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MIXING TIME OF THE SWAP MARKOV CHAIN

AND P -STABILITY

P. L. ERDŐS, C. S. GREENHILL, T. R. MEZEI, I. MIKLÓS, D. SOLTÉSZ

and L. SOUKUP

Abstract. The aim of this paper is to confirm that P -stability of a family of uncon-

strained/bipartite/directed degree sequences is sufficient for the swap Markov chain

to be rapidly mixing on members of the family. This is a common generalization of
every known result that shows the rapid mixing nature of the swap Markov chain

on a region of degree sequences. In addition, for example, it encompasses power-law

degree sequences with exponent γ > 2, and, asymptotically almost surely, the de-
gree sequence of any Erdős-Rényi random graph G(n, p) where p is bounded away

from 0 and 1 by at least 5 logn
n−1

.

We also show that there exists a family of degree sequences which is not P -stable

and its members have exponentially many realizations, yet the swap Markov chain
is still rapidly mixing on them.

The first three sections of this paper are based on the preprint titled “The mixing

time of the swap (switch) Markov chains: a unified approach”, which has been uploaded

to arXiv on March 15, 2019.

1. Introduction

An important problem in network science is to algorithmically construct typical
instances of networks with predefined properties. In particular, special attention
has been devoted to sampling simple graphs (i.e., loops and parallel edges are
forbidden) with a given degree sequence. We study the three most common degree
sequence types: the degree sequences of simple graphs which we call unconstrained
degree sequences, bipartite degree sequences, and directed degree sequences.

In 1997 Kannan, Tetali, and Vempala [12] proposed the use of the so-called
switch or swap Markov chain approach for uniformly sampling realizations of a
degree sequence. For an unconstrained degree sequence d on n vertices, the swap
Markov chain (G(d), P (d)) is defined as follows: G(d) is the set of realizations of
d, and for two distinct realizations G,G′ ∈ G(d), if E(G)4E(G′) (the symmetric
difference of the edge sets) is a C4, then

(1.1) Pr(G→ G′) = P (G,G′) :=
1

2
(
n
2

)(
n−2
2

) ,
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otherwise P (G,G′) = 0. It is well-known that this Markov chain converges to the
uniform distribution on G(d). From the general theory of Markov chains it follows
that the convergence is exponentially fast in terms of the number of steps taken.
However, the size of G(d) can also be exponential in n, so the interesting quantity
is the rate of convergence and whether it beats the growth of |G(d)| as n increases.
The mixing time of a Markov chain (G, P ) is

τε(G, P ) = min

{
t : ∀X ∈ G ∀t′ ≥ t

∑
Y ∈G

∣∣∣∣P t(X,Y )− 1

|G|

∣∣∣∣ ≤ ε}.
A Markov chain is called rapidly mixing, if τε(G, P ) ≤ poly(log |G|,− log ε). In his
seminal work [14], Sinclair proved that τε(G, P ) ≤ 1

1−λ∗ · (log |G| − log ε), where
λ∗ is the second largest eigenvalue of P .

Conjecture 1.1 (the KTV conjecture [12]). The swap Markov chain is rapidly
mixing for any unconstrained degree sequence.

Although Conjecture 1.1 is still open, there is a series of results that prove
the rapid mixing of the swap Markov chain on various special degree sequence
classes, using Sinclair’s multi-commodity flow method [14] to bound 1

1−λ∗ . We
summarize these results in a very compact way in Table 1. Most rapid mixing
results on directed degree sequences can be reduced to the case of (restricted)
bipartite degree sequences, as shown in [3].

It is not uncommon that uniformly randomly applied, small local modifications
of combinatorial objects result in rapid convergence to the uniform distribution.
In 1990, Jerrum and Sinclair published a very influential paper [10] about fast
uniform generation of regular graphs and about realizations of degree sequences
where no degree exceeds

√
n/2. To achieve this goal they applied the Markov

chain they have developed in [9]. Informally it is known as JS chain, and it is
sampling the perfect and near-perfect 1-factors of the Tutte gadget corresponding
the degree sequence.

2. Stability and rapid mixing

The rapid mixing nature of the JS chain depends on the ratio of the number almost
perfect matchings and perfect matchings [9], which is shown to be sufficiently low
if the degree sequence d belongs to a P -stable class:

Definition 2.1. Let D be a set of (unconstrained, bipartite or directed) de-
gree sequences. The class D is P -stable, if there exists a polynomial p ∈ R [x]
such that for any n ∈ N and any degree sequence d ∈ D on n vertices we have∣∣∣⋃`1(d′,d)≤2 G(d′)

∣∣∣ ≤ p(n) · |G(d)|.

