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Abstract. Stieltjes differential equations, i.e. differential equations with usual deriva-
tives replaced by derivatives with respect to given functions (derivators), are useful to
model processes which exhibit dead times and/or sudden changes. These advantages
of Stieltjes equations are exploited in this paper in the analysis of two real life models:
first, the frictionless motion of a vehicle equipped with an electric engine and, second,
the evolution of populations of cyanobacteria Spirullina plantensis in semicontinuous
cultivation processes. Furthermore, this is not only a paper on applications of known
results. For the adequate analysis of our mathematical models we first deduce the so-
lution formula for Stieltjes equations with separate variables. Finally, we show that
differential equations with Stieltjes derivatives reduce to ODEs when the derivator is
continuous, thus obtaining another resolution method for more general cases.
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biological models.

2010 Mathematics Subject Classification: 34A36, 34K05, 34K05.

1 Introduction and preliminary results

In this paper we will obtain resolution methods for differential equations with Stieltjes deriva-
tives to be applied in the exact computation of solutions of two mathematical models. This
will be done in two different ways. We will first study Stieltjes differential equations with sep-
arate variables and later we show that, in general, Stieltjes differential equations are equivalent
to ODEs under certain hypotheses.

Consider a Stieltjes differential system

x′g(t) = f (t, x(t)), t ∈ I = [t0, t0 + T], x(t0) = x0 (1.1)

where T > 0 and x0 ∈ R are fixed, f : I ×R→ R is a given function, and x′g(t) stands for the
g-derivative of the unknown with respect to a nondecreasing and left-continuous derivator
g : R→ R. The precise definition and background on g-derivatives are collected in Section 2.
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It is shown in [3, Section 3], see also [1, Section 8], that this kind of equation contains as
particular cases ∆-differential equations on time scales or differential equations with countably
many impulses.

In Section 3, we look at (1.1) in the particular case of separable variables, namely

x′g(t) = c(t) f (x(t)), t ≥ t0, x(t0) = x0,

for which, under certain hypotheses, we obtain an explicit solution using the chain rule for
g-derivatives. Then, in Section 4 we introduce and study our mathematical models in the
form of these problems. We present a model for the motion of a vehicle and another one for
a bacteria population. These examples are meant to show the interest of Stieltjes differential
equations for modelling different processes which could hardly be studied by means of ordi-
nary differential equations. It was precisely in the analysis of those models where we found
the main idea for Section 5: Stieltjes differential equations of the form of (1.1) reduce to ODEs
when the derivator is continuous, a most useful result in the exact computation of solutions
to Stieltjes equations.

2 Preliminares

Let g : R→ R be a nondecreasing and left-continuous function. Let us recall the definition of
the g-derivative introduced in [3]. To that end, we first introduce the following two sets: the
set of points around which g is constant,

Cg = {s ∈ R : g is constant on (s− ε, s + ε) for some ε > 0},

and the set of discontinuity points of g that can be written as

Dg = {s ∈ R : g(s+)− g(s) > 0},

where g(s+) denotes the limit of g at s from the right. Now the g-derivative of a function
x : R→ R at a point t ∈ R \ Cg is

x′g(t) =


lim
s→t

x(s)− x(t)
g(s)− g(t)

, if t 6∈ Dg,

x(t+)− x(t)
g(t+)− g(t)

, if t ∈ Dg and t < t0 + T,

provided that the corresponding limit exists.
Notice that we do not define g-derivatives at points t ∈ Cg, nor it is necessary because Cg

is a null-measure set for µg (the Lebesgue–Stieltjes measure induced by g), see [3, Proposition
2.5]. Therefore, the differential equation in (1.1) is not really defined for t ∈ I ∩ Cg. Roughly
speaking, connected components of Cg correspond to negligible times, i.e. lapses when our
system does not evolve at all. In turn, discontinuities of g correspond with times when sudden
changes occur and which are usually introduced in models in the form of impulses. For the
remaining set of times I \ (Cg ∪Dg) we note that different slopes of the derivator g correspond
to different influences of the corresponding times, namely, the bigger the slope of g the more
important the corresponding times are for the process.
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Finally, we recover an interesting set introduced in [3]. By definition, the set Cg is open
in the usual topology, so it can be uniquely expressed as the countable union of open disjoint
intervals, say

Cg =
⋃

n∈N

(an, bn). (2.1)

Without loss of generality, we can assume that an < an+1 for all n ∈ N. The set Ng is defined
then as the endpoints of such intervals that are continuity point of g, that is

Ng = {an, bn : n ∈N} \ Dg.

