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H I G H L I G H T S

• Intravenous citalopram acutely elicited brain activation in several regions involved in serotonergic neurotransmission.

• Acute citalopram challenge produced a chemically-induced brain state similar to increased arousal.

• Significant dose-dependent activation was demonstrated in the middle cingulate gyrus, a region with neuroticism-related functions.

• The neuroticism personality trait was associated with the individual responses to citalopram challenge.

• These results may further support the modulating effects of serotonin on processing environmental stressors.
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A B S T R A C T

Background: The initial effects of selective serotonin reuptake inhibitors (SSRIs) in the human living brain are
poorly understood. We carried out a 3T resting state fMRI study with pharmacological challenge to determine
the brain activation changes over time following different dosages of citalopram.
Methods: During the study, 7.5 mg i.v. citalopram was administered to 32 healthy subjects. In addition, 11.25 mg
citalopram was administered to a subset of 9 subjects to investigate the dose-response. Associations with neu-
roticism (assessed by the NEO PI-R) of the emerging brain activation to citalopram was also investigated.
Results: Citalopram challenge evoked significant activation in brain regions that are part of the default mode
network, the visual network and the sensorimotor network, extending to the thalamus, and midbrain. Most
effects appeared to be dose-dependent and this was statistically significant in the middle cingulate gyrus.
Individual citalopram-induced brain responses were positively correlated with neuroticism scores and its sub-
scales in specific brain areas; anxiety subscale scores in thalamus and midbrain and self-consciousness scores in
middle cingulate gyrus. There were no sex differences.
Limitations: We investigated only healthy subjects and we used a relatively low sample size in the 11.25mg
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citalopram analysis.
Discussion: Our results suggest that SSRIs acutely induce an increased arousal-like state of distributed cortical
and subcortical systems that is mediated by enhanced serotonin neurotransmission according to levels of neu-
roticism and underpins trait sensitivity to environmental stimuli and stressors. Studies in depression are needed
to determine how therapeutic effects eventually emerge.

1. Introduction

Pharmacological magnetic resonance imaging (phMRI) has become
widely used to follow the effects of drugs in modulating neural in-
formation processing (Anderson et al., 2008; Khalili-Mahani et al.,
2017). Experimental administration of SSRIs has been used to acutely
increase synaptic serotonin content and to observe modulatory effects
on brain responses evoked by cognitive and emotion processing tasks in
phMRI studies (Anderson et al., 2008). For example, following the first
study by Del Ben et al., (2005) (Del-Ben et al., 2005), several studies
have reported acute reduction of amygdala activation to viewing fearful
faces in healthy volunteers after a single dose of selective serotonin
reuptake inhibitors (SSRI). In depressed patients, suppression of
amygdala responses to fearful faces occurs early in treatement and
predicts subsequent therapeutic benefit (Anderson et al., 2011;
Godlewska et al., 2012, 2016; Harmer et al., 2006; Klomp et al., 2013;
Murphy et al., 2009). A number of studies have reported modulatory
phMRI effects not only on emotion processing (Anderson et al., 2007,
2011; Harmer et al., 2003; Pringle and Harmer, 2015), but also on
reward and punishment sensitivity (Macoveanu, 2014), attention,
memory and response inhibition (Anderson et al., 2008). More recently
a number of studies have described modulation of connectivity in
resting-state networks by SSRIs and other drugs in humans (Klaassens
et al., 2015, 2017, 2018) and rodents (Schaefer et al., 2014; Schwarz
et al., 2009).

SSRI-induced modulation of BOLD responses to cognitive tasks
could result from direct effects of increased synaptic serotonin content
acting on serotonin receptors to alter postsynaptic neuronal activity in
information processing systems. This has led some studies to use chal-
lenge phMRI to follow the direct effects of SSRI-induced enhancement
of extracellular levels of serotonin on regional brain BOLD signals. SSRI
challenge phMRI requires the use of acute intravenous administration
while recording the ensuing BOLD signal changes given that they are
relative, and not absolute, measures. McKie and colleagues reported
increasing BOLD signal following i.v. citalopram in the caudate,
amygdala, hippocampus, striatum and thalamus in 12 healthy male
volunteers compared to i.v. saline (McKie et al., 2005). Similar results
have been observed in rodents (Schwarz et al., 2007; Sekar et al., 2011).
Although this method has the potential to quantify the dynamism of
serotonergic neurotransmission in disorders such as depression, this has
not yet been realised. In this study we determine the replicability of the
McKie paradigm, characterise the time course and dose responsiveness,
and determine whether regional responsiveness relates to the person-
ality trait of neuroticism.

The serotonin transporter, which is the main target of SSRIs, is a key
determinant of brain serotonergic function controlling the duration and
extent of serotonergic neurotransmission (Hariri and Holmes, 2006). In
early life central serotonergic tone modulates development of the sen-
sory system and the corticolimbic circuits (Booij et al., 2015; Gaspar
et al., 2003) that may contribute to behavioural traits such as neuro-
ticism which acts as a vulnerability factor for several neuropsychiatric
disorders (Gaspar et al., 2003; Hariri and Holmes, 2006; Lesch et al.,
1996). Neuroticism is an endophenotype and major risk factor for dis-
orders treated by SSRIs such as anxiety, depression and chronic pain
(Kendler et al., Arch Gen Psychiatry. 2006; Kendler et al., Psychological
Medicine, 2007; Ligthart et al., Twin Res Hum Gen, 2012). Previous
human studies suggested that neuroticism and alterations in emotion
processing were associated with genetically less active serotonin

transporter gene variants (5-HTTLPR) (Hariri and Holmes, 2006; Lesch
et al., 1996; Munafo et al., 2009), although some studies (Middeldorp
et al., 2007; Terracciano et al., 2009; Willis-Owen et al., 2005) and a
large whole genome association study (GWAS) have failed to support
this hypothesis (Smith et al., 2016). One explanation for the incon-
sistent genetic results is that the less active serotonin transporter, pu-
tatively associated with increased synaptic serotonin content, might
amplify processing of both positive and stressful environmental stimuli
as reported in gene-environment interaction studies (Belsky et al.,
2009) and in a human experimental SSRI study (Fox et al., 2011). Si-
milarly, it has been hypothesised that SSRIs acutely facilitate positive
sensory information processing that may be related to their therapeutic
effect (Browning et al., 2007; Castren, 2005, 2013; Harmer et al., 2003;
Harmer and Cowen, 2013). Furthermore, according to the neuroplas-
ticity theory, the therapeutic effect of long-term SSRI treatment is
mediated by changes in synaptic plasticity in interaction with en-
vironmental factors (Kraus et al., 2017; Umemori et al., 2018).

In the present study we used acute intravenous (i.v.) citalopram
challenge to investigate the regional pattern and sequence of brain
activation to increases in synaptic serotonin content. Citalopram is a
highly selective SSRI and the only one available in i.v. form. Previous
studies demonstrated that i.v. administration of citalopram is well tol-
erated, and even a low dose of citalopram leads to a neuroendocrine
response inducing increased plasma prolactin and cortisol levels
(Attenburrow et al., 2001; Lotrich et al., 2005). Based on the previous
results we predicted that using a time-series analysis of BOLD signal
changes from baseline during and after acute i.v. citalopram adminis-
tration (McKie et al., 2005), a dose-dependent increased BOLD signal
would occur in several brain regions involved in sensory information
and in turn emotional information processing.

As previous phMRI studies repeatedly showed that SSRI drugs have
influence on amygdala function while performing different tasks
(Godlewska et al., 2012; Harmer et al., 2006; Murphy et al., 2009) and
in rest (McKie et al., 2005), we made an exploratory analysis of the
BOLD response of amygdala to acute citalopram challenge. In addition
we used a novel data-driven network analysis to identify which regional
BOLD responses relate to neuroticism and its component traits.

2. Material and methods

The Scientific and Research Ethics Committee of the Medical
Research Council, Budapest, Hungary approved the study. Participants
gave written informed consent after receiving oral and written in-
formation. The work was conducted in accordance with the Declaration
of Helsinki.

2.1. Participants

Thirty-two healthy right-handed volunteers (mean
age ± SD=25.8 ± 4.16 years; 19 female) between 18 and 50 years
of age and recruited through advertisement participated in the study.
Participants were screened for eligibility criteria and underwent a
medical examination (including routine physical, psychiatric and neu-
rological examination, routine blood tests, and ECG carried out by
specialist medical researchers) to determine that they met inclusion and
exclusion criteria. Exclusion criteria were current or past serious med-
ical, neurological and psychiatric disorders and long-term medication
use. Volunteers with any history of psychotropic medication use and
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excessive consumption of alcohol were excluded. All included partici-
pants were healthy and did not take any medication on a regular basis
(oral contraceptives were permitted). Participants were asked to refrain
from any medication for at least 2 days, from alcohol for at least 24 h
and from caffeine for at least 4 h before the scanning sessions.