In [11], the authors give a number of sufficient conditions for P -stability, and
also show examples for degree sequences that are not P -stable. The “average deg.
result” referred to in Table 1 refers to the following set of degree sequences:
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unconstrained deg. seq. bipartite deg. seq. directed deg. seq.

regular [2] (half-)regular [13] regular [7]

almost half regular [3]

∆ ≤ 1
3

√
2m [8] ∆ ≤ 1√

2

√
m [4] ∆ < 1√

2

√
m− 4 [4]

Power-law distrib.-

bound, γ > 2

(∆− δ + 1)
2 ≤ (∆U − δU ) · (∆V − δV ) ≤ similar to the bip. case

≤ 4 · δ(n−∆− 1) min (4δU (|U | −∆V ), [4]

[1] 4δV (|V | −∆U ))

Erdős-Rényi G(n, p) Bip. E.R. with edge prob. similar to the bip. case

with high prob. p, 1− p ≥ 4
√

2 logn
n [4] [4]

strongly stable degree sequence classes [1]

P -stable degree sequence classes

Table 1. Regions for which the rapid mixing of the swap Markov chain known. ∆ and δ denote
the maximum and minimum degrees, respectively. Half of the sum of the degrees is m, and n

is the number of vertices. The notation is similar for bipartite and directed degree sequences.

Some technical conditions have been omitted. Gray text is used for previously known results.

Theorem 2.2 (Jerrum, McKay, Sinclair, [11, Theorem 8.3]). Let δ = min d,
∆ = max d, and 2m =

∑
d. The family of unconstrained degree sequences

DJMS :=
{

d ∈ Nn : (2m− nδ)(n∆− 2m)

≤ (∆− δ) ((2m− nδ)(n−∆− 1) + (n∆− 2m)δ)
}
,

is P -stable.

Greenhill and Sfragara suggested exploring the connection between the mixing
rate of the swap Markov chain and stable degree sequences [8, Subsection 1.1].
The first such result is due to Amanatidis and Kleer:

Theorem 2.3 ([1]). The swap Markov chain is rapidly mixing on strongly stable
unconstrained and bipartite degree sequence classes.

A set of degree sequences D is strongly stable, if there exists a constant C, such
that for any degree sequence d′ for which `1(d′,d) ≤ 2 for some d ∈ D, for any
G′ ∈ G(d′) there exists G ∈ G(d) such that |E(G′)4E(G)| ≤ C. Strong stability
directly implies P -stability; in fact, the proof of Theorem 2.2 in [11] implicitly
shows that DJMS is a strongly stable class. As far as we known, Theorem 2.3
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implies all of the previously known rapid mixing results on unconstrained and
bipartite degree sequences (see Table 1).

Our main result is extending the techniques of [13, 3] to unconstrained, bipar-
tite, and directed degree sequences with a unified machinery:

Theorem 2.4. The swap Markov chain is rapidly mixing on P -stable uncon-
strained, bipartite, and directed degree sequence classes.

Remark 2.5. On realizations of directed degree sequences, switching the ori-
entation of edges along directed circuit of length 6 is allowed, too. If this operation
is not permitted, the swap Markov chain is not even irreducible (connected) for
directed degree sequences.

The unified framework in which we prove the theorem requires only minimal
branching between the three different types of degree sequences. The theoretical
novelty of this result is twofold. We scaled up previous results both

• vertically (power of machinery) to P -stable degree sequence classes, and
• horizontally (applicability of machinery) to directed degree sequences.

To our knowledge, Theorem 2.4 applies to every region of degree sequences where
the rapid mixing of the swap Markov chain has been known (Table 1).

3. Applications of Theorem 2.4

There are two interesting consequences of Theorem 2.4 concerning popular ran-
dom graph models. The next theorem follows via Hoeffding’s inequality and The-
orem 2.2.

Theorem 3.1. The degree sequence of an unconstrained Erds-Rnyi random
graph with edge probability p bounded away from 0 and 1 by at least 5 logn

n−1 is

asymptotically almost surely P -stable (as n→∞).

Informally, the theorem is a consequence of the fact that the degrees in an
Erdős-Rényi random graph are tightly concentrated around their expected value.