We also define N−g = {an : n ∈N} \Dg and N+
g = {bn : n ∈N} \Dg. Clearly, Ng = N−g ∪N+

g .

Remark 2.1. Note that if u 6∈ Cg ∪ Ng ∪ Dg, then g(v) 6= g(u) for v = u. Hence, if g is
continuous, u 6∈ Cg ∪ Ng implies that g(v) 6= g(u) for v = u.

By a solution of (1.1), we mean a function x : [t0, t0 + T] → R such that x(t0) = x0 and
x is g-absolutely continuous function in the sense of the definition included in the following
Fundamental Theorem of Calculus for the Lebesgue–Stieltjes integral [3, Theorem 5.4].

Theorem 2.2 (Fundamental Theorem of Calculus for the Lebesgue–Stieltjes integral). Let a, b ∈
R, a < b, and F : [a, b]→ R. The following conditions are equivalent.

(1) The function F is absolutely continuous with respect to g on [a, b] (or g-absolutely contin-
uous) according to the following definition: to each ε > 0 there is some δ > 0 such that, for any
family {(an, bn)}m

n=1 of pairwise disjoint open subintervals of [a, b], the inequality
m

∑
n=1

(g(bn)− g(an)) < δ

implies
m

∑
n=1
|F(bn)− F(an)| < ε.

(2) The function F fulfills the following properties:

(a) There exists F′g(t) for g-almost all t ∈ [a, b) (i.e., for all t except on a set of µg measure
zero);

(b) F′g ∈ L1
g([a, b)), the set of Lebesgue–Stieltjes integrable functions with respect to µg; and

(c) For each t ∈ [a, b], we have

F(t) = F(a) +
∫
[a,t)

F′g(s) dµg. (2.2)

In this paper we consider integration in the Lebesgue–Stieltjes sense mainly, and we shall
call “g-measurable” any function (or set) which is measurable with respect to the Lebesgue–
Stieltjes σ-algebra generated by g. Moreover, integrals such as that in (2.2) shall be denoted
also as ∫

[a,t)
F′g(s) dg(s).

For the particular case of g(t) = t, we have that µg = m, the usual Lebesgue measure, for
which we use the notation ∫ t

a
F′(s) ds.

For properties of g-absolutely continuous functions we refer readers to [1, 3]. For conve-
nience of readers, we include the following results.
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Proposition 2.3 ([3, Proposition 5.3]). If F is g-absolutely continuous on [a, b], then it has bounded
variation and it is continuous from the left at every t ∈ [a, b).

Moreover, F is continuous in [a, b] \ Dg, where Dg is the set of discontinuity points of g, and if g
is constant on some interval (α, β) ⊂ [a, b], then F is constant on (α, β) as well.

Proposition 2.4 ([1, Proposition 5.3]). Let F1 : [a, b]→ R be g-absolutely continuous. Assume that
F1([a, b]) ⊂ [c, d] for some c, d ∈ R, c < d, and let F2 : [c, d] → R satisfy a Lipschitz condition on
[c, d]. Then the composition F2 ◦ F1 is g-absolutely continuous on [a, b].

Finally, we recall the chain rule for g-derivatives and g-differentiation of indefinite inte-
grals, which we shall use in order to obtain the formula of the solution of a problem with
separate variables.

Theorem 2.5 (Chain rule for g-derivatives [3, Theorem 2.3]). Let f be a real-valued real function
defined on a neighborhood of t ∈ R \ Dg, and let h be another function defined in a neighborhood of
f (t). The following results hold for the g-derivative of the composition h ◦ f at t:

1. If there exist h′( f (t)) and f ′g(t), then there exists

(h ◦ f )′g(t) = h′( f (t)) f ′g(t).