2.2. Self-report measure of personality dimensions

Thirty-one participants (age=26.0 ± 4.24 years; 18 women)
completed the Revised NEO Personality Inventory (NEO PI-R) (Costa
and McCrae, 1992) to assess neuroticism during the screening proce-
dure.

2.3. Experimental design

All participants were invited for two separate scanning sessions
during which phMRI scans were acquired. Anatomical dataset acqui-
sition was performed on the first occasion. During two 30-minute
phMRI sessions all participants received normal saline or 7.5mg cita-
lopram infused over 7.5 min in a randomized, balanced-order, double-
blind design. Scanning sessions were separated by at least two weeks.
7.5 mg dose intravenous citalopram was chosen according to a previous
study (McKie et al., 2005). Nine of 32 participants (age=25.9 ± 5.21
years; 6 women) volunteered in an additional experiment and repeated
the drug challenge with 11.25mg citalopram.

Participants were cannulated outside the scanner at least 45min
before they underwent the drug challenge. The baseline saline infusion
lasted 10min at the beginning of the scanning session followed by ci-
talopram or saline infusion for 7.5 min. During the experiment, parti-
cipants rested viewing a blank screen. Every 5min participants rated
their subjective experiences with a yes/no button press for the fol-
lowing statements: anxious, nauseous, drowsy, lightheaded, restless and
uncomfortable. Blood pressure and pulse rate were recorded twice: 2 h
before and 1 h after the phMRI sessions.

2.4. Data acquisition

Functional MRI images were acquired at a 3T MRI scanner (Achieva
3T, Philips Medical System) using an eight-channel SENSE coil and
BOLD-sensitive T2*-weighted echo-planar (EPI) pulse sequence
(TR = 2.500 ms, TE = 30 ms, FOV: 240 × 240 mm2) with
3 mm × 3 mm in-plane resolution and 3 mm slice thickness. The
number of slices was 46 and the EPI sequence length was 1.800 s. A
series of anatomical image acquisitions were made using a T1-weighted
3D TFE sequence with 1 × 1 × 1 mm resolution.

2.5. fMRI data analysis

Imaging data were analysed with Statistical Parametric Mapping
(SPM 12, Friston, The Welcome Department of Cognitive Neurology,
London, UK) using the phMRI analysis method as described by McKie
et al. (2005). SPM unified segmentation algorithm with default settings
was used for normalisation of the data (Wellcome Department of Ima-
ging Neuroscience, Institute of Neurology, London, UK; http://www.fil.
ion.ucl.ac.uk/spm12/). Images were realigned using the first scan as
reference. These realigned images were then segmented based on in-
dividual T1 images and then spatially normalised to MNI space. The
normalised images were smoothened with an 8mm Gaussian kernel.
Additional parameters were made for correction of movement using the
Artifact Detection Tools (ART; http://www.nitrc.org/projects/artifact_
detect/), which were then applied to the first level analysis as a re-
gressor.

First level analysis was performed by splitting the phMRI scan into
30 consecutive 1-minute time bins (T01 to 30; averaging over 1-minute
reduces variance while still providing detailed time information of
changes caused by the drug). The images were then normalised by

subtraction of T01 from each subsequent time bin to produce first-level
contrast images. The effects of signal drift of the scanner were con-
trolled by modelling the drift in the saline condition across participants.
Then an individually scaled version of the saline drift model was sub-
tracted from each participant's first level contrasts. After this step, the
saline time bin images were subtracted from the corresponding citalo-
pram time bin images. We used the baseline time bin (T10) and 20 post-
infusion time bins (T11-T30) for the second-level analysis, as in our
previous studies (Downey et al., 2016; Symonds et al., 2012). For fur-
ther details related to drift correction and baseline selection methods
see Supplementary Materials (Supplementary Figs. 1 and 2 and
Supplementary Tables 1 and 2).

The 21 images were entered into a whole-brain second level re-
peated measure ANOVA using the flexible factorial option in SPM to
investigate time by treatment interaction with time as a repeated
measure factor and F-tests for statistical significance (McFarquhar,
2019). To investigate the dose-effect of citalopram, the time bins from
7.5 mg citalopram scans were subtracted from those of 11.25mg cita-
lopram in participants receiving both doses, then these time bins were
also entered into a second level, flexible factorial analysis. To determine
sex differences in citalopram elicited brain activations, sex as a
grouping factor was entered into the second level repeated measure
ANOVA models using the flexible factorial option in SPM, as described
above. Results of whole-brain analysis are reported with cluster level
Family Wise Error corrected threshold of p(FWE) < 0.05 based on
p < 0.001 uncorrected primary threshold (k≥ 10).

We used a hypothesis-testing ROI analysis to investigate citalopram
effects in the amygdala in view of its role in short- and long-term SSRI
treatment response (Godlewska et al., 2012; Harmer et al., 2006;
Murphy et al., 2009). The amygdala ROI was defined according to
Anatomical Automatic Labeling atlas (Tzourio-Mazoyer et al., 2002),
involving both the left and the right amygdala. Results of ROI analysis
are reported with peak level secondary threshold of p(FWE) < 0.05 at
p < 0.001 uncorrected primary threshold (k≥ 5).

2.6. Statistical analysis of neuroticism and BOLD responses

Spearman's correlation coefficients were used to determine the re-
lationship between activation changes to 7.5mg citalopram and neu-
roticism and its subscales (anxiety, angry-hostility, self-consciousness,
impulsiveness, vulnerability and depression). An overall under the
curve (AUC) BOLD response to citalopram was calculated for each re-
gion in each individual and entered into the correlation matrix. The
AUC was the area of raw signal change values for each individual from
the final model of 7.5mg citalopram minus saline analysis at the peak
coordinates within the significant clusters. Peak coordinates were de-
termined from the two primary analyses and from the ROI analysis of
amygdala. Namely, we used: a.) peak coordinates within the significant
clusters of 7.5 mg citalopram minus saline analysis; b.) peak co-
ordinates within the significant clusters of 11.25mg citalopram minus
analysis; and c.) amygdala ROI peak coordinates from the 11.25mg
citalopram minus saline analysis. For further details see Supplementary
Materials. Nominal significance was accepted at p= 0.05 level. Bon-
ferroni corrected p values for multiple testing were calculated but
considered too stringent because of interdependences between the re-
ported brain regions and also between the neuroticism total and sub-
scale scores. We therefore applied a graphical LASSO (least absolute
shrinkage and selection operator) based method with adaptive weights
(‘Adalasso’) in order to identify an ‘optimal set’ of relationships (LASSO
coefficients) between investigated variables using the ‘bootnet’ R
package (Epskamp et al., 2017). The Robustmenss (RB) of each coef-
ficient is the number (%) of positive occurrences in 100 different
models. For further details related to LASSO method see Supplementary
Materials.
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3. Results

3.1. Behavioural and physiological data

A Wilcoxon signed-rank test showed that the number of ‘yes’ an-
swers to each subjective self-rating did not differ significantly between
7.5 mg citalopram and saline sessions in n=32 participants or between
11.25mg and saline sessions in n=9 participants (Table 1). Neither
subjective answers showed any sex differences.

NEO-PI-R neuroticism scores (mean=81.7 ± 25.34) showed no
sex differences in our participants (t= 1.684, p=0.103).

There was no effect of either dose of citalopram on heart rate (beats
per minute) or blood pressure (mmHg). For 7.5mg citalopram vs.
saline: heart rate mean difference=2.9 ± 10.85, t= 1.516,
p=0.140; systolic blood pressure mean difference=3.9 ± 14.77,
t= 1.449, p= 0.158; and diastolic blood pressure mean differ-
ence= 1.6 ± 12.83, t= 0.716, p=0.479). For 11.25mg citalopram
vs. saline sessions: heart rate mean difference=−1.1 ± 7.18,
t=−0.464, p=0.655; systolic blood pressure mean differ-
ence=−2.8 ± 12.88, t=−0.647, p= 0.536; diastolic blood pres-
sure mean difference=−2.0 ± 12.81, t=−0.469, p=0.652).

3.2. 7.5 mg citalopram minus saline analysis

Analysis of 7.5mg citalopram data led to time-dependent effects on
citalopram -saline diffrerences in several brain areas within three
clusters; the most extensive activations occurred in the lingual gyrus,
posterior cingulate cortex, the precuneus and the parahippocampal
gyrus. In addition, significant activation appeared in two clusters in-
cluding the right postcentral gyrus, left middle temporal and middle
occipital areas (Table 2 and Fig. 1). There was no significant difference
between males and females in the effect of 7.5mg citalopram on whole-
brain BOLD signal changes.

