xl → X (m = 1, . . . , l)
prm (x1, . . . ,xl) := xm

is denoted by Bl .  l means the product measure on Bl : this measure is uniquely ( is
 -finite) specified by

 l (B1× . . .×Bl) :=  (B1) . . . (Bl) , Bm ∈B, m = 1, . . . , l.

(H4) Let g be a -integrable function on X taking values in an interval I ⊂ R.
(H5) Let f be a convex function on I such that f ◦ g is -integrable on X .
Under the conditions (H1) and (H3-H5) we define

Cint = Cint ( f ,g, ,p, )

:=
n


i=1

(
k−1


j=0

 j+1pi+ j

)∫
Xn

f

⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ jg(xi+ j)

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠dn (x1, . . . ,xn) , (7.1)

and for t ∈ [0,1]

Cpar (t) = Cpar (t, f ,g, ,p, ) :=
n


i=1

(
k−1


j=0

 j+1pi+ j

)

·
∫
Xn

f

⎛⎜⎜⎜⎝t

k−1

j=0

 j+1pi+ jg(xi+ j)

k−1

j=0

 j+1pi+ j

+(1− t)
∫
X

gd

⎞⎟⎟⎟⎠dn (x1, . . . ,xn) , (7.2)
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where i+ j means i+ j−n in case of i+ j > n.
Now we state cyclic renements of the discrete and integral form of Jensens inequality

introduced in [20] (see also [36]):

Theorem 7.1 Assume (H1) and (H2). If v1, . . . ,vn ∈C, then

f

(
n


i=1

pivi

)
≤Cdis = Cdis ( f ,v,p, ) (7.3)

:=
n


i=1

(
k−1


j=0

 j+1pi+ j

)
f

⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ jvi+ j

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠≤ n


i=1

pi f (vi)

where i+ j means i+ j−n in case of i+ j > n.

Theorem 7.2 Assume (H1) and (H3-H5). Then

f

⎛⎝∫
X

gd

⎞⎠≤Cpar (t)≤Cint ≤
∫
X

f ◦ gd , t ∈ [0,1] .

To give applications in information theory, we introduce some denitions. The following
notion was introduced by Csiszár in [2] and [37].

Definition 7.1 Let f : ]0,[→ ]0,[ be a convex function, and let p := (p1, . . . , pn) and
q := (q1, . . . ,qn) be positive probability distributions. The f -divergence functional is

I f (p,q) :=
n


i=1

qi f

(
pi

qi

)
.

It is possible to use nonnegative probability distributions in the f -divergence func-
tional, by defining

f (0) := lim
t→0+

f (t) ; 0 f

(
0
0

)
:= 0; 0 f

(a
0

)
:= lim

t→0+
t f
(a

t

)
, a > 0.

Based on the previous denition, the following new functional was introduced in [9].

Definition 7.2 Let J ⊂ R be an interval, and let f : J → R be a function. Let p :=
(p1, . . . , pn) ∈ R

n, and q := (q1, . . . ,qn) ∈ ]0,[n such that

pi

qi
∈ J, i = 1, . . . ,n. (7.4)

Then let

Î f (p,q) :=
n


i=1

qi f

(
pi

qi

)
.
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As a special case, Shannon entropy and the measures related to it are frequently applied in
fields like population genetics, molecular ecology, information theory, dynamical systems
and statistical physics(see [21, 22].

Definition 7.3 The Shannon entropy of a positive probability distribution p := (p1, . . . , pn)
is defined by

H (p) :=−
n


i=1

pi log(pi) .

One of the most famous distance functions used in information theory [27, 30], mathe-
matical statistics [28, 31, 29] and signal processing [23, 26] is Kullback-Leibler distance.
The Kullback-Leibler distance [13, 25] between the positive probability distributions
p = (p1, . . . , pn) and q = (q1, . . . ,qn) is defined by

Definition 7.4 The Kullback-Leibler divergence between the positive probability distri-
butions p := (p1, . . . , pn) and q := (q1, . . . ,qn) is defined by

D(p‖q) :=
n


i=1

pi log

(
pi

qi

)
.

We shall use the so called Zipf-Mandelbrot law.

Definition 7.5 Zipf-Mandelbrot law is a discrete probability distribution depends on three
parameters N ∈ {1,2, . . .}, q ∈ [0,[ and s > 0, and it is defined by

f (i;N,q,s) :=
1

(i+q)s HN,q,s
, i = 1, . . . ,N,

where

HN,q,s :=
N


k=1

1
(k+q)s

.

If q = 0, then Zipf–Mandelbrot law becomes Zipf’s law.

Zipf’s law is one of the basic laws in information science and bibliometrics. Zipf’s law
is concerning the frequency of words in the text. We count the number of times each word
appears in the text. Words are ranked (r) according to the frequency of occurrence ( f ).
The product of these two numbers is a constant: r · f = c.

Apart from the use of this law in bibliometrics and information science, Zipf’s law
is frequently used in linguistics (see [39], p. 167). In economics and econometrics, this
distribution is known as Pareto’s law which analyze the distribution of the wealthiest mem-
bers of the community (see [39], p. 125). These two laws are the same in the mathematical
sense, they are only applied in a different context (see [42], p. 294).

The same type of distribution that we have in Zipf’s and Pareto’s law can be also
found in other scientific disciplines, such as: physics, biology, earth and planetary sciences,
computer science, demography and the social sciences. For example, the same type of
distribution, which we also call the Power law, we can analyze the number of hits on web
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sites, the magnitude of earthquakes, diameter of moon craters, intensity of solar flares,
intensity of wars, population of cities, and others (see [48]).

More general model introduced Benoit Mandelbrot (see [46]), by using arguments on
the fractal structure of lexical trees.

The are also quite different interpretation of Zipf-Mandelbrot law in ecology, as it is
pointed out in [47] (see also [43] and [52]).

7.2 Estimations of f - and Rényi divergences

In this section we obtain some estimates for the new functional, the f -divergence func-
tional, the Sannon entropy and the Rényi divergence by applying cyclic renement results
for the Jensens inequality. Finally, some concrete cases are considered, by using Zipf-
Mandelbrot law.

It is generally common to take log with base of 2 in the introduced notions, but in our
investigations this is not essential.

7.2.1 Inequalities for Csiszár divergence and Shannon entropy

In the first result we apply Theorem 7.1 to Î f (p,q).

Theorem 7.3 Let 2≤ k≤ n be integers, and let  := (1, . . . ,k) be a positive probability
distribution. Let J⊂R be an interval, let p := (p1, . . . , pn)∈R

n, and let q := (q1, . . . ,qn)∈
]0,[n such that

pi

qi
∈ J, i = 1, . . . ,n.

(a) If f : J→ R is a convex function, then

Î f (p,q) =
n


i=1

qi f

(
pi

qi

)

≥
n


i=1

(
k−1


j=0

 j+1qi+ j

)
f

⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

k−1

j=0

 j+1qi+ j

⎞⎟⎟⎟⎠≥ f

⎛⎜⎜⎜⎝
n


i=1

pi

n


i=1

qi

⎞⎟⎟⎟⎠ n


i=1

qi. (7.5)

If f is a concave function, then inequality signs in (7.5) are reversed.
(b) If f : J→ R is a function such that x→ x f (x) (x ∈ J) is convex, then

ÎidJ f (p,q) =
n


i=1

pi f

(
pi

qi

)
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≥
n


i=1

(
k−1


j=0

 j+1pi+ j

)
f

⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

k−1

j=0

 j+1qi+ j

⎞⎟⎟⎟⎠≥ f

⎛⎜⎜⎜⎝
n


i=1

pi

n


i=1

qi

⎞⎟⎟⎟⎠ n


i=1

pi. (7.6)

If x→ x f (x) (x ∈ J) is a concave function, then inequality signs in (7.6) are reversed.
In all these inequalities i+ j means i+ j−n in case of i+ j > n.