2. If there exist h′g( f (t)), g′( f (t)), and f ′g(t), then there exists

(h ◦ f )′g(t) = h′g( f (t))g′( f (t)) f ′g(t).

Theorem 2.6 ([3, Theorem 2.4, Proposition 5.2]). Assume that c : [a, b)→ R is integrable on [a, b)
with respect to µg and consider its indefinite Lebesgue–Stieltjes integral

C(t) =
∫
[a,t)

c dµg for all t ∈ [a, b].

Then C is g-absolutely continuous on [a, b] and there is a g-measurable set N ⊂ [a, b] such that
µg(N) = 0 and

C′g(t) = c(t) for all t ∈ [a, b] \ N.

3 Separation of variables

This section is devoted to the explicit resolution of the separable initial value problem

x′g(t) = c(t) f (x(t)), t ≥ t0, x(t0) = x0. (3.1)

Note that for the particular case of f (x) = x the problem has been solved in [1]. As in the
ODE case, problem (3.1) can be solved with an exponential map, which we recall here for the
convenience of the reader.

Definition 3.1. Let c ∈ L1
g([a, b)) be such that

c(t)
(

g(t+)− g(t)
)
> −1 for every t ∈ [a, b) ∩ Dg, (3.2)

and
∑

t∈[a,b)∩Dg

∣∣log
(
1 + c(t)(g(t+)− g(t))

)∣∣ < ∞. (3.3)
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We define ec(·, a) : [a, b]→ (0, ∞) by

ec(t, a) = e
∫
[a,t) c̃(s) dµg , (3.4)

where

c̃(t) =

c(t) if t ∈ [a, b] \ Dg,
log
(

1+c(t)(g(t+)−g(t))
)

g(t+)−g(t) if t ∈ [a, b) ∩ Dg.
(3.5)

Proposition 3.2 ([1, Lemma 6.3]). Let c ∈ L1
g([a, b)) satisfy (3.2) and (3.3). Then for every xa ∈ R

the mapping t 7→ xa ec(t, a) is g-absolutely continuous and solves the initial value problem

x′g(t) = c(t)x(t) for g-almost all t ∈ [a, b), x(a) = xa. (3.6)

It is important to note that c has to be redefined at discontinuity points of g. Bearing
this idea in mind, we consider the particular case of (3.1) corresponding to a continuous
derivator g.

Theorem 3.3. Let c ∈ L1
g,loc([t0,+∞)) (i.e., c is g-integrable on compact subsets of [t0, ∞)) and

assume that there is some R > 0 such that f is continuous and positive on J = (x0 − R, x0 + R).
Define

F(x) =
∫ x

x0

dr
f (r)

for every x ∈ J. (3.7)

If there exists r > 0 such that∫
[t0,t)

c(s) dg(s) ∈ F(J) for all t ∈ [t0, t0 + r), and g is continuous on [t0, t0 + r), (3.8)

then a solution of (3.1) is given by the following formula:

x(t) = F−1
(∫

[t0,t)
c(s) dg(s)

)
for all t ∈ [t0, t0 + r). (3.9)

Proof. Clearly, x(t0) = x0. Since F−1 is locally Lipschitzian, we can deduce from Proposi-
tion 2.4 and Theorem 2.6 that x is g-absolutely continuous on any interval [t0, t0 + s], s ∈ (0, r).
In particular, there exists x′g(t) for g-almost all t ∈ [t0, t0 + r). Using the chain rule (Theo-
rem 2.5) and Theorem 2.6, we compute for g-almost all t ∈ [t0, t0 + r)

x′g(t) = (F−1)′
(∫

[t0,t)
c(s) dg(s)

)(∫
[t0,·)

c(s) dg(s)
)′

g
(t) =

1
F′(x(t))

c(t) = f (x(t))c(t).

Remark 3.4. Formula (3.9) is equivalent to∫ x(t)

x0

dr
f (r)

=
∫
[t0,t)

c(s) dg(s).

Theorem 3.3 is false, in general, when g is discontinuous. Indeed, observe that (3.9) does
not give (3.4) when f is the identity and g has at least one discontinuity point in (t0, t0 + r). At
discontinuity points of g we cannot use Theorem 2.5 to compute derivatives of compositions
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by means of the chain rule, so we need an alternative approach and an alternative formula for
the solutions.