We found no significant difference in BOLD signal responses to
7.5 mg citalopram between the n=9 participants who later received
the higher dose of citalopram, and the other n= 23 participants.

3.3. 11.25 mg citalopram minus saline analysis

Analysis of 11.25mg citalopram minus saline BOLD data revealed
widespread activation in cortical and subcortical structures including
clusters extending to the middle cingulate cortex (MCG), inferior frontal
gyrus, thalamus and midbrain (Table 3, Fig. 2). The caudate, which
showed significantly increased activation only at an uncorrected
p < 0.001 threshold in 7.5 mg citalopram minus saline analysis (MNI
coordinates= 9, 11, 2; F= 2.72), was fully FWE-corrected significant
in the 11.25mg analysis (Table 2).

3.4. 11.25 mg citalopram minus 7.5 mg citalopram analysis

The dose-effect analysis showed that significant time-dependent
BOLD responses to 11.25mg citalopram remained after subtraction of
responses to 7.5 mg in a single cluster extending to the MCG
(size= 103 voxels, MNI coordinates= 24,−16, 35, Peak F= 3.84).
Fig. 3 shows activation changes of the MCG in 7.5 mg citalopram minus
saline and 11.25mg citalopram minus saline analysis over time.

An exploratory analysis of the results with a more lenient threshold
of p < 0.05 with p(FWE) < 0.05 revealed that activation differences
between the two doses involve extensive brain regions including the
caudate, thalamus and middle frontal gyrus (Supplementary Table 3),
suggesting that the brain activation pattern is dose-dependent during
citalopram challenge.

3.5. Secondary analyses

3.5.1. ROI analysis
No significant effect of 7.5mg citalopram was found in the a priori

bilateral amygdala ROI but 11.25mg evoked significant BOLD signal
changes bilaterally compared to saline (right: MNI coordinates= 30,
5,−19, F=4.13, 9 voxels; left: 24,−4,−13, F=3.59, 11 voxels).
Direct comparison of the larger and smaller dose of citalopram showed
no significant effect.

Table 1
The results of Wilcoxon signed-rank test of ‘yes’ answers to questions about subjective states between 7.5 mg citalopram and saline sessions and between 11.25 mg
citalopram and saline sessions.

Anxious Drowsy Lightheaded Nauseous Restless Uncomfortable

Z p Z p Z p Z p Z p Z p

7.5mg −1.069 0.285 −1.212 0.226 −1.826 0.068 −1.633 0.102 −0.197 0.844 −0.104 0.917
11.25mg 0.000 1.000 −1.490 0.136 −1.000 0.317 −1.342 0.180 −1.732 0.083 0.000 1.000

Table 2
Areas with significant time× treatment interaction from 7.5mg citalopram
minus saline analysis at p(FWE) < 0.05 secondary threshold.

Cluster size Region Side Peak F-
value

Peak MNI Coordinates

x y z

1205 Lingual Gyrus – 4.46 0 −67 5
Lingual Gyrus R 3.56 15 −61 5
Lingual Gyrus L 3.53 −15 −73 23
Posterior Cingulate L 3.40 −9 −55 8
Middle Temporal
Gyrus

R 3.35 39 −64 20

Parahippocampal
Gyrus

R 3.14 15 −46 2

Precuneus R 3.10 9 −73 35
Precuneus – 3.07 0 −70 41
Lingual Gyrus L 3.06 −18 −64 5
Lingual Gyrus R 3.02 21 −67 20
Posterior Cingulate R 2.96 24 −64 17
Cerebellum R 2.90 18 −61 −28
Parahippocampal
Gyrus

R 2.87 30 −46 −10

Parahippocampal
Gyrus

R 2.85 24 −49 −1

Precuneus R 2.81 24 −79 35
Fusiform Gyrus R 2.60 36 −46 −19

175 Postcentral Gyrus R 3.97 36 −34 53
Postcentral Gyrus R 2.91 33 −43 62

177 Middle Temporal
Gyrus

L 3.72 −48 −64 20

Middle Temporal
Gyrus

L 3.63 −45 −70 23

Middle Occipital
Gyrus

L 3.02 −39 −79 5

Middle Temporal
Gyrus

L 2.97 −54 −52 8

Middle Occipital
Gyrus

L 2.75 −48 −70 8

Middle Temporal
Gyrus

L 2.41 −48 −55 2

R= right; L= left; MNI=Montreal Neurological Institute.
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3.5.2. Time-series analysis
Visual inspection showed that the statistically significant time-de-

pendent differences between 7.5mg citalopram and saline is due to a
gradually increasing citalopram-saline difference. Supplementary Fig. 3
shows the BOLD signal time course in the most significant peaks of the 3
clusters, i.e. in the lingual gyrus, in the postcentral gyrus and in the
middle temporal gyrus (MTG). To determine and visualise the order of
the spatiotemporal changes during the 7.5 mg citalopram challenge
paired t-tests were applied to compare successive time bins to the
baseline using the flexible factorial repeated measure ANOVA model.
The first significant activation change occurred in the occipital cortex
7min after citalopram infusion started (12,−76, 2; T=4.56, 1919
voxels). The activation spread in a posterior-anterior direction, sig-
nificant frontal activation first emerging in the medial frontal gyrus
(−12, 59, 26; T= 4.55, 165 voxels) in the 11th minute as the occipital
activation intensified and spread (−12,−97,−4; T= 5.61, 4340
voxels). The Supplementary video shows the statistically significant
BOLD signal changes (t-tests) emerging over 1min time bins from the
onset of the infusion at p < 0.001 primary height threshold without
correction.

3.5.3. Neuroticism-associated changes in brain activity
3.5.3.1. Correlation between neuroticism and citalopram-evoked brain
activation. Neuroticism scores positively correlated with AUC BOLD
responses in thalamus (r= 0.49, p=0.005) and midbrain (r= 0.41,
p=0.021). The strongest and most significant correlations were
between the thalamus activation and the anxiety subscale of
neuroticism (r= 0.63, p= 0.0002) and the right MTG and self-
consciousness (r= 0.48, p=0.006). For detailed results, see
Supplementary Table 4 and Supplementary Fig. 4. Using Bonferroni
correction (7 neuroticism scores, 14 brain regions, threshold
p < 0.0005) only the correlation between the thalamus AUC and the
anxiety subscale remained significant. However, because of
interdependencies between the investigated variables we used LASSO
method to model our data.

3.5.3.2. LASSO regression analysis of neuroticism scores and citalopram-
evoked brain activation. We modelled the 6 subscales of neuroticism
with sex, age and the BOLD response (AUC) to increased serotonin of

Fig. 1. 7.5 mg citalopram minus saline significant time× treatment interaction
at p < 0.001 uncorrected threshold in saggital view.

Table 3
Areas with significant time× treatment interaction from 11.25 mg citalopram
minus saline analysis at p(FWE) < 0.05 secondary threshold.

Cluster size Region Side Peak f-
value

Peak MNI coordinates

x y z

59 Middle Cingulate
Gyrus

R 4.88 15 −10 35

Middle Cingulate
Gyrus

R 4.76 12 −7 38

101 Fusiform Gyrus R 4.86 45 −49 −22
Fusiform Gyrus R 4.77 39 −55 −19
Fusiform Gyrus R 3.44 33 −43 −19
Cerebellum R 3.19 27 −58 −16

327 Fusiform Gyrus L 4.79 −39 −61 −16
Cerebellum L 4.56 −45 −52 −7
Supramarginal Gyrus L 4.56 −39 −52 32

104 Parahippocampal
gyrus

R 4.31 30 5 −16

Superior Temporal
Gyrus

R 3.95 39 20 −22

Superior Temporal
Gyrus

R 3.84 36 11 −31

Superior Temporal
Gyrus

R 3.78 33 8 −34

119 Extra-nuclear L 4.29 −9 −4 2
Caudate L 4.19 −15 20 −4
Caudate L 4.18 −6 5 −4
Thalamus R 3.89 6 8 2
Caudate R 3.85 −6 11 8
Caudate L 3.60 9 −1 11
Caudate R 3.21 9 −13 17

75 Extra-nuclear L 4.26 −21 −16 −7
Extra-nuclear L 4.02 −24 −19 2
Thalamus L 3.98 −18 −25 5
Midbrain L 3.88 −9 −25 −1
Thalamus L 3.71 −18 −19 −4
Midbrain L 3.55 −12 −31 −4
Extra-nuclear L 3.14 −30 −25 2

121 Middle Temporal
Gyrus

R 4.19 54 −52 8

Middle Temporal
Gyrus

R 4.01 48 −61 8

Superior Temporal
Gyrus

R 3.92 57 −55 23

74 Inferior Frontal Gyrus R 3.92 45 23 17
Inferior Frontal Gyrus R 3.90 39 17 38
Middle Frontal Gyrus R 3.80 39 11 35
Precentral gyrus R 3.72 39 20 26
Middle Frontal Gyrus R 3.29 51 17 17

R= right; L= left; MNI=Montreal Neurological Institute.