Proof. (a) By applying Theorem 7.1 with C := J, f := f ,

pi :=
qi
n


i=1

qi

, vi :=
pi

qi
, i = 1, . . . ,n

we have
n


i=1

qi f

(
pi

qi

)
=

(
n


i=1

qi

)
·

n


i=1

qi
n


i=1

qi

f

(
pi

qi

)

≥
(

n


i=1

qi

)
·

n


i=1

⎛⎜⎜⎜⎝k−1


j=0

 j+1
qi+ j
n


i=1

qi

⎞⎟⎟⎟⎠ f

⎛⎜⎜⎜⎜⎜⎜⎜⎝

k−1

j=0

 j+1
qi+ j
n


i=1

qi

pi+ j
qi+ j

k−1

j=0

 j+1
qi+ j
n


i=1

qi

⎞⎟⎟⎟⎟⎟⎟⎟⎠

=
n


i=1

(
k−1


j=0

 j+1qi+ j

)
f

⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

k−1

j=0

 j+1qi+ j

⎞⎟⎟⎟⎠

≥ f

⎛⎜⎜⎜⎝
n


i=1

pi

n


i=1

qi

⎞⎟⎟⎟⎠ n


i=1

qi.

(b) We can prove similarly to (a), by using f := idJ f .
The proof is complete. �

Remark 7.1 (a) Csiszár and Körner classical inequality for the f -divergence functional
is generalized and refined in (7.5).

(b) Other type of refinements are applied to the f -divergence functional in [40], [41]
and [35].

(c) For example, the functions x→ x logb (x) (x > 0, b > 1) and x→ xarctan(x) (x ∈ R)
are convex.
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We mention two special cases of the previous result.
The first case corresponds to the entropy of a discrete probability distribution.

Corollary 7.1 Let 2≤ k≤ n be integers, and let  := (1, . . . ,k) be a positive probability
distribution.

(a) If q := (q1, . . . ,qn) ∈ ]0,[n, and the base of log is greater than 1, then

−
n


i=1

qi log(qi)

≤−
n


i=1

(
k−1


j=0

 j+1qi+ j

)
log

(
k−1


j=0

 j+1qi+ j

)
≤ log

⎛⎜⎜⎜⎝ n
n


i=1

qi

⎞⎟⎟⎟⎠ n


i=1

qi. (7.7)

If the base of log is between 0 and 1, then inequality signs in (7.7) are reversed.
(b) If q := (q1, . . . ,qn) is a positive probability distribution and the base of log is greater

than 1, then we have estimates for the Shannon entropy of q

H (q)≤−
n


i=1

(
k−1


j=0

 j+1qi+ j

)
log

(
k−1


j=0

 j+1qi+ j

)
≤ log(n) .

If the base of log is between 0 and 1, then inequality signs in (7.7) are reversed.
In all these inequalities i+ j means i+ j−n in case of i+ j > n.

Proof. (a) It follows from Theorem 7.3 (a), by using f := log and p := (1, . . . ,1).
(b) It is a special case of (a). �

The second case corresponds to the relative entropy or Kullback-Leibler divergence
between two probability distributions.

Corollary 7.2 Let 2≤ k≤ n be integers, and let  := (1, . . . ,k) be a positive probability
distribution.

(a) Let p := (p1, . . . , pn) ∈ ]0,[n and q := (q1, . . . ,qn) ∈ ]0,[n. If the base of log is
greater than 1, then

n


i=1

pi log

(
pi

qi

)
(7.8)

≥
n


i=1

(
k−1


j=0

 j+1pi+ j

)
log

⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

k−1

j=0

 j+1qi+ j

⎞⎟⎟⎟⎠≥ log

⎛⎜⎜⎜⎝
n


i=1

pi

n


i=1

qi

⎞⎟⎟⎟⎠ n


i=1

pi. (7.9)

If the base of log is between 0 and 1, then inequality signs in (7.9) are reversed.
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(b) If p and q are positive probability distributions, and the base of log is greater than
1, then we have

D(p‖q)≥
n


i=1

(
k−1


j=0

 j+1pi+ j

)
log

⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

k−1

j=0

 j+1qi+ j

⎞⎟⎟⎟⎠≥ 0. (7.10)

If the base of log is between 0 and 1, then inequality signs in (7.10) are reversed.
In all these inequalities i+ j means i+ j−n in case of i+ j > n.

Proof. (a) We can apply Theorem 7.3 (b) to the function f := log.
(b) It is a special case of (a). �

Remark 7.2 We can apply Theorem 7.3 to have similar inequalities for other distances
between two probability distributions.

7.2.2 Inequalities for Rényi divergence and entropy

The Rényi divergence and entropy come from [49].

Definition 7.6 Let p := (p1, . . . , pn) and q := (q1, . . . ,qn) be positive probability distri-
butions, and let  ≥ 0,  
= 1.

(a) The Rényi divergence of order  is defined by

D(p,q) :=
1

−1
log

(
n


i=1

qi

(
pi

qi

))
. (7.11)

(b) The Rényi entropy of order  of p is defined by

H (p) :=
1

1− log

(
n


i=1

pi

)
. (7.12)

The Rényi divergence and the Rényi entropy can also be extended to nonnegative prob-
ability distributions.

If  → 1 in (7.11), we have the Kullback-Leibler divergence, and if  → 1 in (7.12),
then we have the Shannon entropy.

In the next two results inequalities can be found for the Rényi divergence.

Theorem 7.4 Let 2 ≤ k ≤ n be integers, and let  := (1, . . . ,k), p := (p1, . . . , pn) and
q := (q1, . . . ,qn) be positive probability distributions.

(a) If 0≤  ≤  ,  ,  
= 1, and the base of log is greater than 1, then

D(p,q)≤ 1
 −1

log

⎛⎜⎜⎜⎜⎝
n


i=1

(
k−1


j=0

 j+1pi+ j

)⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

(
pi+ j
qi+ j

)−1

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠
−1
−1
⎞⎟⎟⎟⎟⎠ (7.13)
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≤ D (p,q)

The reverse inequalities hold if the base of log is between 0 and 1.
(b) If 1 <  , and the base of log is greater than 1, then

D1(p,q) = D(p‖q) =
n


i=1

pi log

(
pi

qi

)

≤ 1
 −1

log

⎛⎜⎜⎜⎝ n


i=1

(
k−1


j=0

 j+1pi+ j

)
exp

⎛⎜⎜⎜⎝
( −1)

k−1

j=0

 j+1pi+ j log
(

pi+ j
qi+ j

)
k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠

≤ D (p,q),

where the base of exp is the same as the base of log.
The reverse inequalities hold if the base of log is between 0 and 1.
(c) If 0≤  < 1, and the base of log is greater than 1, then

D(p,q)

≤ 1
−1

n


i=1

(
k−1


j=0

 j+1pi+ j

)
log

⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

(
pi+ j
qi+ j

)−1

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠≤ D1(p,q)

The reverse inequalities hold if the base of log is between 0 and 1.
In all these inequalities i+ j means i+ j−n in case of i+ j > n.

Proof. (a) By applying Theorem 7.1 with C := ]0,[, f : ]0,[→ R, f (t) := t
−1
−1 ,

vi :=
(

pi

qi

)−1

, i = 1, . . . ,n,

we have (
n


i=1

qi

(
pi

qi

)) −1
−1

=

(
n


i=1

pi

(
pi

qi

)−1
) −1

−1

≤
n


i=1

(
k−1


j=0

 j+1pi+ j

)⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

(
pi+ j
qi+ j

)−1

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠
−1
−1

≤
n


i=1

pi

(
pi

qi

)−1

(7.14)

if either 0 ≤  < 1 <  or 1 <  ≤  , and the reverse inequalities hold in (7.61) if 0 ≤
 ≤  < 1. By raising the power 1

−1 , we have from all these cases that(
n


i=1

qi

(
pi

qi

)) 1
−1
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≤

⎛⎜⎜⎜⎜⎝
n


i=1

(
k−1


j=0

 j+1pi+ j

)⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

(
pi+ j
qi+ j

)−1

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠
−1
−1
⎞⎟⎟⎟⎟⎠

1
−1

≤
(

n


i=1

pi

(
pi

qi

)−1
) 1

−1

=

(
n


i=1

qi

(
pi

qi

)) 1
−1

.

Since log is increasing if the base of log is greater than 1, it now follows (7.13).
If the base of log is between 0 and 1, then log is decreasing, and therefore inequality

signs in (7.13) are reversed.
(b) and (c) When  = 1 or  = 1, we have the result by taking limit.
The proof is complete. �

Theorem 7.5 Let 2 ≤ k ≤ n be integers, and let  := (1, . . . ,k), p := (p1, . . . , pn) and
q := (q1, . . . ,qn) be positive probability distributions.