Here and henceforth, we assume that g is discontinuous exactly at the points of a sequence
{τk}∞

k=1, where
t0 < τ1 < τ2 < · · · .

Assuming that g is continuous at the initial time t0 is not really a restriction, see [1, Section 5].

Remark 3.5. In general, Dg is just a countable set. Here we assume that Dg is discrete, i.e. all
its elements are isolated points. We have no solution formula for the general case.

Solving (3.1) on the interval [t0, τ1) can be done with the aid of Theorem 3.3, because g is
continuous on [t0, τ1). Furthermore, since solutions are continuous from the left everywhere,
we get the solution on [t0, τ1] with the same formula. Specifically, under suitable conditions,
a solution of (3.1) on the interval [t0, τ1] is implicitly given by the expression∫ x(t)

x0

dr
f (r)

=
∫
[t0,t)

c(s) dg(s) for all t ∈ [t0, τ1]. (3.10)

Obtaining the solution formula on the right of τ1 is a matter of induction. First, according
to the definition of g-derivative at discontinuity points, the differential equation in (3.1) for
t = τ1 reads simply as follows:

x(τ+
1 ) = x(τ1) + c(τ1) f (x(τ1))(g(τ+

1 )− g(τ1)) ≡ x1. (3.11)

Therefore, we have to solve another initial value problem

x′g(t) = c(t) f (x(t)), t ∈ (τ1, τ2], x(τ+
1 ) = x1, (3.12)

by means of (3.9), with obvious modifications: under suitable conditions (see Remark 3.6), a
solution of (3.12) is defined by∫ x(t)

x1

dr
f (r)

=
∫
(τ1,t)

c(s) dg(s) for all t ∈ (τ1, τ2], (3.13)

where x1 is defined in (3.11).

Remark 3.6. Formula (3.13) gives a solution of (3.12) provided that, for instance, f is continu-
ous and positive on J = (x1 − R, x1 + R), for some R > 0, and∫

(τ1,t)
c(s) dg(s) ∈ F(J) for all t ∈ (τ1, τ2],

where F(x) =
∫ x

x1
dr/ f (r), x ∈ J.

Summing up, a solution of (3.1) can be recursively computed as follows: define x(t) on
[t0, τ1] by means of (3.10); assume that we have defined x(t) on [t0, τk], for some k ∈ {1, 2, . . . },
then compute the number

xk = x(τk) + c(τk) f (x(τk))(g(τ+
k )− g(τk)), (3.14)

and define x(t) implicitly on (τk, τk+1] by the expression∫ x(t)

xk

dr
f (r)

=
∫
(τk ,t)

c(s) dg(s) for all t ∈ (τk, τk+1]. (3.15)
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4 Real life applications

4.1 An irregularly forced frictionless motion

We want to set up a simple model for the motion of a vehicle impulsed by an electric engine
which we can turn on and off as often as we please. We disregard any other force. In particular,
the speed increases when the engine is turned on, and the vehicle never slows down, it just
keeps its speed when the engine is turned off.

Let g(t) denote the number of seconds that the engine has been on until time t. This func-
tion g(t) is continuous, nondecreasing, and constant on the time intervals when the engine is
turned off.

Let s(t) denote the vehicle’s speed after t seconds. For simplicity, we assume that speed
increases on every time interval [t, t + h], h > 0, at a rate proportional to the time the engine
has been on during that time interval. Moreover, we consider that accelerating the vehicle is
harder at very slow or at very high speeds, so we assume a proportionality “constant” which
depends on s(t), at least for small values of h > 0. This leads to

s(t + h)− s(t) = f (s(t))(g(t + h)− g(t)),

which, considering the limit as h→ 0+, yields the g-differential model

s′g(t) = f (s(t)), t ≥ 0, s(0) = s0. (4.1)

We suggest using logistic-type functions like

f (s) = α max{0, (s + β)(smax − s)}, for s ≥ 0,

where α, β and smax are positive constants. Observe that f (s) > 0 for s ∈ [0, smax) and
f (s) = 0 for s ≥ smax, which means that the engine can accelerate the vehicle only when its
speed belongs to the interval [0, smax). Observe also that, in case β < smax (which we assume
from now on), f attains a maximum at (smax − β)/2, which means that the engine is more
efficient when the vehicle is moving at that specific value of speed.