Fig. 2. 11.25 mg citalopram minus saline significant time× treatment inter-
action at p < 0.001 uncorrected threshold in sagittal view.
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the significantly activated brain areas to achieve the ‘optimal set’ of
relationships between investigated variables. Notable relationships
between personality traits and brain areas detected with LASSO
regression included self-consciousness–MCG (RB=0.37),
anxiety–thalamus (RB=0.30) and anxiety–midbrain (RB=0.10).
Fig. 4 shows an adaptive graphical lasso based model with the mean
values of adaptive graphical LASSO coefficients, computed using 100
generated models. For detailed results of LASSO analysis and relevant
relationship between activation changes of brain areas see
Supplementary Table 5.

4. Discussion

Our direct pharmacological challenge study of acute citalopram as a
probe of serotonergic neurotransmission revealed widespread and sig-
nificant activation in several brain areas that are part of the default
mode network (posterior cingulate gyrus, precuneus, angular gyrus,
MTG and parahippocampal gyrus), the visual network (lingual gyrus,
cuneus, fusiform gyrus and middle occipital gyrus), and the sensor-
imotor network (postcentral gyrus). Thus, we successfully applied and
also extended to female participants the previously reported (McKie
et al., 2005) citalopram phMRI method to follow direct regional BOLD
response to serotonergic stimulation while also investigating the effect
of a higher dose. Using a stricter significance threshold (pFWE<0.05)
compared to the original study (p < 0.001) in a larger sample we
found a similar pattern of activation. However, some of these activa-
tions including well-known regions with dense serotonergic innerva-
tion, such as the amygdala, and clusters involving the thalamus and

midbrain, showed significant activation only at a higher dose. The most
significant dose effect of citalopram was detected in the MCG, a key hub
of reflexive orientation toward sensory stimuli (Vogt, 2014). In addi-
tion, time-series analysis revealed that the activation pattern travelled
in an occipito-frontal direction suggesting that acute serotonin reuptake
inhibition initially facilitates visual information processing with down-
stream involvement of subcortical motor, frontal executive regions and
threat evaluation in amygdala (Supplementary video).

We also demonstrated that the total BOLD response to citalopram is
associated with neuroticism, a trait-like endophenotype for several
neuropsychiatric disorders and a potent modulator of emotional arousal
and threat processing (Goldstein and Klein, 2014; Kehoe et al., 2012).
By modelling the subscales of neuroticism together with activated brain
areas we demonstrated LASSO-relevant relationships between anxiety
and thalamus, anxiety and midbrain, and self-consciousness and the
MCG. These results further support serotonergic neurotransmission
having an important role in determining neuroticism and therefore
vulnerability to depression, anxiety and pain disorders.

4.1. Brain activation pattern during acute citalopram challenge

PET studies reported low 5HTT levels in most cortical areas except
the limbic lobe and a diverse distribution of different 5-HT receptor
types across the whole brain (Saulin et al., 2012; Savli et al., 2012). In
addition, a previous PET/MR study investigating the pharmacological
response to citalopram showed that intravenous administration of 8mg
citalopram over 8min led to 69 ± 7% 5HTT occupancy after the
challenge (Gryglewski et al., 2019). Althougth the dose and timeframe

Fig. 3. BOLD signal changes in MCG after the infusion started in 7.5 mg citalopram minus saline (blue) and 11.25mg citalopram minus saline (red) comparison
showing dose-dependent activation changes over time with error bars indicating standard error (SE).

Fig. 4. Adaptive graphical lasso based
model with the mean values of adaptive
graphical LASSO coefficients, computed
using 100 generated models. The thickness
of lines represents the strength of relation-
ships between variables. Colors: blue – peak
regions, yellow – neuroticism facets from
NEO-P-R, green – other covariates (sex and
age). SelfCo – self-consciousness, Depr –
depression, Vuln – vulnerability, Anx – an-
xiety, AngH – angry hostility, MCG –middle
cingulate gyrus, Thal – thalamus, rMTG –
right middle temporal gyrus, lMTG – left
middle temporal gyrus, LingG – lingual
gyrus, Midb – midbrain, Caud – caudate,
ParaH – parahippocampal gyrus, rFusG –
right fusiform gyrus, lAmy – left amygdala,
rAmy – right amygdala.
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of the citalopram infusion is almost the same as in our study, no cita-
lopram-evoked BOLD responses were observed in the PET/MR study.
The authors suggested that scanner drift might have matched their
occupancy regressors thus obscuring BOLD changes. Correction for drift
in the present study may therefore account for the significant changes
in BOLD signal due to citalopram challenge we observed.

Much is known about the distribution of 5HTT and 5-HT receptors
in the human brain that would be engaged by 5-HT release following
citalopram challenge (Savli et al., 2012). The most accepted hypothesis
regarding the effect of SSRIs is that increased synaptic serotonin levels
activate high affinity 5-HT1A inhibitory heteroreceptors on GABA-ergic
inhibitory interneurons and consequentially disinhibit glutamatergic
pyramidal cell activity which is the driver of neurovascular coupling
and the BOLD response (Chilmonczyk et al., 2015; Klaassens et al.,
2015). It is likely that other 5-HT receptors and neurotransmitters in
serotonergic projection areas take part in the observed activation
changes, especially at higher doses. However, in this study we cannot
draw a conclusion on the exact mechanisms behind the observed BOLD
signal changes due the diversity of 5-HT receptor and 5HTT distribution
in different brain regions and the complex relationships of 5-HT with
other neurotransmitter systems. Nevertheless, the net cortical disin-
hibition could be the origin of extensive decreases in functional brain
connectivity in resting state networks observed after single oral doses of
SSRIs in several studies (Klaassens et al., 2015, 2017, 2018; Schwarz
et al., 2009; Schaefer et al., 2014).

4.2. Dose effect of acute citalopram challenge

Microdialysis studies demonstrated that the extracellular increase of
serotonin elicited by blockade of 5HTT using SSRIs is dose dependent
(Bel and Artigas, 1992). In addition, a previous phMRI study showed
widespread and dose-dependent BOLD activation changes to acute ci-
talopram treatment in rats (Sekar et al., 2011). In our study, we found
similar widespread brain activation following the higher citalopram
dose that additionally activated brain areas with dense serotonergic
innervation including the midbrain, caudate, and thalamus. Activation
of similar functional networks has been described in rat phMRI studies
following acute i.v. fluoxetine (Schwarz et al., 2007, 2009) where re-
sponses correlated with raphe nuclei activation in the same subcortical
structures as in our study, such as thalamus, caudate and amygdala
(Schwarz et al., 2007). The extended activation might be related to the
quantitative effect of a more potent 5HTT blockade and increased sy-
naptic serotonin content resulting from the higher dose but we could
not exclude that receptors with less affinity for serotonin, such as the
excitatory 5-HT2A receptor, contribute to this effect (Chilmonczyk
et al., 2015; Marek et al., 2003).

The MCG showed a clear significant dose-dependent increase in
BOLD signal surviving whole-brain correction. The MCG is a key central
site controlling rapid motoric body orientation response during sensory
information processing and is primarily involved in Go/approach be-
haviour instead of noGo/avoidance response; a process which occurs
before emotional/cognitive assessments of other brain areas (Vogt,
2014). Our study provides evidence of dose-dependent modulation of
MCG activation by serotonergic innervation in the human brain, which
may contribute to the mechanism of antidepressant action and re-
present a potential biomarker for depression and recovery in the light of
previous evidence that this region is involved in the pathomechanism of
unipolar depression and stress-related disorders (Vogt, 2014).