If either 0≤  < 1 and the base of log is greater than 1, or 1 <  and the base of log
is between 0 and 1, then

1
n


i=1

qi

(
pi
qi

) n


i=1

pi

(
pi

qi

)−1

log

(
pi

qi

)
≤ 1

(−1)
n


i=1

pi

(
pi
qi

)−1
×

×
n


i=1

(
k−1


j=0

 j+1pi+ j

(
pi+ j

qi+ j

)−1
)

log

⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

(
pi+ j
qi+ j

)−1

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠≤ D(p,q) (7.15)

≤ 1
−1

n


i=1

(
k−1


j=0

 j+1pi+ j

)
log

⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

(
pi+ j
qi+ j

)−1

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠≤ D1(p,q)

If either 0 ≤  < 1 and the base of log is between 0 and 1, or 1 <  and the base of
log is greater than 1, then the reverse inequalities holds.

In all these inequalities i+ j means i+ j−n in case of i+ j > n.

Proof. We prove only the case when 0 ≤  < 1 and the base of log is greater than 1, the
other cases can be proved similarly.

Since 1
−1 < 0 and the function log is concave, we have from Theorem 7.1 by choosing

C := ]0,[, f := log,

vi :=
(

pi

qi

)−1

, i = 1, . . . ,n,
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that

D(p,q) =
1

−1
log

(
n


i=1

pi

(
pi

qi

)−1
)

≤ 1
−1

n


i=1

(
k−1


j=0

 j+1pi+ j

)
log

⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

(
pi+ j
qi+ j

)−1

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠
≤ 1

−1

n


i=1

pi log

((
pi

qi

)−1
)

=
n


i=1

pi log

(
pi

qi

)
= D1(p,q)

and this gives the desired upper bound for D(p,q).
Since the base of log is greater than 1, the function x→ x log(x) (x > 0) is convex, and

therefore 1
1− < 0 and Theorem 7.1 imply that

D(p,q) :=
1

−1
log

(
n


i=1

pi

(
pi

qi

)−1
)

=
1

(−1)
n


i=1

pi

(
pi
qi

)−1

(
n


i=1

pi

(
pi

qi

)−1
)

log

(
n


i=1

pi

(
pi

qi

)−1
)

≥ 1

(−1)
n


i=1

pi

(
pi
qi

)−1

n


i=1

(
k−1


j=0

 j+1pi+ j

)
×

×

⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

(
pi+ j
qi+ j

)−1

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠ log

⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

(
pi+ j
qi+ j

)−1

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠

1

(−1)
n


i=1

pi

(
pi
qi

)−1

n


i=1

(
k−1


j=0

 j+1pi+ j

(
pi+ j

qi+ j

)−1
)

log

⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

(
pi+ j
qi+ j

)−1

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠
≥ 1

(−1)
n


i=1

pi

(
pi
qi

)−1

n


i=1

pi

(
pi

qi

)−1

log

((
pi

qi

)−1
)

=
1

n


i=1

pi

(
pi
qi

)−1

n


i=1

pi

(
pi

qi

)−1

log

(
pi

qi

)
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which gives the desired lower bound for D(p,q).
The proof is complete. �

Now, by using the previous theorems, some inequalities of Rényi entropy are obtained.
Denote 1

n :=
( 1

n , . . . , 1
n

)
be the discrete uniform distribution.

Corollary 7.3 Let 2 ≤ k ≤ n be integers, and let  := (1, . . . ,k) and p := (p1, . . . , pn)
be positive probability distributions.

(a) If 0≤  ≤  ,  ,  
= 1, and the base of log is greater than 1, then

H (p)≥ 1
1− log

⎛⎜⎜⎜⎜⎝
n


i=1

(
k−1


j=0

 j+1pi+ j

)⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠
−1
−1
⎞⎟⎟⎟⎟⎠≥ H (p) .

The reverse inequalities hold if the base of log is between 0 and 1.
(b) If 1 <  , and the base of log is greater than 1, then

H (p) =−
n


i=1

pi log(pi)≥ log(n)

+
1

1− log

⎛⎜⎜⎜⎝ n


i=1

(
k−1


j=0

 j+1pi+ j

)
exp

⎛⎜⎜⎜⎝
( −1)

k−1

j=0

 j+1pi+ j log(npi+ j)

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠

≥ H (p) ,

where the base of exp is the same as the base of log.
The reverse inequalities hold if the base of log is between 0 and 1.
(c) If 0≤  < 1, and the base of log is greater than 1, then

H (p)≥ 1
1−

n


i=1

(
k−1


j=0

 j+1pi+ j

)
log

⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠≥ H (p)

The reverse inequalities hold if the base of log is between 0 and 1.
In all these inequalities i+ j means i+ j−n in case of i+ j > n.

Proof. If q = 1
n , then

D(p,
1
n

) =
1

−1
log

(
n


i=1

n−1pi

)
= log(n)+

1
−1

log

(
n


i=1

pi

)
,
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and therefore

H (p) = log(n)−D(p,
1
n

). (7.16)

(a) It follows from Theorem 7.4 and (7.16) that

H (p) = log(n)−D(p,
1
n

)

≥ log(n)− 1
 −1

log

⎛⎜⎜⎜⎜⎝n−1
n


i=1

(
k−1


j=0

 j+1pi+ j

)⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠
−1
−1
⎞⎟⎟⎟⎟⎠

≥ log(n)−D (p,
1
n

) = H (p) .

(b) and (c) can be proved similarly.
The proof is complete. �

Corollary 7.4 Let 2 ≤ k ≤ n be integers, and let  := (1, . . . ,k) and p := (p1, . . . , pn)
be positive probability distributions.

If either 0 ≤  < 1 and the base of log is greater than 1, or 1 <  and the base of log
is between 0 and 1, then

− 1
n


i=1

pi

n


i=1

pi log(pi)≥ log(n)− 1

(−1)
n


i=1

pi

×

×
n


i=1

(
k−1


j=0

 j+1pi+ j

)
log

⎛⎜⎜⎜⎝n−1

k−1

j=0

 j+1pi+ j

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠≥ H (p)

≥ 1
1−

n


i=1

(
k−1


j=0

 j+1pi+ j

)
log

⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠≥ H (p)

If either 0 ≤  < 1 and the base of log is between 0 and 1, or 1 <  and the base of
log is greater than 1, then the reverse inequalities holds.

In all these inequalities i+ j means i+ j−n in case of i+ j > n.

Proof. We can prove as Corollary 7.3, by using Theorem 7.5. �

We illustrate our results by using Zipf–Mandelbrot law.
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7.2.3 Inequalities by using the Zipf-Mandelbrot law

We illustrate the previous results by using Zipf-Mandelbrot law.

Corollary 7.5 Let p be the Zipf-Mandelbrot law as in Definition 10.1, let 2 ≤ k ≤ N be
integers, and let  := (1, . . . ,k) be a probability distribution. By applying Corollary 7.3
(c), we have:

If 0≤  < 1, and the base of log is greater than 1, then

H (p) =
1

1− log

(
1

H
N,q,s

N


i=1

1

(i+q)s

)

≥ 1
1−

n


i=1

(
k−1


j=0

 j+1

(i+ j +q)s HN,q,s

)
log

⎛⎜⎜⎜⎝ 1

H−1
N,q,s

k−1

j=0

 j+1

(i+ j+q)s

k−1

j=0

 j+1
(i+q)s

⎞⎟⎟⎟⎠
≥ s

HN,q,s

N


i=1

log(i+q)
(i+q)s

+ log(HN,q,s) = H (p)

The reverse inequalities hold if the base of log is between 0 and 1.
In all these inequalities i+ j means i+ j−n in case of i+ j > n.

Corollary 7.6 Let p1 and p2 be the Zipf-Mandelbrot law with parameters N ∈ {1,2, . . .},
q1, q2 ∈ [0,[ and s1, s2 > 0, respectively, let 2 ≤ k ≤ N be integers, and let  :=
(1, . . . ,k) be a probability distribution. By applying Corollary 7.2 (b), we have:

If the base of log is greater than 1, then

D(p1‖p2) =
N


i=1

1
(i+q1)

s1 HN,q1,s1
log

(
(i+q2)

s2 HN,q2,s2

(i+q1)
s1 HN,q1,s1

)

≥
N


i=1

(
k−1


j=0

 j+1
1

(i+ j +q1)
s1 HN,q1,s1

)
log

⎛⎜⎜⎜⎝
k−1

j=0

 j+1
1

(i+ j+q1)
s1 HN,q1 ,s1

k−1

j=0

 j+1
1

(i+ j+q2)
s2 HN,q2 ,s2

⎞⎟⎟⎟⎠≥ 0. (7.17)

If the base of log is between 0 and 1, then inequality signs in (7.17) are reversed.
In all these inequalities i+ j means i+ j−n in case of i+ j > n.
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7.3 Cyclic improvemnts of inequalities for entropy
of Zipf-Mandelbrot law via Hermite interpolating
polynomial

In order to give our main results, we consider the following hypotheses for next sections.
(M1) Let I ⊂ R be an interval, x := (x1, . . . ,xn) ∈ In and let p1, . . . , pn and 1, . . . ,k rep-
resent positive probability distributions for 2≤ k ≤ n.