As an instance, we consider

f (s) = max{0, (s + 1)(2− s)} (4.2)

and we solve (4.1) for s0 = 0. We note that f is continuous and positive for s ∈ [0, 2), and a
solution is implicitly given by

∫ s(t)

0

dr
(r + 1)(2− r)

=
∫
[0,t)

dg(s) = g(t).

Elementary computations yield the solution

s(t) =
2e3g(t) − 2
e3g(t) + 2

, t ≥ 0. (4.3)

Keeping the engine on at every time corresponds to the derivator g(t) = t for all t ≥ 0.
The corresponding solution is displayed in Figure 4.1.
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Figure 4.1: Solution (4.3) for g(t) = t (engine constantly on).

If we turn the device off for t ∈ [1/2, 1] ∪ [3/2, 2], then we should take

g(t) =


t, for t ∈ [0, 1/2],

1/2, for t ∈ [1/2, 1],

t− 1/2, for t ∈ [1, 3/2],

3/2, for t ∈ [3/2, 2].

The graph of g and the solution given by (4.3) can be seen in Figures 4.2 and 4.3, respectively.

Figure 4.2: Graph of g(t).
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Figure 4.3: Solution (4.3) with dead times (engine off).

4.2 Semicontinuous culture systems

Semicontinuous cultivation is a system to produce bacteria in which a portion of the culture
medium is periodically removed and the remaining culture is used as the starting point for
continuation of the culture. For the model in this section we take into account [5], where
semicontinuous cultivation of the cyanobacteria Spirulina plantensis is studied. We highlight
the following important feature of the system in [5]: illumination was controlled to have a 12
hours light/dark photoperiod, which resulted in two different reproduction phases every day.

Bearing the above considerations in mind, we shall set up a mathematical model for the
production of Spirulina plantensis in a semicontinuous culture system. First, we consider days
as our time units. We assign light periods to be the time intervals [k, k + 1/2), k = 0, 1, 2, . . . ,
while dark periods are [k + 1/2, k + 1), k = 0, 1, 2, . . . . Second, we assume that half of the
culture is removed every 10 days and immediately refilled with new nutrients so that the
remaining bacteria start reproducing again. Finally, we take as derivator a nondecreasing
function g : [0, ∞) → [0, ∞), continuous everywhere with the exception of the positive multi-
ples of 10, and such that

g′(t) =

{
1, if t ∈ (k, k + 1/2), k = 0, 1, 2, . . . ,

1/2, if t ∈ (k + 1/2, k + 1), k = 0, 1, 2, . . . ,

and g((10k)+) − g(10k) = 1 for k = 1, 2, 3, . . . A concise explicit expression for g(t) can be
obtained by defining first its values on the first day, namely

h(t) =

{
t, if t ∈ [0, 1/2),

t/2 + 1/4, if t ∈ (1/2, 1],

and then we can define the remaining values by “periodicity”, and introducing jump discon-
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tinuities at relevant places, as

g(t) = h(t− [t]) + 3[t]/4 + [t/10],

where [·] stands for the floor function. Observe that we should modify the values g(10k)
(k = 1, 2, . . . ) so that g be left-continuous, but we shall not do it to avoid technicalities. See
Figure 4.4 for a plot of this function.

Figure 4.4: Graph of g(t) for a semicontinuous bacteria culture. Observe dif-
ferent slopes for light and dark periods, and discontinuities at the renewal mo-
ments.