4.3. Acutely increased serotonergic neurotransmission and heightened
arousal

Our group-level analysis indicate that acutely increasing synaptic
serotonin enhances BOLD signal in several brain regions with none
showing whole-brain significant decreases in BOLD signal during the
citalopram challenge. The observed pattern of activation shows

similarity with brain activation related to emotional arousal during
threat processing. For example, Farrow and colleagues (Farrow et al.,
2012) demonstrated that skin conductance changes during exposure to
threatening vs harmless stimuli were significantly associated with brain
activation in the lingual gyrus, precuneus, MCG, postcentral gyrus, bi-
lateral precentral gyrus/supplementary motor area, medial prefrontal
cortex and thalamus. Increased arousal increases emotion processing
and involves extensive brain areas related to promotion of survival,
such as facilitation of sensory information processing of environmental
triggers, focus of attention to internal and external stimuli, and motoric
orientation towards the source of information (LeDoux, 2012). We
speculate that acute citalopram-induced increases in synaptic serotonin
content produces a brain state similar to increased arousal, despite the
fact that no significant pulse rate, blood pressure or arousal symptom
changes were seen at the doses we applied. There is increasing interest
in dysregulation of arousal as a transdiagnostic process (Hegerl and
Hensch, 2014; Huang et al., 2015; Sander et al., 2015) contributing not
only to the pathogenesis of depression (Hegerl et al., 2012) but also to
other psychiatric disorders including anxiety (Domschke et al., 2010)
and chronic pain disorders (Foo and Mason, 2003); indeed arousal has
become a transdiagnostic research domain in the Research Domain
Criteria project (RDoc) (Cuthbert, 2014; Morris and Cuthbert, 2012).
Furthermore, increased arousal in depression (Hegerl et al., 2012;
Schmidt et al., 2016, 2017) may be an important determinant of anti-
depressant treatment outcome, with studies showing that a subgroup of
responders have heightened and faster reduction of arousal during
antidepressant treatment compared to non-responders (Olbrich et al.,
2016; Schmidt et al., 2017). Our findings suggest there could be a
serotonergic basis to transdiagnostic dysfunctional arousal in psychia-
tric disorders. This could be a fruitful area of further investigation.

4.4. Brain serotonin neurotransmission and neuroticism

Several studies investigated neuroimaging biomarkers of person-
ality traits such as neuroticism, an important endophenotype of de-
pression, anxiety and chronic pain (Wade et al., 1992; Weinstock and
Whisman, 2006). Association between neuroticism and decreased 5-
HT1A receptor binding in several brain regions with the strongest ne-
gative correlation in the hippocampus, superior temporal gyrus and
prefrontal cortex (Hirvonen et al., 2015), and increased 5-HT2A re-
ceptor binding in frontolimbic regions has been reported in previous
PET studies (Frokjaer et al., 2008).

Our study demonstrated an association between neuroticism and
BOLD activation during the lower citalopram dose (7.5 mg) in the
thalamus and midbrain with correlation between the anxiety compo-
nent of neuroticism and BOLD activation changes in the thalamus and
midbrain. This is in line with a previous neuroimaging study that
showed a positive correlation between neuroticism and 5-HTT binding
in the thalamus (Takano et al., 2007), but a similar study found no such
association (Kalbitzer et al., 2009) while another showed an association
between 5-HTT binding and neuroticism but with opposite directions in
males and females (Tuominen et al., 2017). The positive association of
anxiety with increased functional serotonergic function is compatible
with the increased anxiety that commonly occurs early in SSRI therapy
which is probably mediated by excessive 5-HT2C function with tol-
eration occurring after repeated treatment (Deakin, 2013; Deakin and
Graeff, 1991).

The region that showed a significant dose effect in the MCG in our
study also showed a correlation with the self-consciousness facet of
neuroticism. A previous study reported decreased functional coupling
between the MCG and amygdala during emotion suppression associated
with self-consciousness (Chen et al., 2017). Several studies have found
that the function of an area corresponding to the MCG may be related to
neuroticism (DeYoung et al., 2010; Kano et al., 2014), but interpreta-
tion is hindered by the lack of standard nomenclature, since it is
sometimes labelled as anterior or posterior cingulate cortex (Kumari
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et al., 2007; Tzschoppe et al., 2014).
Altogether, our results, consistent with previous neuroimaging stu-

dies, provide evidence of a relationship between neuroticism and
function of the thalamus, midbrain, and MCG, and indicate that this
relationship is mediated by the functional state of serotonin neuro-
transmission. This may also shed further light on the therapeutic effect
of SSRIs, as previous studies have shown that neuroticism may have a
role in the effect of SSRI treatment outcome in depressed patients be-
yond improved mood (Quilty et al., 2008; Tang et al., 2009). We
speculate that SSRIs could bring about positive neuroplastic changes in
neural circuits related to neuroticism that might be necessary to sta-
bilise remission in neuropsychiatric disorders where neuroticism is an
important risk factor.

5. Limitations

Our study has some limitations. We included only healthy partici-
pants and the findings need to be related to changes in patients with
depression, anxiety and chronic pain disorders. In addition, the sample
size for the dose-response is small and administration was not blinded
for the 11.25mg citalopram challenge. Nevertheless, we found highly
significant activation changes with 9 participants in the 11.25mg
minus saline comparison occurring in regions with well-known ser-
otonergic innervation, consistent with previous research. We did not
measure physiological or performance measures of arousal and clearly
the possible relationship to regional brain effects of citalopram chal-
lenge is speculative. However, the brain regions that responded with
increased BOLD signal were similar to brain activation related to
emotional arousal during threat processing. Nevertheless, our in-
ferences need direct tests in future studies designed specifically to
measure brain activation changes to external stressors and its relations
to citalopram challenge.

6. Conclusion

Acute i.v. citalopram administration not only elicited dose depen-
dent increasing brain activation in several regions involved in ser-
otonergic neurotransmission and part of the default mode, visual and
sensorimotor networks, but individual response differences were asso-
ciated with neuroticism. Activated brain regions were similar to those
involved in arousal and as neuroticism entails a tendency for heigh-
tened stress reactivity, our results could reflect modulating effect of
serotonin to process environmental stressors, which may also play a
role in therapeutic effects of SSRIs.

Declaration of competing interest

AEE is an employee of Gedeon Richter Plc. Medical Division, but the
company did not provide any funding, or had any further role in the
preparation of the article. JFWD variously performed consultancy,
speaking engagements and research for P1vital, Autifony and
AstraZeneca; fees are paid to the University of Manchester; he has share
options in P1vital. IMA has received consultancy fees from Servier,
Alkermes, Lundbeck/Otsuka and Janssen, an honorarium for speaking
from Lundbeck and grant support from Servier and AstraZeneca. All
other authors report no financial relationships with commercial inter-
ests.

Acknowledgement

The study was supported by the MTA-SE-NAP B Genetic Brain
Imaging Migraine Research Group, Hungarian Academy of Sciences,
Semmelweis University (Grant No. KTIA_NAP_13-2-2015-0001);
Hungarian Brain Research Program (Grant No. 2017-1.2.1- NKP-2017-
00002); by the National Institute for Health Research Manchester
Biomedical Research Centre; the Hungarian Academy of Sciences

(MTA-SE Neuropsychopharmacology and Neurochemistry Research
Group); by ITM/NKFIH Thematic Excellence Programme, Semmelweis
University; by the SE-Neurology FIKP grant of EMMI; and by the BME-
Biotechnology FIKP grant of EMMI (BME FIKP-BIO). XG and LRK was
supported by the Bolyai Research Fellowship Program of the Hungarian
Academy of Sciences. ES was supported by ÚNKP-17-3-III-ELTE-346
and GH was supported by ÚNKP-17-4-BME-115 and XG was supported
by ÚNKP-18-4-SE-33 and AEE was supported by ÚNKP-18-3-III-SE-6
New National Excellence Program of the Ministry of Human Capacities.
The sponsors had no further role in the study design; in the collection,
analysis and interpretation of data; in the writing of the report; and in
the decision to submit the paper for publication. The authors thank
Mate Magyar, Eva Csepany, Adam Gyorgy Szabo, Natalia Kocsel, Attila
Galambos, Krisztina Olah Koosne, Istvan Kobor, and Mark Folyovich for
their contribution.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.neuropharm.2019.107807.

References

Anderson, I.M., Del-Ben, C.M., McKie, S., Richardson, P., Williams, S.R., Elliott, R.,
Deakin, J.F.W., 2007. Citalopram modulation of neuronal responses to aversive face
emotions: a functional MRI study. Neuroreport 18, 1351–1355.

Anderson, I.M., Juhasz, G., Thomas, E., Downey, D., McKie, S., Deakin, J.F., Elliott, R.,
2011. The effect of acute citalopram on face emotion processing in remitted de-
pression: a pharmacoMRI study. Eur. Neuropsychopharmacol. 21, 140–148.

Anderson, I.M., McKie, S., Elliott, R., Williams, S.R., Deakin, J.F., 2008. Assessing human
5-HT function in vivo with pharmacoMRI. Neuropharmacology 55, 1029–1037.

Attenburrow, M.J., Mitter, P.R., Whale, R., Terao, T., Cowen, P.J., 2001. Low-dose cita-
lopram as a 5-HT neuroendocrine probe. Psychopharmacology 155, 323–326.

Bel, N., Artigas, F., 1992. Fluvoxamine preferentially increases extracellular 5-hydro-
xytryptamine in the raphe nuclei: an in vivo microdialysis study. Eur. J. Pharmacol.
229, 101–103.

Belsky, J., Jonassaint, C., Pluess, M., Stanton, M., Brummett, B., Williams, R., 2009.
Vulnerability genes or plasticity genes? Mol. Psychiatry 14, 746–754.