(M2) Let f : I→R be a convex function.

Remark 7.3 Under the conditions (M1), we define

J1( f ) = J1(x,p, ; f ) :=
n


i=1

pi f (xi)−Cdis ( f ,x,p, )

J2( f ) = J1(x,p, ; f ) := Cdis ( f ,x,p, )− f

(
n


i=1

pixi

)
where f : I→R is a function. The functionals f → Ju( f ) are linear, u = 1,2, and Theorem
7.1 imply that

Ju( f )≥ 0, u = 1,2

if f : I→ R is a convex function.
Assume (H1) and (H3-H5). Then we have the following additional linear functionals

J3( f ) = J3( f ,g, ,p, ) :=
∫
X

f ◦ gd−Cint ( f ,g, ,p, )≥ 0,

J4( f ) = J4(t, f ,g, ,p, ) :=
∫
X

f ◦ gd−Cpar (t, f ,g, ,p, )≥ 0; t ∈ [0,1] ,

J5( f ) = J5(t, f ,g, ,p, ) := Cint ( f ,g, ,p, )−Cpar (t, f ,g, ,p, )≥ 0; t ∈ [0,1] ,

J6( f ) = J6(t, f ,g, ,p, ) := Cpar (t, f ,g, ,p, )− f

⎛⎝∫
X

gd

⎞⎠≥ 0; t ∈ [0,1] .

For v = 1, . . . ,5, consider the Green functions Gv : [1,2]× [1,2]→ R defined as

G1(z,r) =

{
(2−z)(1−r)

2−1
, 1 ≤ r ≤ z;

(2−r)(1−z)
2−1

, z≤ r ≤ 2.
(7.18)

G2(z,r) =
{
1− r, 1 ≤ r ≤ z,
1− z, z≤ r ≤ 2.

(7.19)
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G3(z,r) =
{

z−2, 1 ≤ r ≤ z,
r−2, z≤ r ≤ 2.

(7.20)

G4(z,r) =
{

z−1, 1 ≤ r ≤ z,
r−1, z≤ r ≤ 2.

(7.21)

G5(z,r) =
{
2− r, 1 ≤ r ≤ z,
2− z, z≤ r ≤ 2,

(7.22)

All these functions are convex and continuous w.r.t both z and r (see [33]).

Remark 7.4 The Green’s function G1(·, ·) is called Lagrange Green’s function (see [34]).
The new Green functions Gv(·, ·), (v = 2,3,4,5), introduced by Pečarić et al. in [33].

For I = [1,2], consider the following assumptions .

(A1) For the linear functionals Ju(·) (u = 1,2), assume that

k−1

j=0

 j+1 pi+ jzi+ j

k−1


v=0
 j+1 pi+ j

∈ [1,2] for

i = 1, . . .m.

(A2) For the linear functionals Ju(·) (u = 3, . . . ,6), assume that

k−1

j=0

 j+1 pi+ j f(zi+ j)
k−1

j=0

v+1 pi+ j

∈ [1,2]

for i = 1, . . .m.

7.3.1 Extensions of cyclic refinements of Jensen’s inequality
via Hermite interpolating polynomial

The proof of the results of this section are given in [16]. We start this section by
considering the discrete as well as continuous version of cyclic refinements of Jensen’s in-
equality and construct the generalized new identities having real weights utilizing Hermite
interpolating polynomial.

Theorem 7.6 Let m,k ∈ N, p1, . . . , pm and 1, . . . ,k be real tuples for 2 ≤ k ≤ m, such

that
k−1

j=0

 j+1pi+ j 
= 0 for i = 1, . . .m with
m

i=1

pi = 1 and
k

j=1

 j = 1. Also let z∈ [1,2]⊂R

and z ∈ [1,2]m. Assume f ∈ Cn[1,2] and consider interval with points − < 1 =
b1 < b2 · · · < bt = 2 < , (t ≥ 2) such that f (1) = f (2), f ′(1) = 0 = f ′(2) and
Gv, (v = 1, . . . ,5) be the Green functions defined in (10.4)–(7.22), respectively. Then for
u = 1, . . . ,6 along with assumptions (A1) and (A2), we have the following generalized
identities:

(a)

Ju( f (z)) =
t


=1

s


=0

f ()(b )Ju

(
H(z)

)
+

2∫
1

Ju

(
GH,n(z,r)

)
f (n)(r)dr. (7.23)
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(b)

Ju( f (z)) =
2∫
1

Ju

(
Gv(z,r)

) t


=1

s


=0

f (+2)(b)H(r)dr

+
2∫
1

2∫
1

Ju

(
Gv(z,r)

)
GH,n−2(r, )) f (n)( )ddr (7.24)

where H are Hermite basis and GH,n(z,r) be the Hermite Green function (see
[32]).

Now we obtain extensions and improvements of discrete and integral cyclic Jensen type
linear functionals, with real weights.

Theorem 7.7 Consider f be n-convex function along with the suppositions of Theorem
7.6. Then we conclude the following results:

(a) If for all u = 1, . . . ,6,

Ju

(
GH,n(z,r)

)
≥ 0, r ∈ [1,2] (7.25)

holds, then we have

Ju( f (z)) ≥
t


=1

s


=0

f ()(b)Ju

(
H(z)

)
(7.26)

for u = 1, . . . ,6.

(b) If for all u = 1, . . . ,6 and v = 1, . . . ,5

Ju

(
Gv(z,r)

)
≥ 0, r ∈ [1,2] (7.27)

holds, provided that s is odd for each  = 2,3,4, · · · ,t, then

Ju( f (z)) ≥
2∫
1

Ju

(
Gv(z,r)

) t


=1

s


=0

f (+2)(b)H(r)dr. (7.28)

for u = 1, . . . ,6.

(c) If (7.27) holds for all u = 1, . . . ,6 and v = 1, . . . ,5 , provided that s is odd for
each  = 2,3,4, · · · ,t− 1 and st is even then (7.28) holds in reverse direction for
u = 1, . . . ,6.

We will finish the present section by the following generalizations of cyclic refinements of
Jensen inequalities:
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Theorem 7.8 If the assumptions of Theorem 7.6 be fulfilled with additional conditions

that p1, . . . , pm and 1, . . . ,k be non negative tuples for 2≤ k≤m, such that
m

i=1

pi = 1 and

k

j=1

 j = 1. Then for  : [1,2]→ R being n-convex function, we conclude the following

results:

(a) If (7.26) is valid along with the function

(z) :=
t


=1

s


=0

H(z) f ()(b). (7.29)

to be convex, the right side of (7.26) is non negative, means

Ju()≥ 0, u = 1, . . . ,6. (7.30)

(b) If s to be odd for each  = 2,3,4, · · · ,t, (7.28) holds. Further

t


=1

s


=0

H(r) f (+2)(b)≥ 0. (7.31)

the right side of (7.28) is non negative, particularly (7.30) is establish for all u =
1, . . . ,6 and v = 1, . . . ,5..

(c) Inequality (7.28) holds reversely if s is odd for each  = 2,3,4, · · · ,t−1 and st is
even. Moreover, let (7.31) holds in reverse direction then reverse of (7.30) holds for
all u = 1, . . . ,6 and v = 1, . . . ,5.

7.3.2 Cyclic improvements of inequalities for entropy
of Zipf-Mandelbrot law via Hermite polynomial

Remark 7.5 Now as a consequences of Theorem 7.7 we consider the discrete extensions
of cyclic refinements of Jensen’s inequalities for (u = 1), from (7.26) with respect to n-
convex function f in the explicit form:

m


i=1

pi f (zi)−
m


i=1

(
k−1


j=0

 j+1pi+ j

)
f

⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ jzi+ j

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠≥
(

t


=1

s


=0

f ()(b)

)
×⎛⎜⎜⎜⎝ m


i=1

piH (zi)−
m


i=1

(
k−1


j=0

 j+1pi+ j

)
H

⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ jzi+ j

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠ , (7.32)
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where H are Hermite basis.