Scale-free networks whose (unconstrained) degree sequences follow a power-law
are immensely popular in the network science community. A set of degree sequences
D is power-law distribution-bounded with parameter γ, if there exists a constant
C > 0 such that for all n and d ∈ D on n vertices, we have |{k : d(k) ≥ i}| ≤
Cn
∑
j≥i j

−γ for any i ≥ 1. The definition of power-law density-bound is similar,

but stricter, because it requires that |{k : d(k) = i}| ≤ Cni−γ for any i ≥ 1. In
degree distributions of empirical networks following a power-law, the parameter γ
is usually between 2 and 3 (see [5]).

As stated in Table 1, Greenhill and Sfragara [8] showed that the swap Markov
chain is rapidly mixing on power-law density-bounded degree sequences with
γ > 2.5. This is based on Gao and Wormald’s enumeration of several heavy-tailed
degree sequences [5]. In particular, they estimate the number of realizations of
degree sequences that are
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(1) power-law density-bounded with γ > 2.5,

(2) power-law distribution-bounded with γ > 1 +
√

3 ≈ 2.732.

The formula in [5] enumerating the realizations of degree sequences obeying either
(1) or (2) directly implies P -stability, thus our Theorem 2.4 applies. Gao and
Wormald [6] also claim that degree sequences obeying a power-law distribution-
bound with γ > 2 are P -stable, therefore:

Theorem 3.2 (Follows from Theorem 2.4 and [6]). The swap Markov chain is
rapidly mixing on degree sequences satisfying a power-law distribution-bound for
any γ > 2.

It is not known whether this set of degree sequences is strongly stable [1].

4. Beyond P -stability

The notion of P -stability is a natural obstacle on the rapid mixing of the swap
Markov chain [10, 11]. Let us define the following bipartite degree sequences:

h(n) :=

(
n n− 1 n− 2 n− 3 · · · 3 2 1
n n− 1 n− 2 n− 3 · · · 3 2 1

)
g(n) :=

(
n− 1 n− 1 n− 2 n− 3 · · · 3 2 1
n− 1 n− 1 n− 2 n− 3 · · · 3 2 1

)
Trivially, |G(h)| = 1. The unique realization of h(n) is called the half-graph

H(n). It is easy to see that the number of realizations of g(n) satisfies

|G(g(n))| = 2|G(g(n− 1))|+
n−2∑
i=1

|G(g(i))|.

Solving the linear recursion gives

Lemma 4.1. |G(g(n))| =
(

3+
√
5

2

)n−o(n)
.

Thus the degree sequences of half-graphs are not P -stable, even though it is
trivial to sample them. A slightly more complicated counting argument shows
that

Lemma 4.2. The set {g(n) : n ≥ 3} is not P -stable.

However, there is a lot of structure in the realizations of g(n). First, observe that
H(n) has a very natural planar drawing, as demonstrated on Figure 1. Suppose
G ∈ G(g(n)), and take ∇ = E(G)4E(H(n)).

Observe, that ∇ is composed of two parts: E(G) r E(H(n)) (red edges) and
E(H(n)) r E(G) (blue edges). The red and blue degrees of vertices in ∇ are
all equal, except at xn and yn, where the blue degree is one larger than the red
degree. This means that ∇ can be decomposed into a red-blue alternating path
and some red-blue alternating circuits. However, a red-blue alternating circuit is
an alternating circuit in H(n), so we could exchange the edges and non-edges in it
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while preserving the degree sequence. But this is clearly impossible, as h(n) has
exactly one realization.

Thus ∇ is an alternating path in H(n) connecting its degree n vertices. In fact,
we have shown, that

Lemma 4.3. The realizations of g(n) are in a 1-to-1 correspondence with the
left-to-right paths between the degree n vertices of H(n) in Figure 1.

This bijection allows us to design an efficient multi-commodity flow on the
Markov graph on G(g(n)) (two realizations are joined by an edge iff they can be
transformed into each other via one swap). Thus we obtain (possibly the first)
non-trivial rapid mixing result of the swap Markov chain on non-stable degree
sequences using Sinclair’s method [14].

Theorem 4.4. The swap Markov chain is rapidly mixing on degree sequences
in {g(n) : n ≥ 3}.

(n) (n− 1) (n− 2)

321

· · ·

i

(n− i+ 1)(n− i)

· · ·

(n− 2) (n− 1) (n)

3 2 1

Figure 1. The half-graph H(n). The vertices are drawn in descending order and spaced regu-

larly. In the upper color class the vertices are drawn in the same manner except their order is

ascending and they are shifted to the right by 1.5 distance between two consecutive vertices. This
way, for every vertex in the lower color class, the edges are going right and non-edges (dashed

lines) are going left, so an alternating path goes left to right.
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