Booij, L., Tremblay, R.E., Szyf, M., Benkelfat, C., 2015. Genetic and early environmental
influences on the serotonin system: consequences for brain development and risk for
psychopathology. J. Psychiatry Neurosci. 40, 5–18.

Browning, M., Reid, C., Cowen, P.J., Goodwin, G.M., Harmer, C.J., 2007. A single dose of
citalopram increases fear recognition in healthy subjects. J. Psychopharmacol. 21,
684–690.

Castren, E., 2005. Is mood chemistry? Nat. Rev. Neurosci. 6, 241–246.
Castren, E., 2013. Neuronal network plasticity and recovery from depression. JAMA

Psychiatry 70, 983–989.
Chen, S., Chen, C., Yang, J., Yuan, J., 2017. Trait self-consciousness predicts amygdala

activation and its functional brain connectivity during emotional suppression: an
fMRI analysis. Sci. Rep. 7, 117.

Chilmonczyk, Z., Bojarski, A., Pilc, A., Sylte, I., 2015. Functional selectivity and anti-
depressant activity of serotonin 1A receptor ligands. Int. J. Mol. Sci. 16, 18474.

Costa, P.T., McCrae, R.R., 1992. Revised NEO Personality Inventory (NEO PI-R) and NEO
Five-Factor Inventory (NEO-FFI). Psychological Assessment Resources.

Cuthbert, B.N., 2014. The RDoC framework: facilitating transition from ICD/DSM to di-
mensional approaches that integrate neuroscience and psychopathology. World
Psychiatry 13, 28–35.

Deakin, J., 2013. The origins of '5-HT and mechanisms of defence' by Deakin and Graeff: a
personal perspective. J. Psychopharmacol. 27, 1084–1089.

Deakin, J.F., Graeff, F.G., 1991. 5-HT and mechanisms of defence. J. Psychopharmacol. 5,
305–315.

Del-Ben, C.M., Deakin, J.F., McKie, S., Delvai, N.A., Williams, S.R., Elliott, R., Dolan, M.,
Anderson, I.M., 2005. The effect of citalopram pretreatment on neuronal responses to
neuropsychological tasks in normal volunteers: an FMRI study.
Neuropsychopharmacology 30, 1724–1734.

DeYoung, C.G., Hirsh, J.B., Shane, M.S., Papademetris, X., Rajeevan, N., Gray, J.R., 2010.
Testing predictions from personality neuroscience. Brain structure and the big five.
Psychol. Sci. 21, 820–828.

Domschke, K., Stevens, S., Pfleiderer, B., Gerlach, A.L., 2010. Interoceptive sensitivity in
anxiety and anxiety disorders: an overview and integration of neurobiological find-
ings. Clin. Psychol. Rev. 30, 1–11.

Downey, D., Dutta, A., McKie, S., Dawson, G.R., Dourish, C.T., Craig, K., Smith, M.A.,
McCarthy, D.J., Harmer, C.J., Goodwin, G.M., Williams, S., Deakin, J.F., 2016.
Comparing the actions of lanicemine and ketamine in depression: key role of the
anterior cingulate. Eur. Neuropsychopharmacol. 26, 994–1003.

Epskamp, S., Borsboom, D., Fried, E.I., 2017. Estimating psychological networks and their
accuracy: a tutorial paper. Behav. Res. Methods 50, 195–212.

Farrow, T.F., Johnson, N.K., Hunter, M.D., Barker, A.T., Wilkinson, I.D., Woodruff, P.W.,
2012. Neural correlates of the behavioral-autonomic interaction response to

A.E. Edes, et al. Neuropharmacology xxx (xxxx) xxxx

8

https://doi.org/10.1016/j.neuropharm.2019.107807
https://doi.org/10.1016/j.neuropharm.2019.107807
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref1
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref1
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref1
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref2
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref2
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref2
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref3
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref3
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref4
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref4
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref5
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref5
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref5
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref6
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref6
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref7
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref7
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref7
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref8
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref8
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref8
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref9
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref10
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref10
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref11
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref11
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref11
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref12
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref12
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref13
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref13
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref14
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref14
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref14
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref15
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref15
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref16
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref16
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref17
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref17
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref17
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref17
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref18
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref18
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref18
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref19
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref19
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref19
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref20
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref20
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref20
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref20
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref21
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref21
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref22
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref22


potentially threatening stimuli. Front. Hum. Neurosci. 6, 349.
Foo, H., Mason, P., 2003. Brainstem modulation of pain during sleep and waking. Sleep

Med. Rev. 7, 145–154.
Fox, E., Zougkou, K., Ridgewell, A., Garner, K., 2011. The serotonin transporter gene

alters sensitivity to attention bias modification: evidence for a plasticity gene. Biol.
Psychiatry 70, 1049–1054.

Frokjaer, V.G., Mortensen, E.L., Nielsen, F.A., Haugbol, S., Pinborg, L.H., Adams, K.H.,
Svarer, C., Hasselbalch, S.G., Holm, S., Paulson, O.B., Knudsen, G.M., 2008.
Frontolimbic serotonin 2A receptor binding in healthy subjects is associated with
personality risk factors for affective disorder. Biol. Psychiatry 63, 569–576.

Gaspar, P., Cases, O., Maroteaux, L., 2003. The developmental role of serotonin: news
from mouse molecular genetics. Nat. Rev. Neurosci. 4, 1002–1012.

Godlewska, B.R., Browning, M., Norbury, R., Cowen, P.J., Harmer, C.J., 2016. Early
changes in emotional processing as a marker of clinical response to SSRI treatment in
depression. Transl. Psychiatry 6 (11), e957.

Godlewska, B.R., Norbury, R., Selvaraj, S., Cowen, P.J., Harmer, C.J., 2012. Short-term
SSRI treatment normalises amygdala hyperactivity in depressed patients. Psychol.
Med. 42, 2609–2617.

Goldstein, B.L., Klein, D.N., 2014. A review of selected candidate endophenotypes for
depression. Clin. Psychol. Rev. 34, 417–427.

Gryglewski, G., Klöbl, M., Berroterán-Infante, N., Rischka, L., Balber, T., Vanicek, T.,
Pichler, V., Kautzky, A., Klebermass, E.M., Reed, M.B., Vraka, C., Hienert, M., James,
G.M., Silberbauer, L., Godbersen, G.M., Unterholzner, J., Michenthaler, P.,
Hartenbach, M., Winkler-Pjrek, E., Wadsak, W., Mitterhauser, M., Hahn, A., Hacker,
M., Kasper, S., Lanzenberger, R., 2019. Modeling the acute pharmacological response
to selective serotonin reuptake inhibitors in human brain using simultaneous PET/
MR imaging. Eur. Neuropsychopharmacol. 29 (6), 711–719.

Hariri, A.R., Holmes, A., 2006. Genetics of emotional regulation: the role of the serotonin
transporter in neural function. Trends Cogn. Sci. 10, 182–191.

Harmer, C.J., Bhagwagar, Z., Perrett, D.I., Vollm, B.A., Cowen, P.J., Goodwin, G.M.,
2003. Acute SSRI administration affects the processing of social cues in healthy vo-
lunteers. Neuropsychopharmacology 28, 148–152.

Harmer, C.J., Cowen, P.J., 2013. 'It's the way that you look at it'-a cognitive neu-
ropsychological account of SSRI action in depression. Philos. Trans. R. Soc. Lond. B
Biol. Sci. 368, 20120407.

Harmer, C.J., Mackay, C.E., Reid, C.B., Cowen, P.J., Goodwin, G.M., 2006. Antidepressant
drug treatment modifies the neural processing of nonconscious threat cues. Biol.
Psychiatry 59, 816–820.

Hegerl, U., Hensch, T., 2014. The vigilance regulation model of affective disorders and
ADHD. Neurosci. Biobehav. Rev. 44, 45–57.

Hegerl, U., Wilk, K., Olbrich, S., Schoenknecht, P., Sander, C., 2012. Hyperstable reg-
ulation of vigilance in patients with major depressive disorder. World. J. Biol.
Psychiatry. 13, 436–446.

Hirvonen, J., Tuominen, L., Nagren, K., Hietala, J., 2015. Neuroticism and serotonin 5-
HT1A receptors in healthy subjects. Psychiatry Res. 234, 1–6.

Huang, J., Sander, C., Jawinski, P., Ulke, C., Spada, J., Hegerl, U., Hensch, T., 2015. Test-
retest reliability of brain arousal regulation as assessed with VIGALL 2.0.
Neuropsychiatr. Electrophysiol 1, 13.