We are now ready to introduce a g-differential model for the biomass concentration x(t),
measured in grams per liter at time t, with a given initial concentration x(0) = x0. Biomass
concentration should satisfy

x′g(t) = f (t, x(t)) t ≥ 0, x(0) = x0, (4.4)

where f (t, x) is assumed to be logistic except at the renewal moments (positive multiples of
10), when we remove half of the culture and immediately refill the flask with new nutrients.
Specifically, we define

f (t, x) =

{
α x(N − x), if t 6= 10k, k = 1, 2, . . . ,

−x/2, if t = 10k, k = 1, 2, . . . ,

where α > 0 and N > 0 are biological parameters to be adjusted from experimental results.
Using the formulas (3.10) and (3.15), we compute the solution: for t ∈ [0, 10] the solution is

x(t) =

x0N
N − x0

eαNg(t)

1 +
x0

N − x0
eαNg(t)

.
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Assume we have computed x(t) for all t ∈ [0, 10k], for some k = 1, 2, . . . , then we define

xk = x(10k+) =
x(10k)

2
,

and the solution for t ∈ (10k, 10k + 10] is given by

x(t) =

xkN
N − xk

eαN[g(t)−g(10k+)]

1 +
xk

N − xk
eαN[g(t)−g(10k+)]

.

Observe that g(10k+) = 8.5k for all k = 1, 2, . . .
See Figure 4.5 for a plot of the solution corresponding to x0 = 0.4 grams per liter, α = 0.1

and N = 1.5. These choices yield a good approximation of the experimental results obtained
in [5] for the cyanobacteria Spirulina platensis, see [5, Figure 2].

Figure 4.5: Biomass x(t) grams per liter in a semicontinuous culture, with initial
density of 0.4 g/L, and parameters α = 0.1, N = 1.5.

5 Stieltjes equations with continuous derivators are just ODEs

The careful reader might have noticed that the solutions obtained for the previous examples
are just the solutions of the corresponding ODEs, composed with the derivator g. In this
section we will show that, under the assumption of continuity there is an equivalence between
Stieltjes differential equations and ODEs.

It is pretty straightforward that a Stieltjes differential equation reduces to an ODE when the
derivator is not only continuous, but also differentiable. Indeed, assume that g∈C1([t0, t0+T]).
Then, for any t ∈ [t0, t0 + T] \ (Cg ∪ Ng) and any x : [t0, t0 + T] → R such that x′g(t) exists, it
follows directly from the definition that x′(t) exists and

x′(t) = x′g(t)g′(t).
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Therefore, if x solves (1.1) on [t0, t0 + T] \ (Cg ∪ Ng) then x solves

x′(t) = f (t, x(t))g′(t), t ∈ [t0, t0 + T] \ (Cg ∪ Ng). (5.1)

More than that is true: since g′(t) = 0 for all t ∈ Cg ∪ Ng, the ODE (5.1) is satisfied on the
whole interval I = [t0, t0 + T].

Conversely, let c ∈ L1([t0, t0 + T]), c ≥ 0, and assume that x solves

x′(t) = f (t, x(t))c(t), t ∈ I = [t0, t0 + T]. (5.2)

Then x solves (1.1) on [t0, t0 + T] \ N with

g(t) =
∫ t

t0

c(s) ds, t ∈ [t0, t0 + T],

and N = {t ∈ I : c(t) = 0}.
In what follows, we will show that we can still transform a Stieltjes differential equation

into an ODE when we change the hypothesis of differentiability for just continuity.
Consider equation (1.1) with g : R → R nondecreasing and continuous, i.e., Dg = ∅.

Without loss of generality, we assume that g(R) = R (if not, it suffices to redefine g linearly
outside the interval I = [t0, t0 + T], which has no influence on the equation).

We define the pseudo-inverse of g as the function γ : R→ R such that

γ(x) = min{t ∈ R : g(t) = x} for each x ∈ R. (5.3)

This definition is good. To prove it, just notice that g is continuous, nondecreasing and
g(±∞) = ±∞, which implies that

g−1({x}) = {t ∈ R : g(t) = x} (5.4)

is a compact interval (even a singleton if x 6∈ Cg ∪ Ng).
The most important properties of γ are gathered in the following statement.

Proposition 5.1. Assume that g : R→ R is nondecreasing, continuous and g(R) = R.
If γ : R→ R is defined as in (5.3), then the following properties hold:

1. for all x ∈ R, g(γ(x)) = x;

2. for all t ∈ R, γ(g(t)) ≤ t;

3. for all t ∈ R, t 6∈ Cg ∪ N+
g , γ(g(t)) = t;

4. γ is strictly increasing: x < y implies γ(x) < γ(y);

5. γ is left-continuous everywhere and continuous at every x ∈ R, x 6∈ g(Cg).