Theorem 7.9 Let m,k ∈ N (2 ≤ k ≤ m), 1, . . . ,k be positive probability distributions.
Let p := (p1, . . . , pm) ∈ R

m, and q := (q1, . . . ,qm) ∈ (0,)m such that

pi

qi
∈ [1,2], i = 1, . . . ,m.

Also let f ∈ Cn[1,2] and consider interval with points − < 1 = b1 < b2 · · · < bt =
2 < , (t ≥ 2) such that f is n-convex function. Then the following inequalities hold:

Î f (p,q)≥
m


i=1

(
k−1


j=0

 j+1qi+ j

)
f

⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

k−1

j=0

 j+1qi+ j

⎞⎟⎟⎟⎠+

(
t


=1

s


=0

f ()(b)

)
×⎛⎜⎜⎜⎝ m


i=1

qiH

(
pi

qi

)
−

m


i=1

(
k−1


j=0

 j+1qi+ j

)
H

⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

k−1

j=0

 j+1qi+ j

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠ . (7.33)

Proof. Replacing pi with qi and zi with pi
qi

for (i = 1, . . . ,m) in (7.32) , we get (7.33). �

We now explore two exceptional cases of the previous result.
One corresponds to the entropy of a discrete probability distribution.

Corollary 7.7 Let m,k ∈ N (2≤ k ≤ m), 1, . . . ,k be positive probability distributions.

(a) If q := (q1, . . . ,qm) ∈ (0,)m and (n = even), then

m


i=1

qi lnqi ≥
m


i=1

(
k−1


j=0

 j+1qi+ j

)
ln

(
k−1


j=0

 j+1qi+ j

)
+(

t


=1

s


=0

(−1) ( −1)!
(b)

)
×⎛⎜⎜⎜⎝ m


i=1

qiH

(
1
qi

)
−

m


i=1

(
k−1


j=0

 j+1qi+ j

)
H

⎛⎜⎜⎜⎝ 1
k−1

j=0

 j+1qi+ j

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠ . (7.34)

(b) If q := (q1, . . . ,qm) is a positive probability distribution and (n = even), then we get
the bounds for the Shannon entropy of q.
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H(q)≤−
m


i=1

(
k−1


j=0

 j+1qi+ j

)
ln

(
k−1


j=0

 j+1qi+ j

)
−(

t


=1

s


=0

(−1) ( −1)!
(b)

)
×⎛⎜⎜⎜⎝ m


i=1

qiH

(
1
qi

)
−

m


i=1

(
k−1


j=0

 j+1qi+ j

)
H

⎛⎜⎜⎜⎝ 1
k−1

j=0

 j+1qi+ j

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠ . (7.35)

If (n = odd), then (7.34) and (7.35) hold in reverse directions.

Proof.

(a) Using f (x) := − lnx and p := (1,1, . . . ,1) in Theorem 7.9, we get the required re-
sults.

(b) It is a specific case of (a).

�

The second case corresponds to the relative entropy or Kullback–Leibler divergence
between two probability distributions.

Corollary 7.8 Let m,k ∈N (2≤ k ≤ m), 1, . . . ,k be positive probability distributions.

(a) If q := (q1, . . . ,qm),p := (p1, . . . , pm) ∈ (0,)m and (n = even), then

m


i=1

qi ln

(
qi

pi

)
≥

m


i=1

(
k−1


j=0

 j+1qi+ j

)
ln

⎛⎜⎜⎜⎝
k−1

j=0

 j+1qi+ j

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠+

(
t


=1

s


=0

(−1) ( −1)!
(b)

)
×⎛⎜⎜⎜⎝ m


i=1

qiH

(
pi

qi

)
−

m


i=1

(
k−1


j=0

 j+1qi+ j

)
H

⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

k−1

j=0

 j+1qi+ j

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠ . (7.36)

(b) If If q := (q1, . . . ,qm),p := (p1, . . . , pm) are positive probability distributions and
(n = even), then we have

D(q ‖ p)≥
m


i=1

(
k−1


j=0

 j+1qi+ j

)
ln

⎛⎜⎜⎜⎝
k−1

j=0

 j+1qi+ j

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠+



7.3 CYCLIC IMPROVEMNTS OF INEQUALITIES VIA HERMITE INTERPOLATING... 187

(
t


=1

s


=0

(−1) ( −1)!
(b)

)
×⎛⎜⎜⎜⎝ m


i=1

qiH

(
pi

qi

)
−

m


i=1

(
k−1


j=0

 j+1qi+ j

)
H

⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

k−1

j=0

 j+1qi+ j

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠ . (7.37)

If (n = odd), then (7.36) and (7.37) hold in reverse directions.

Proof.

(a) Using f (x) :=− lnx in Theorem 7.9, we get the desired results.

(b) It is particular case of (a).

�

Let m ∈ {1,2, . . .}, t ≥ 0, s > 0, then Zipf-Mandelbrot entropy can be given as:

Z(H,t,s) =
s

Hm,t,s

m


i=1

ln(i+ t)
(i+ t)s + ln(Hm,t,s). (7.38)

Consider

qi = f (i;m,t,s) =
1

((i+ t)sHm,t,s)
. (7.39)

Now we state our results involving entropy introduced by Mandelbrot Law:

Theorem 7.10 Let m,k ∈ N (2 ≤ k ≤ m), 1, . . . ,k be positive probability distributions
and q be as defined in (7.39) by Zipf-Mandelbrot law with parameters m∈ {1,2, . . .}, c≥ 0,
d > 0. For (n = even), the following holds

H(q) = Z(H,c,d)

≤−
m


i=1

(
k−1


j=0

 j+1

((i+ j + c)dHm,c,d)

)
ln

(
1

Hm,c,d

k−1


j=0

 j+1

((i+ j + t)s)

)
−(

t


=1

s


=0

(−1) ( −1)!
(b)

)(
m


i=1

1
((i+ c)dHm,c,d)

H

(
((i+ c)dHm,c,d)

))
+

(
t


=1

s


=0

(−1) ( −1)!
(b)

)⎛⎜⎜⎜⎝ m


i=1

(
k−1


j=0

 j+1

((i+ j + c)dHm,c,d)

)
H

⎛⎜⎜⎜⎝ 1
k−1

j=0

 j+1

((i+ j+c)dHm,c,d)

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠ .

(7.40)

If (n = odd), then (7.40) holds in reverse direction.
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Proof. Substituting this qi = 1
((i+c)dHm,c,d) in Corollary 7.7(b), we get the desired result.

Since it is interesting to see that
m

i=1

qi = 1. Moreover using above qi in Shannon entropy

(7.3), we get Mandelbrot entropy(7.38). �

Corollary 7.9 Let m,k ∈ N (2 ≤ k ≤ m), 1, . . . ,k be positive probability distributions
and for c1,c2 ∈ [0,), d1,d2 > 0, let Hm,c1,d1 = 1

(i+c1)d1
and Hm,c2,d2 = 1

(i+c2)d2
. Now using

qi =
1

(i+ c1)
d1Hm,c1,d1

and pi =
1

(i+ c2)
d2Hm,c2,d2

in Corollary 7.8(b), with (n = even),

then the following holds

D(q ‖ p) =
m


i=1

1

(i+ c1)
d1Hm,c1,d1

ln

(
(i+ c2)

d2Hm,c2,d2

(i+ c1)
d1Hm,c1,d1

)

≥
m


i=1

(
k−1


j=0

 j+1

(i+ j + c1)
d1Hm,c1,d1

)
ln

⎛⎜⎜⎜⎝
k−1

j=0

 j+1
1

(i+ j+c1)
d1Hm,c1 ,d1

k−1

j=0

 j+1
1

(i+ j+c2)
d2Hm,c2 ,d2

⎞⎟⎟⎟⎠
+

(
t


=1

s


=0

(−1) ( −1)!
(b)

)(
m


i=1

1
((i+ c1)d1Hm,c1,d1)

H

(
((i+ c2)d

2Hm,c2,d2)
((i+ c1)dHm,c1,d1)

))

−
(

t


=1

s


=0

(−1) ( −1)!
(b)

)
×⎛⎜⎜⎜⎝ m


i=1

(
k−1


j=0

 j+1

(i+ j + c1)
d1Hm,c1,d1

)
H

⎛⎜⎜⎜⎝
k−1

j=0

 j+1
1

(i+ j+c1)
d1Hm,c1 ,d1

k−1

j=0

 j+1
1

(i+ j+c2)
d2Hm,c2 ,d2

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠ (7.41)

If (n = odd), then (7.41) holds in reverse direction.