Kalbitzer, J., Frokjaer, V.G., Erritzoe, D., Svarer, C., Cumming, P., Nielsen, F.A., Hashemi,
S.H., Baare, W.F., Madsen, J., Hasselbalch, S.G., Kringelbach, M.L., Mortensen, E.L.,
Knudsen, G.M., 2009. The personality trait openness is related to cerebral 5-HTT
levels. Neuroimage 45, 280–285.

Kano, M., Coen, S.J., Farmer, A.D., Aziz, Q., Williams, S.C., Alsop, D.C., Fukudo, S.,
O'Gorman, R.L., 2014. Physiological and psychological individual differences influ-
ence resting brain function measured by ASL perfusion. Brain Struct. Funct. 219,
1673–1684.

Kehoe, E.G., Toomey, J.M., Balsters, J.H., Bokde, A.L., 2012. Personality modulates the
effects of emotional arousal and valence on brain activation. Soc. Cogn. Affect.
Neurosci. 7, 858–870.

Khalili-Mahani, N., Rombouts, S.A., van Osch, M.J., Duff, E.P., Carbonell, F., Nickerson,
L.D., Becerra, L., Dahan, A., Evans, A.C., Soucy, J.P., Wise, R., Zijdenbos, A.P., van
Gerven, J.M., 2017. Biomarkers, designs, and interpretations of resting-state fMRI in
translational pharmacological research: a review of state-of-the-Art, challenges, and
opportunities for studying brain chemistry. Hum. Brain Mapp. 38, 2276–2325.

Klaassens, B.L., Rombouts, S.A., Winkler, A.M., van Gorsel, H.C., van der Grond, J., van
Gerven, J.M., 2017. Time related effects on functional brain connectivity after ser-
otonergic and cholinergic neuromodulation. Hum. Brain Mapp. 38, 308–325.

Klaassens, B.L., van Gerven, J.M.A., Klaassen, E.S., van der Grond, J., Rombouts, S., 2018.
Serotonergic and cholinergic modulation of functional brain connectivity: a com-
parison between young and older adults. Neuroimage 169, 312–322.

Klaassens, B.L., van Gorsel, H.C., Khalili-Mahani, N., van der Grond, J., Wyman, B.T.,
Whitcher, B., Rombouts, S.A.R.B., van Gervend, J.A., 2015. Single-dose serotonergic
stimulation shows widespread effects on functional brain connectivity. Neuroimage
122, 440–450.

Klomp, A., van Wingen, G.A., de Ruiter, M.B., Caan, M.W.A., Denys, D., Reneman, L.,
2013. Test-retest reliability of task-related pharmacological MRI with a single-dose
oral citalopram challenge. Neuroimage 75, 108–116.

Kraus, C., Castrén, E., Kasper, S., Lanzenberger, R., 2017. Serotonin and neuroplasticity -
links between molecular, functional and structural pathophysiology in depression.
Neurosci. Biobehav. Rev. 77, 317–326.

Kumari, V., ffytche, D.H., Das, M., Wilson, G.D., Goswami, S., Sharma, T., 2007.
Neuroticism and brain responses to anticipatory fear. Behav. Neurosci. 121, 643–652.

LeDoux, J., 2012. Rethinking the emotional brain. Neuron 73, 653–676.
Lesch, K.P., Bengel, D., Heils, A., Sabol, S.Z., Greenberg, B.D., Petri, S., Benjamin, J.,

Muller, C.R., Hamer, D.H., Murphy, D.L., 1996. Association of anxiety-related traits
with a polymorphism in the serotonin transporter gene regulatory region. Science

274, 1527–1531.
Lotrich, F.E., Bies, R., Muldoon, M.F., Manuck, S.B., Smith, G.S., Pollock, B.G., 2005.

Neuroendocrine response to intravenous citalopram in healthy control subjects:
pharmacokinetic influences. Psychopharmacology 178, 268–275.

Macoveanu, J., 2014. Serotonergic modulation of reward and punishment: evidence from
pharmacological fMRI studies. Brain Res. 1556, 19–27.

Marek, G.J., Carpenter, L.L., McDougle, C.J., Price, L.H., 2003. Synergistic action of 5-
HT2A antagonists and selective serotonin reuptake inhibitors in neuropsychiatric
disorders. Neuropsychopharmacology 28, 402–412.

McKie, S., Del-Ben, C., Elliott, R., Williams, S., del Vai, N., Anderson, I., Deakin, J.F.,
2005. Neuronal effects of acute citalopram detected by pharmacoMRI.
Psychopharmacology (Berl) 180, 680–686.

Middeldorp, C.M., de Geus, E.J., Beem, A.L., Lakenberg, N., Hottenga, J.J., Slagboom,
P.E., Boomsma, D.I., 2007. Family based association analyses between the serotonin
transporter gene polymorphism (5-HTTLPR) and neuroticism, anxiety and depres-
sion. Behav. Genet. 37, 294–301.

Morris, S.E., Cuthbert, B.N., 2012. Research Domain Criteria: cognitive systems, neural
circuits, and dimensions of behavior. Dialogues Clin. Neurosci. 14, 29–37.

McFarquhar, M., 2019. Modeling group-level repeated measurements of neuroimaging
data using the univariate general linear model. Front. Neurosci. 13, 352.

Munafo, M.R., Freimer, N.B., Ng, W., Ophoff, R., Veijola, J., Miettunen, J., Jarvelin, M.R.,
Taanila, A., Flint, J., 2009. 5-HTTLPR genotype and anxiety-related personality traits:
a meta-analysis and new data. Am. J. Med. Genet. B Neuropsychiatr. Genet. 150B,
271–281.

Murphy, S.E., Norbury, R., O'Sullivan, U., Cowen, P.J., Harmer, C.J., 2009. Effect of a
single dose of citalopram on amygdala response to emotional faces. Br. J. Psychiatry
194, 535–540.

Olbrich, S., Trankner, A., Surova, G., Gevirtz, R., Gordon, E., Hegerl, U., Arns, M., 2016.
CNS- and ANS-arousal predict response to antidepressant medication: findings from
the randomized iSPOT-D study. J. Psychiatr. Res. 73, 108–115.

Pringle, A., Harmer, C.J., 2015. The effects of drugs on human models of emotional
processing: an account of antidepressant drug treatment. Dialogues Clin. Neurosci.
17, 477–487.

Quilty, L.C., Meusel, L.A., Bagby, R.M., 2008. Neuroticism as a mediator of treatment
response to SSRIs in major depressive disorder. J. Affect. Disord. 111, 67–73.

Sander, C., Hensch, T., Wittekind, D.A., Bottger, D., Hegerl, U., 2015. Assessment of
wakefulness and brain arousal regulation in psychiatric research.
Neuropsychobiology 72, 195–205.

Saulin, A., Savli, M., Lanzenberger, R., 2012. Serotonin and molecular neuroimaging in
humans using PET. Amino Acids 42, 2039–2057.

Savli, M., Bauer, A., Mitterhauser, M., Ding, Y.S., Hahn, A., Kroll, T., Neumeister, A.,
Haeusler, D., Ungersboeck, J., Henry, S., Isfahani, S.A., Rattay, F., Wadsak, W.,
Kasper, S., Lanzenberger, R., 2012. Normative database of the serotonergic system in
healthy subjects using multi-tracer PET. Neuroimage 63, 447–459.

Schaefer, A., Burmann, I., Regenthal, R., Arélin, K., Barth, C., Pampel, A., Villringer, A.,
Margulies, D.S., Sacher, J., 2014. Serotonergic modulation of intrinsic functional
connectivity. Curr. Biol. 24, 2314–2318.

Schmidt, F.M., Pschiebl, A., Sander, C., Kirkby, K.C., Thormann, J., Minkwitz, J., Chittka,
T., Weschenfelder, J., Holdt, L.M., Teupser, D., Hegerl, U., Himmerich, H., 2016.
Impact of serum cytokine levels on EEG-measured arousal regulation in patients with
major depressive disorder and healthy controls. Neuropsychobiology 73, 1–9.

Schmidt, F.M., Sander, C., Dietz, M.E., Nowak, C., Schroder, T., Mergl, R., Schonknecht,
P., Himmerich, H., Hegerl, U., 2017. Brain arousal regulation as response predictor
for antidepressant therapy in major depression. Sci. Rep. 7, 45187.

Schwarz, A.J., Gozzi, A., Bifone, A., 2009. Community structure in networks of functional
connectivity: resolving functional organization in the rat brain with pharmacological
MRI. Neuroimage 47, 302–311.

Schwarz, A.J., Gozzi, A., Reese, T., Bifone, A., 2007. In vivo mapping of functional
connectivity in neurotransmitter systems using pharmacological MRI. Neuroimage
34, 1627–1636.