Proof. Property 1 is a direct consequence of the definition (5.3): g(γ(x))) = g(min{t : g(t) =
x}) = x. For 2 observe that γ(g(t)) = min{s : g(s) = g(t)} ≤ t. To prove 3 just note that
t 6∈ Cg ∪ Ng implies that the set (5.4) for x = g(t) is the singleton {t}. Now, if t ∈ N−g , we have
that t = an0 for some n0 ∈ N. In that case, it is clear that g(t) = g(s) for all s ∈ (t, bn0) and
g(s) < g(t) for all s < t, as any other case would lead to a contradiction. Thus, we have that

γ(g(t)) = min{s ∈ R : g(t) = g(s)} = min(an0 , bn0) = an0 = t.
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For 4 we fix x < y and we note that if t ∈ g−1({x}) and s ∈ g−1({y}), then t < s, for
otherwise we would have x = g(t) ≥ g(s) = y, a contradiction. Hence γ(x) = min g−1({x}) <
min g−1({y}) = γ(y).

Finally, we prove 5. First, property 4 ensures that

γ(x−) ≤ γ(x) ≤ γ(x+) for all x ∈ R. (5.5)

Assume, reasoning by contradiction, that γ(x−) < γ(x) for some x. Since γ is increasing,
we can fix τ such that

γ(y) < τ < γ(x) for all y < x. (5.6)

Now we deduce from the monotonicity of g and property 1 that

y = g(γ(y)) ≤ g(τ) ≤ g(γ(x)) = x for all y < x,

which implies that g(τ) = x. Now property 2 yields γ(x) = γ(g(τ)) ≤ τ, a contradiction with
(5.6). Hence γ is left-continuous everywhere.

We shall prove that γ is right-continuous at every x ∈ R \ g(Cg) from (5.5) and a similar
contradiction argument. Assume that for one of those x we can find τ such that

γ(x) < τ < γ(y) for all y > x.

Since g is nondecreasing we have

x = g(γ(x)) ≤ g(τ) ≤ g(γ(y)) = y for all y > x,

and therefore x = g(γ(x)) = g(τ). Since γ(x) < τ, for any t ∈ (γ(x), τ) we have g(t) = x and
t ∈ Cg, a contradiction with the choice of x.

We now have the necessary tools to reduce a Stieltjes differential equation to an ODE. First,
we show how to compute solutions of Stieltjes equations by solving related ODEs.

Theorem 5.2. Assume that g : R→ R is nondecreasing, continuous and g(R) = R.
If y : [g(t0), g(t0 + T)]→ R is a solution of

y′(s) = f (γ(s), y(s)), s ∈ [g(t0), g(t0 + T)] \ C, (5.7)

for some set C, then x : [t0, t0 + T]→ R given by x(t) = y(g(t)) solves (1.1) for all t ∈ [t0, t0 + T] \
(g−1(C) ∪ Cg ∪ Ng).

In particular, x = y ◦ g solves (1.1) g-almost everywhere in [t0, t0 + T] provided that g−1(C) be a
null g-measure subset of [t0, t0 + T].

Proof. Fix t ∈ [t0, t0 + T] \ (g−1(C) ∪ Cg ∪ Ng). Then assertion 2 in Proposition 5.1 yields that
γ(g(t)) = t and, moreover g(t) ∈ [g(t0), g(t0 + T)] \ C. Hence y′(g(t)) exists and

y′(g(t)) = f (γ(g(t)), y(g(t))) = f (t, x(t)).

Thus, it is enough to show that x′g(t) exists and equals y′(g(t)).
Fix ε > 0. Since y′(g(t)) exists, there exists δ̃ > 0 such that

[
z ∈ [g(t0), g(t0 + T)], 0 < |z− g(t)| < δ̃

]
=⇒

∣∣∣∣y(z)− y(g(t))
z− g(t)

− y′(g(t))
∣∣∣∣ < ε.
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On the other hand, since g is continuous at t, there exists δ > 0 such that

[s ∈ [t0, t0 + T], |s− t| < δ] =⇒ |g(s)− g(t)| < δ̃.