Remark 7.6 It is interesting to note that, in the similar passion we are able to construct
different estimations of f -divergences along with their applications to Shannon and Man-
delbrot entropies using the other inequalities for n-convex functions constructed in Theo-
rem 7.7 for discrete case of cyclic refinements of Jensen inequality.

Remark 7.7 We left for reader interest to construct upper bounds for Shannon, Relative
and Mandelbrot entropies by considering Type( ,n−)C and Two-point TC instead of
HC in the above results.
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7.4 A refinement and an exact equality condition for
the basic inequality of f -divergences

Measures of dissimilarity between probability measures play important role in probability
theory, especially in information theory and in mathematical statistics. Many divergence
measures for this purpose have been introduced and studied (see for example Vajda [14]).
Among them f -divergences were introduced by Csiszár [2] and [37] and independently
by Ali and Silvey [1]. Remarkable divergences can be found among f -divergences, such
as the information divergence, the Pearson or 2-divergence, the Hellinger distance and
total variational distance. There are a lot of papers dealing with f -divergence inequalities
(see Dragomir [39], Dembo, Cover, and Thomas [4] and Sason and Verdú [50]). These
inequalities are very useful and applicable in information theory.

One of the basic inequalities is (see Liese and Vajda [45])

Df (P,Q)≥ f (1) .

In this section we give a refinement and a precise equality condition for this inequality.
Some applications for discrete distributions, for the Shannon entropy, and some examples
are given.

7.4.1 Construction of the equality conditions and related
results of classical integral Jensen’s inequality

The classical Jensen’s inequality is well known (see [7]).

Theorem 7.11 Let g be an integrable function on a probability space (Y,B,) taking

values in an interval I ⊂ R. Then
∫
Y

gd lies in I. If f is a convex function on I such that

f ◦ g is -integrable, then

f

⎛⎝∫
Y

gd

⎞⎠≤ ∫
Y

f ◦ gd. (7.42)

The following approach to give a necessary and sufficient condition for equality in this
inequality may be new. First, we introduce the next definition.

Definition 7.7 Let (Y,B,) be a probability space, and let g be a real measurable func-
tion defined almost everywhere on Y . We denote by essint (g) the smallest interval in R

for which
 (g ∈ essint (g)) = 1.
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Remark 7.8 (a) Obviously, the endpoints of essint (g) are the essential infimum
(essinf (g)) and the essential supremum of g, and either of them belong to essint (g)
exactly if g takes this value with positive probability.

(b) It is easy to see that either essint (g) =

⎧⎨⎩
∫
Y

gd

⎫⎬⎭ (in this case g is constant -a.e.)

or
∫
Y

gd is an inner point of essint (g).

(c) The interval essinf (g) is connected with the essential range of g, but not the same
set (for example, the essential range of g is always closed, and not an interval in general).

Lemma 7.1 Assume the conditions of Theorem 7.11 are satisfied. Equality holds in (7.42)
if and only if f is affine on essint (g).

Proof. It is easy to see that the condition is sufficient for equality in (7.42).
Conversely, if essint (g) contains only one point, then it is trivial, so we can assume

that m :=
∫
Y

gd is an inner point of essint (g). Let

l : R→ R, l (t) = f ′+ (m)(t−m)+ f (m) .

If f is not affine on essint (g), then by the convexity of f , there is a point t1 ∈essint (g)
such that f (t1) > l (t1). Suppose t1 > m (the case t1 < m can be handled similarly).
Since f is convex, f (t) ≥ l (t) (t ∈ I) and f (t) > l (t) (t ∈ I, t ≥ t1). It follows by us-
ing  (g > t1) > 0, that ∫

Y

f ◦ gd =
∫

(g<t1)

f ◦ gd+
∫

(g≥t1)

f ◦ gd

≥
∫

(g<t1)

l ◦ gd+
∫

(g≥t1)

f ◦ gd >

∫
Y

l ◦ gd = f (m) ,

which is a contradiction.
The proof is complete. �

The next refinement of the Jensen’s inequality can be found in Horváth [8].

Theorem 7.12 Let I ⊂ R be an interval, and let f : I → R be a convex function. Let
(Y,B,) be a probability space, and let g : Y → I be a -integrable function such that

f ◦g is also -integrable. Suppose that 1, . . . ,n are nonnegative numbers with
n


i=1

i = 1.

Then
(a)

f

⎛⎝∫
Y

gd

⎞⎠≤ ∫
Yn

f

(
n


i=1

ig(xi)

)
dn (x1, . . . ,xn)≤

∫
Y

f ◦ gd.
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(b) ∫
Yn+1

f

(
1

n+1

n+1


i=1

g(xi)

)
dn+1 (x1, . . . ,xn+1)

≤
∫
Yn

f

(
1
n

n


i=1

g(xi)

)
dn (x1, . . . ,xn)≤

∫
Yn

f

(
n


i=1

ig(xi)

)
dn (x1, . . . ,xn) .

By analyzing the proof of the previous result, it can be seen that the hypothesis “ f ◦ g
is -integrable” can be weaken.

Theorem 7.13 Let I ⊂ R be an interval, and let f : I → R be a convex function. Let
(Y,B,) be a probability space, and let g : Y → I be a -integrable function such that the

integral
∫
Y

f ◦gd exists in ]−,]. Suppose that 1, . . . ,n are nonnegative numbers with

n


i=1

i = 1. Then the assertions of Theorem 7.12 remain true.

We assume throughout that the probability measures P and Q are defined on a fixed
measurable space (X ,A ). It is also assumed that P and Q are absolutely continuous with
respect to a  -finite measure  on A . The densities (or Radon-Nikodym derivatives) of P
and Q with respect to  are denoted by p and q, respectively. These densities are -almost
everywhere uniquely determined.

Let
F := { f : ]0,[→ R | f is convex} ,

and define for every f ∈ F the function

f ∗ : ]0,[→ R, f ∗ (t) := t f

(
1
t

)
.

If f ∈ F , then either f is monotonic or there exists a point t0 ∈ ]0,[ such that f is
decreasing on ]0,t0[. This implies that the limit

lim
t→0+

f (t)

exists in ]−,], and
f (0) := lim

t→0+
f (t)

extends f into a convex function on [0,[. The extended function is continuous and has
finite left and right derivatives at each point of ]0,[.

It is well known that for every f ∈ F the function f ∗ also belongs to F , and therefore

f ∗ (0) := lim
t→0+

f ∗ (t) = lim
u→

f (u)
u

.

We need the following simple property of functions belonging to F .
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Lemma 7.2 If f ∈ F, then f ∗ (0) ≥ f ′+ (1). This inequality becomes an equality if and
only if

f (t) = f ′+ (1)(t−1)+ f (1) , t ≥ 1. (7.43)

Proof. Since f is convex,

f (t)≥ f ′+ (1)(t−1)+ f (1) , t ≥ 1,

and therefore

f ∗ (0) = lim
t→

f (t)
t
≥ f ′+ (1) .

If (7.43) is satisfied, then obviously f ∗ (0) = f ′+ (1).
If there exists t1 > 1 such that f ′+ (t1) > f ′+ (1), then by the convexity of f ,

f (t)≥ f ′+ (t1) (t− t1)+ f (t1) , t ≥ t1,

and hence f ∗ (0) > f ′+ (1). It follows that f ∗ (0) = f ′+ (1) implies

f ′+ (t) = f ′+ (1) , t ≥ t1,

and this gives (7.43) (see [43] 1.6.2 Corollary 2).
The proof is complete. �

The next result prepares the notion of f -divergence of probability measures.

Lemma 7.3 For every f ∈ F the integral∫
(q>0)

q() f

(
p()
q()

)
d ()

exists and it belongs to the interval ]−,].

Proof. Since f is convex,

f (t)≥ f ′+ (1)(t−1)+ f (1) , t ≥ 0.

This implies that for all  ∈ (q > 0)

q() f

(
p()
q()

)
≥ h() := f ′+ (1)(p()−q())+ f (1)q() . (7.44)

Elementary considerations show that the function h is -integrable over (q > 0), and
this gives the result by (7.44).