Sekar, S., Verhoye, M., Van Audekerke, J., Vanhoutte, G., Lowe, A.S., Blamire, A.M.,
Steckler, T., Van der Linden, A., Shoaib, M., 2011. Neuroadaptive responses to ci-
talopram in rats using pharmacological magnetic resonance imaging.
Psychopharmacology (Berl) 213, 521–531.

Smith, D.J., Escott-Price, V., Davies, G., Bailey, M.E., Colodro-Conde, L., Ward, J.,
Vedernikov, A., Marioni, R., Cullen, B., Lyall, D., Hagenaars, S.P., Liewald, D.C.,
Luciano, M., Gale, C.R., Ritchie, S.J., Hayward, C., Nicholl, B., Bulik-Sullivan, B.,
Adams, M., Couvy-Duchesne, B., Graham, N., Mackay, D., Evans, J., Smith, B.H.,
Porteous, D.J., Medland, S.E., Martin, N.G., Holmans, P., McIntosh, A.M., Pell, J.P.,
Deary, I.J., O'Donovan, M.C., 2016. Genome-wide analysis of over 106 000 in-
dividuals identifies 9 neuroticism-associated loci. Mol. Psychiatry 21, 1644.

Symonds, C.S., McKie, S., Elliott, R., Deakin, W.J.F., Anderson, I.M., 2012. Detection of
the acute effects of hydrocortisone in the hippocampus using pharmacological fMRI.
Eur. Neuropsychopharmacol. 22, 867–874.

Takano, A., Arakawa, R., Hayashi, M., Takahashi, H., Ito, H., Suhara, T., 2007.
Relationship between neuroticism personality trait and serotonin transporter
binding. Biol. Psychiatry 62, 588–592.

Tang, T.Z., DeRubeis, R.J., Hollon, S.D., Amsterdam, J., Shelton, R., Schalet, B., 2009.
Personality change during depression treatment: a saline-controlled trial. Arch. Gen.
Psychiatr. 66, 1322–1330.

Terracciano, A., Balaci, L., Thayer, J., Scally, M., Kokinos, S., Ferrucci, L., Tanaka, T.,
Zonderman, A.B., Sanna, S., Olla, N., Zuncheddu, M.A., Naitza, S., Busonero, F., Uda,
M., Schlessinger, D., Abecasis, G.R., Costa Jr., P.T., 2009. Variants of the serotonin
transporter gene and NEO-PI-R Neuroticism: No association in the BLSA and SardiNIA
samples. Am. J. Med. Genet. B Neuropsychiatr. Genet. 150B, 1070–1077.

Tuominen, L., Miettunen, J., Cannon, D.M., Drevets, W.C., Frokjaer, V.G., Hirvonen, J.,

A.E. Edes, et al. Neuropharmacology xxx (xxxx) xxxx

9

http://refhub.elsevier.com/S0028-3908(19)30369-7/sref22
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref23
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref23
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref24
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref24
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref24
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref25
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref25
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref25
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref25
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref26
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref26
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref27
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref27
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref27
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref28
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref28
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref28
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref29
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref29
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref30
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref30
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref30
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref30
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref30
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref30
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref30
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref31
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref31
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref32
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref32
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref32
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref33
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref33
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref33
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref34
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref34
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref34
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref35
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref35
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref36
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref36
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref36
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref37
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref37
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref38
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref38
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref38
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref39
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref39
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref39
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref39
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref40
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref40
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref40
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref40
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref41
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref41
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref41
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref42
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref42
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref42
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref42
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref42
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref43
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref43
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref43
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref44
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref44
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref44
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref45
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref45
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref45
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref45
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref46
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref46
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref46
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref47
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref47
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref47
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref48
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref48
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref49
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref50
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref50
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref50
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref50
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref51
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref51
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref51
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref52
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref52
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref53
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref53
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref53
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref54
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref54
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref54
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref55
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref55
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref55
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref55
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref56
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref56
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref57
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref57
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref58
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref58
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref58
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref58
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref59
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref59
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref59
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref60
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref60
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref60
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref61
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref61
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref61
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref62
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref62
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref63
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref63
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref63
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref64
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref64
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref65
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref65
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref65
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref65
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref66
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref66
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref66
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref67
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref67
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref67
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref67
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref68
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref68
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref68
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref69
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref69
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref69
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref70
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref70
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref70
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref71
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref71
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref71
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref71
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref72
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref72
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref72
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref72
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref72
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref72
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref72
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref73
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref73
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref73
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref74
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref74
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref74
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref75
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref75
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref75
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref76
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref76
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref76
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref76
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref76
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref77


Ichise, M., Jensen, P.S., Keltikangas-Jarvinen, L., Klaver, J.M., Knudsen, G.M.,
Takano, A., Suhara, T., Hietala, J., 2017. Neuroticism associates with cerebral in vivo
serotonin transporter binding differently in males and females. Int. J.
Neuropsychopharmacol. 20, 963–970.

Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N.,
Mazoyer, B., Joliot, M., 2002. Automated anatomical labeling of activations in SPM
using a macroscopic anatomical parcellation of the MNI MRI single-subject brain.
Neuroimage 15, 273–289.

Tzschoppe, J., Nees, F., Banaschewski, T., Barker, G.J., Buchel, C., Conrod, P.J., Garavan,
H., Heinz, A., Loth, E., Mann, K., Martinot, J.L., Smolka, M.N., Gallinat, J., Strohle,
A., Struve, M., Rietschel, M., Schumann, G., Flor, H., consortium, I., 2014. Aversive
learning in adolescents: modulation by amygdala-prefrontal and amygdala-hippo-
campal connectivity and neuroticism. Neuropsychopharmacology 39, 875–884.

Umemori, J., Winkel, F., Didio, G., Llach Pou, M., Castrén, E., 2018. iPlasticity: induced

juvenile-like plasticity in the adult brain as a mechanism of antidepressants.
Psychiatry Clin. Neurosci. 72, 633–653.

Vogt, B.A., 2014. Submodalities of emotion in the context of cingulate subregions. Cortex
59, 197–202.

Wade, J.B., Dougherty, L.M., Hart, R.P., Rafii, A., Price, D.D., 1992. A canonical corre-
lation analysis of the influence of neuroticism and extraversion on chronic pain,
suffering, and pain behavior. Pain 51, 67–73.

Weinstock, L.M., Whisman, M.A., 2006. Neuroticism as a common feature of the de-
pressive and anxiety disorders: a test of the revised integrative hierarchical model in
a national sample. J. Abnorm. Psychol. 115, 68–74.

Willis-Owen, S.A., Turri, M.G., Munafo, M.R., Surtees, P.G., Wainwright, N.W., Brixey,
R.D., Flint, J., 2005. The serotonin transporter length polymorphism, neuroticism,
and depression: a comprehensive assessment of association. Biol. Psychiatry 58,
451–456.

A.E. Edes, et al. Neuropharmacology xxx (xxxx) xxxx

10

http://refhub.elsevier.com/S0028-3908(19)30369-7/sref77
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref77
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref77
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref77
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref78
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref78
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref78
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref78
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref79
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref79
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref79
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref79
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref79
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref80
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref80
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref80
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref81
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref81
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref82
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref82
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref82
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref83
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref83
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref83
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref84
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref84
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref84
http://refhub.elsevier.com/S0028-3908(19)30369-7/sref84

	Spatiotemporal brain activation pattern following acute citalopram challenge is dose dependent and associated with neuroticism: A human phMRI study
	Introduction
	Material and methods
	Participants
	Self-report measure of personality dimensions
	Experimental design
	Data acquisition
	fMRI data analysis
	Statistical analysis of neuroticism and BOLD responses

	Results
	Behavioural and physiological data
	7.5 mg citalopram minus saline analysis
	11.25 mg citalopram minus saline analysis
	11.25 mg citalopram minus 7.5 mg citalopram analysis
	Secondary analyses
	ROI analysis
	Time-series analysis
	Neuroticism-associated changes in brain activity
	Correlation between neuroticism and citalopram-evoked brain activation
	LASSO regression analysis of neuroticism scores and citalopram-evoked brain activation


	Discussion
	Brain activation pattern during acute citalopram challenge
	Dose effect of acute citalopram challenge
	Acutely increased serotonergic neurotransmission and heightened arousal
	Brain serotonin neurotransmission and neuroticism

	Limitations
	Conclusion
	mk:H1_27
	Acknowledgement
	Supplementary data
	References