Now, Remark 2.1 ensures that if 0 < |s− t| < δ then 0 < |g(s)− g(t)| < δ̃. Hence, it follows
that

[s ∈ [t0, t0 + T], 0 < |s− t| < δ] =⇒
∣∣∣∣y(g(s))− y(g(t))

g(s)− g(t)
− y′(g(t))

∣∣∣∣ < ε,

that is, x′g(t) exists and x′g(t) = y′(g(t)).

Example 5.3. We consider problem (4.1) again, for s0 = 0 and

f (s) = [(s + 1)(2− s)]+.

Assuming a derivator g in the conditions of Theorem 5.2 and g(0) = 0, we just have to solve
the initial value problem

y′(s) = f (y(s)), y(0) = 0,

and then we get a solution of the Stieltjes problem (4.1) in the form

s(t) = y(g(t)) =
2e3g(t) − 2
e3g(t) + 2

, t ≥ 0.

Next we prove the converse result, thus showing that problems (1.1) and (5.7) are equiva-
lent.

Theorem 5.4. Assume that g : R→ R is nondecreasing, continuous and g(R) = R.
If x : [t0, t0 + T]→ R is a solution of (1.1) for all t ∈ [t0, t0 + T] \ (C ∪ Cg ∪ Ng) for some set C,

then y : [g(t0), g(t0 + T)] → R given by y(t) = x(γ(t)) solves (5.7) for all t ∈ [g(t0), g(t0 + T)] \
g(C ∪ Cg ∪ Ng).

In particular, y = x ◦ γ solves m-almost everywhere in [g(t0), g(t0 + T)] provided that m−1(C)
be a null m-measure subset of [g(t0), g(t0 + T)].

Proof. Fix s ∈ [g(t0), g(t0 + T)] \ g(C∪Cg ∪Ng). Then there exists u ∈ [t0, t0 + T] \C∪Cg ∪Ng

such that g(u) = s. Moreover, Remark 2.1 ensures that g−1({s}) = {u} so γ(s) = u ∈
[t0, t0 + T] \ C ∪ Cg ∪ Ng and x′g(γ(s)) exists. Furthermore,

x′g(γ(s)) = f (γ(s), x(γ(s))) = f (γ(s), y(s)),

so, it is enough to show that y′(s) exists and equals x′g(γ(s)).
Fix ε > 0. Since x′g(γ(s)) exists, there exists δ̃ > 0 such that[

z ∈ [t0, t0 + T], 0 < |z− γ(s)| < δ̃
]
=⇒

∣∣∣∣ x(z)− x(γ(s))
g(z)− g(γ(s))

− x′g(γ(s))
∣∣∣∣ < ε.

On the other hand, s ∈ [g(t0), g(t0 + T)] \ g(C ∪ Cg ∪ Ng) so assertion 4 in Proposition 5.1
ensures that γ is continuous at s. Hence, there exists δ > 0 such that

[r ∈ [g(t0), g(t0 + T)], |r− s| < δ] =⇒ |γ(r)− g(s)| < δ̃.

Now, assertion 3 in Proposition 5.1 guarantees that if 0 < |s− t| < δ then 0 < |g(s)− g(t)| < δ̃.
Hence, it follows that

[r ∈ [g(t0), g(t0 + T)], 0 < |r− s| < δ] =⇒
∣∣∣∣ x(γ(r))− x(γ(s))
g(γ(r))− g(γ(s))

− x′g(γ(s))
∣∣∣∣ < ε.

The result now follows by property 1 in Proposition 5.1.



Resolution methods for equations with Stieltjes derivatives 15

Remark 5.5. It is possible to extend theorems 5.2 and 5.4 to problem (1.1) with f : I×Rn → Rn

with the obvious changes.

As a final comment, note that the results in this section are not valid for discontinuous
derivators g. However, if Dg is a discrete set, then we can argue “piece-by-piece” to obtain the
general solution of (1.1). That is, we can use the results in this section to solve (5.7) in each of
the subintervals generated by Dg.
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