The proof is complete. �

Now we introduce the notion of f -divergence.
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Definition 7.8 For every f ∈ F we define the f -divergence of P and Q by

Df (P,Q) :=
∫
X

q() f

(
p()
q()

)
d () ,

where the following conventions are used

0 f
( x

0

)
:= x f ∗ (0) if x > 0, 0 f

(
0
0

)
= 0 f ∗ (0) := 0. (7.45)

Remark 7.9 (a) For every f ∈ F the perspective f̂ : ]0,[× ]0,[→R of f is defined by

f̂ (x,y) := y f

(
x
y

)
.

Then (see [49]) f̂ is also a convex function. Vajda [14] proved that (7.45) is the unique rule
leading to convex and lower semicontinuous extension of f̂ to the set{

(x,y) ∈R
2 | x,y≥ 0

}
.

(b) Since f ∗ (0) ∈ ]−,], Lemma 7.3 shows that Df (P,Q) exists in ]−,] and

Df (P,Q) =
∫

(q>0)

f

(
p()
q()

)
dQ()+ f ∗ (0)P(q = 0) . (7.46)

It follows that if P is absolutely continuous with respect to Q, then

Df (P,Q) =
∫

(q>0)

f

(
p()
q()

)
dQ() .

Various divergences in information theory and statistics are special cases of the f -
divergence. We illustrate this by some examples.

(a) By choosing f : ]0,[→ R, f (t) = t ln(t) in (7.46), the information divergence is
obtained

I (P,Q) =
∫

(q>0)

p() ln

(
p()
q()

)
d ()+P(q = 0) . (7.47)

(b) By choosing f : ]0,[→R, f (t) = (t−1)2 in (7.46), the Pearson or 2-divergence
is obtained

2 (P,Q) =
∫

(q>0)

(p()−q())2

q()
d ()+P(q = 0) . (7.48)

(c) By choosing f : ]0,[→ R, f (t) =
(√

t−1
)2

in (7.46), the Hellinger distance is
obtained

H2 (P,Q) =
∫
X

(√
p()−

√
q()

)2
d () . (7.49)
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(d) By choosing f : ]0,[→R, f (t) = |t−1| in (7.46), the total variational distance is
obtained

V (P,Q) =
∫
X

|p()−q()| () . (7.50)

We need the following lemma.

Lemma 7.4 Let t0 := P(q > 0).
(a) For every  > 0

Q

(
p
q

< t0 + , q > 0

)
> 0.

(b)

essinfQ

(
p
q

)
≤ t0

Proof. (a) Obviously,

Q

(
p
q

< t0 + , q > 0

)
= 1−Q

(
p
q
≥ t0 + , q > 0

)
.

The result follows from this, since

Q

(
p
q
≥ t0 + , q > 0

)
=
∫
X

q1( p
q≥t0+, q>0

)d ≤ ∫
(q>0)

1
t0 + 

pd

=
t0

t0 + 
< 1.

(b) It comes from (a).
The proof is complete. �

The following result contains a key property of f -divergences. We give a simple proof
which emphasizes the importance of the convexity of f , and give an exact equality condi-
tion.

Theorem 7.14 (a) For every f ∈ F

Df (P,Q)≥ f (1) . (7.51)

(b) Assume P(q = 0) = 0. Then equality holds in (7.51) if and only if f is affine on

essintQ
(

p
q

)
.

(c) Assume P(q = 0) > 0. Then equality holds in (7.51) if and only if f is affine on

essintQ
(

p
q

)
∪ [1,[.
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Proof. (a) If Df (P,Q) =, then (7.51) is obvious.
If Df (P,Q) ∈R, then the integral∫

(q>0)

f

(
p()
q()

)
dQ() (7.52)

is finite, and therefore either Q(p = 0) = 0 or Q(p = 0) > 0 and f (0) is finite. It follows
that Jensen’s inequality can be applied to this integral, and we have

Df (P,Q)≥ f

⎛⎜⎝ ∫
(q>0)

pd

⎞⎟⎠+ f ∗ (0)P(q = 0) (7.53)

= f (P(q > 0))+ f ∗ (0)P(q = 0) . (7.54)

Let t0 := P(q > 0). By using Lemma 7.2, t0 ∈ [0,1], and the convexity of f , it follows
from (7.54) that

Df (P,Q)≥ f (t0)+ f ′+ (1)(1− t0) (7.55)

≥ f (1)+ f ′+ (1)(t0−1)+ f ′+ (1)(1− t0) = f (1) . (7.56)

(b) If Df (P,Q) = f (1), then Df (P,Q) is finite.
Assume P(q = 0) = 0. Then by (7.53) and (7.54), Df (P,Q) = f (1) is satisfied if and

only if equality holds in the Jensen’s inequality. Lemma 7.1 shows that this happens exactly

if f is affine on essintQ
(

p
q

)
.

(c) Assume P(q = 0) > 0. Then (7.53), (7.54), (7.55) and (7.56) yield that there must
be equality in the Jensen’s inequality, f ∗ (0) = f ′+ (1), and

f (t0) = f (1)+ f ′+ (1)(t0−1) . (7.57)

By Lemma 7.1 and Lemma 7.2, the first two equality conditions are satisfied exactly if f

is affine on essintQ
(

p
q

)
∪ [1,[.

Now assume that f is affine on essintQ
(

p
q

)
∪ [1,[. In case of t0 > 0, Lemma 7.4 (b)

and the continuity of f at t0 show that (7.57) also holds. In case of t0 = 0, it is easy to see

that Q
(

p
q = 0

)
= 1, and hence 0 ∈essintQ

(
p
q

)
which implies (7.57) too.

The proof is complete. �

Remark 7.10 (a) Consider the subclass F1 ⊂ F such that f ∈ F1 satisfies f (1) = 0. In
this case inequality (7.51) has the usual form

Df (P,Q)≥ 0.

(b) The usual equality condition is the next (see [45]): if f is strictly convex at 1, then
Df (P,Q) = f (1) holds if and only if P = Q. Theorem 7.14 (b) and (c) give more precise
conditions.
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7.4.2 Refinements of basic inequality in f -divergences
and related results

Suppose that 1, . . . ,n are nonnegative numbers with
n


i=1

i = 1. Let

A n := A ⊗ . . .⊗A , with n factors,

and define the probability measures Qn and R on A n by

Qn := Q⊗ . . .⊗Q, with n factors,

and

R :=
n


i=1

iQ⊗ . . .⊗Q⊗
i

P̆⊗Q⊗ . . .⊗Q.

In case of i = 1
n (i = 1, . . . ,n) the probability measure R will be denoted by Rn.

These measures are absolutely continuous with respect to n on A n. The densities of
R and Qn with respect to n are

n⊗
i=1

q : Xn→R, (1, . . . ,n)→
n


i=1

q(i) ,

and

(1, . . . ,n)→
n


i=1

iq(1) . . .
i
p̆(i) . . .q(n) , (1, . . . ,n) ∈ Xn,

respectively.
It is easy to calculate that

R

(
n⊗

i=1

q = 0

)
= 1−R

(
n⊗

i=1

q > 0

)
= 1−R ((q > 0)n)

= 1−
n


i=1

iQ(q > 0)n−1 P(q > 0) = 1−P(q > 0) = P(q = 0) .

It follows that for every f ∈ F

Df (R ,Qn) =
∫

(q>0)n

f

⎛⎜⎜⎜⎝
n


i=1

iq(1) . . . p(i) . . .q(n)

n


i=1

q(i)

⎞⎟⎟⎟⎠dQn (1, . . . ,n)

+ f ∗ (0)R

(
n⊗

i=1

q = 0

)
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=
∫

(q>0)n

f

(
n


i=1

i
p(i)
q(i)

)
dQn (1, . . . ,n)+ f ∗ (0)P(q = 0) (7.58)

=
∫

(q>0)n

n


i=1

q(i) f

(
n


i=1

i
p(i)
q(i)

)
dn (1, . . . ,n)+ f ∗ (0)P(q = 0) .

By applying Theorem 7.12, we obtain some refinements of the basic inequality 7.51.

Theorem 7.15 Suppose that 1, . . . ,n are nonnegative numbers with
n


i=1

i = 1. If f ∈
F, then

(a)
Df (P,Q)≥ Df (R ,Qn)≥ Df (Rn,Q

n)≥ f (1) . (7.59)

(b)
Df (P,Q) = Df

(
R1,Q

1)
≥ . . .≥ Df (Rm,Qm)≥ Df

(
Rm+1,Q

m+1)≥ . . .≥ f (1) , m≥ 1.

Proof. (a) The third inequality in (7.59) comes from Theorem 7.14.
So it remains to prove the first two inequalities in (7.59). By (7.46) and (7.58), it is

enough to show that

∫
(q>0)

f

(
p()
q()

)
dQ()≥

∫
(q>0)n

f

(
n


i=1

i
p(i)
q(i)

)
dQn (1, . . . ,n) (7.60)

≥
∫

(q>0)n

f

(
1
n

n


i=1

p(i)
q(i)

)
dQn (1, . . . ,n) ,

which is an immediate consequence of Theorem 7.13.
(b) We can proceed similarly as in (a).
The proof is complete. �

By considering the special f -divergences (7.47-7.50), we have after each other
(a) the information divergence

I (R ,Qn) =P (q = 0)

+
∫

(q>0)n

n


i=1

⎛⎜⎝i p(i)
n


j=1
j 
=i

q( j)

⎞⎟⎠ ln

(
n


i=1

i
p(i)
q(i)

)
dn (1, . . . ,n) ,



198 7 IMPROVEMENTS OF THE INEQUALITIES FOR THE f -DIVERGENCE...

(b) the Pearson divergence
2 (R ,Qn) =

=
∫

(q>0)n

n


i=1

q(i)

(
n


i=1

i
p(i)−q(i)

q(i)

)2

dn (1, . . . ,n)+P(q = 0) ,

(c) the Hellinger distance

H2 (R ,Qn) =
∫

(q>0)n

n


i=1

q(i)

⎛⎝( n


i=1

i
p(i)
q(i)

)1/2

−1

⎞⎠2

dn (1, . . . ,n) ,

(d) the total variational distance

V (R ,Qn) =
∫

(q>0)n

n


i=1

q(i)

∣∣∣∣∣ n


i=1

i
p(i)−q(i)

q(i)

∣∣∣∣∣dn (1, . . . ,n) .

Now, we consider the special case, important in many applications, in which P and Q
are discrete distributions.

Denote T either the set {1, . . . ,k} with a fixed positive integer k, or the set {1,2, . . .}.
We say that P and Q are derived from the positive probability distributions p := (pi)i∈T and
q := (qi)i∈T , respectively, if pi, qi > 0 (i ∈ T ), and 

i∈T

pi = 
i∈T

qi = 1. In this case X = T ,

A is the power set of T , and  is the counting measure on A .

Corollary 7.10 Suppose that 1, . . . ,n are nonnegative numbers with
n


i=1

i = 1. Sup-

pose also that P and Q are derived from the positive probability distributions (pi)i∈T and
(qi)i∈T , respectively. If f ∈ F, then

(a)

Df (P,Q) = 
i∈T

qi f

(
pi

qi

)
≥ 

(i1,...,in)∈Tn

n


j=1

qi j f

(
n


j=1

 j
pi j

qi j

)

≥ 
(i1,...,in)∈Tn

n


j=1

qi j f

(
1
n

n


j=1

pi j

qi j

)
≥ f (1) .

(b)

Df (P,Q)≥ . . .≥ 
(i1,...,in)∈Tn

n


j=1

qi j f

(
1
n

n


j=1

pi j

qi j

)

≥ 
(i1,...,in+1)∈Tn+1

n+1


j=1

qi j f

(
1

n+1

n+1


j=1

pi j

qi j

)
≥ . . .≥ f (1) , n≥ 1.
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Proof. This comes from Theorem 7.15 immediately. �

Finally, we give an example to illustrate the previous result. We consider only Corollary
7.10 (a).

Example 7.1 (a) By choosing f : ]0,[→R, f (x) =− ln(x) and pi = 1
k (i = 1, . . . ,k) in

the previous corollary (in this case T = {1, . . . ,k}), we have

Df (P,Q) =−
k


i=1

qi ln

(
1

kqi

)
= ln(k)+

k


i=1

qi ln(qi)

≥− 
(i1,...,in)∈Tn

n


j=1

qi j ln

(
1
k

n


j=1

 j

qi j

)
= ln(k)− 

(i1,...,in)∈Tn

n


j=1

qi j ln

(
n


j=1

 j

qi j

)

≥− 
(i1,...,in)∈Tn

n


j=1

qi j ln

(
1
kn

n


j=1

1
qi j

)

= ln(kn)− 
(i1,...,in)∈Tn

n


j=1

qi j ln

(
n


j=1

1
qi j

)
≥ 0.

It can be obtained from this some refinements of the classical upper estimation for the
Shannon entropy

H (Q) :=−
k


i=1

qi ln(qi)≤ 
(i1,...,in)∈Tn

n


j=1

qi j ln

(
n


j=1

 j

qi j

)

≤− ln(n)+ 
(i1,...,in)∈Tn

n


j=1

qi j ln

(
n


j=1

1
qi j

)
≤ ln(k) .

(b) If f : ]0,[→R, f (x) = x ln(x) in the previous corollary, then we have the follow-
ing estimations for the information or Kullback–Leibler divergence:

I (P,Q) =
n


i=1

pi ln

(
pi

qi

)
≥ 

(i1,...,in)∈Tn

⎛⎜⎝ n


j=1

 j pi j

n


l=1
l 
= j

qil

⎞⎟⎠ ln

(
n


j=1

 j
pi j

qi j

)

≥ 1
n 

(i1,...,in)∈Tn

⎛⎜⎝ n


j=1

pi j

n


l=1
l 
= j

qil

⎞⎟⎠ ln

(
1
n

n


j=1

pi j

qi j

)
≥ 0. (7.61)

(c) The Zipf-Mandelbrot law (see Mandelbrot [46] and Zipf [15]) is a discrete proba-
bility distribution depends on three parameters N ∈ {1,2, . . .}, q ∈ [0,[ and s > 0, and it
is defined by

f (i;N,q,s) :=
1

(i+q)s HN,q,s
, i = 1, . . . ,N,
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where

HN,q,s :=
N


k=1

1
(k+q)s

.

Let P and Q be the Zipf-Mandelbrot law with parameters N ∈ {1,2, . . .}, q1, q2 ∈ [0,[
and s1, s2 > 0, respectively, and let 2 ≤ k ≤ N be an integer. It follows from the first part
of (7.61) with T = {1, . . . ,N} that

I (P,Q) =
N


i=1

1
(i+q1)

s1 HN,q1,s1
log

(
(i+q2)

s2 HN,q2,s2

(i+q1)
s1 HN,q1,s1

)

≥ 
(i1,...,iN)∈Tn

⎛⎜⎝ n


j=1

 j
1

(i j +q1)
s1 HN,q1,s1

n


l=1
l 
= j

1
(il +q2)

s2 HN,q2,s2

⎞⎟⎠
× ln

(
n


j=1

 j
(i j +q2)

s2 HN,q2,s2

(i j +q1)
s1 HN,q1,s1

)
≥ 0.

This is another type of refinement for I (P,Q) than it is given in [9].

Bibliography

[1] M. S. Ali and D. Silvey, A general class of coefficients of divergence of one distribu-
tion from another, J. Roy. Statist. Soc., ser. B 28 (1966), 131–140.

[2] I. Csiszár, Eine Informationstheoretische Ungleichung und ihre Anwendung auf den
Beweis der Ergodizität on Markoffschen Ketten, Publ. Math. Inst. Hungar. Acad. Sci.,
ser. A 8 (1963), 84–108.

[3] I. Csiszár, Information-type measures of difference of probability distributions and
indirect observations, Studia Sci. Math. Hungar. 2 (1967), 299–318.

[4] A. Dembo, T.M. Cover and J. A. Thomas, Information theoretic inequalities, IEEE
Trans. Inf. Theory 37 (1991), 1501–1518.

[5] S. S. Dragomir (Ed.), Inequalities for Csiszár f -Divergence in Informa-
tion Theory, RGMIA Monographs, Victoria University, 2000. (online:
http://ajmaa.org/RGMIA/monographs.php/)

[6] T. M. Flett, Differential Analysis, Cambridge University Press, 1980.

[7] E. Hewitt and K. R. Stromberg, Real and Abstract Analysis, Graduate Text in Math-
ematics 25, Springer-Verlag, Berlin-Heidelberg-New York, 1965.



7.4 A REFINEMENT AND AN EXACT EQUALITY CONDITION... 201
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