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Abstract
In this work we study constant extrinsically Gaussian curvature transla-

tion surfaces in the 3-dimensional Heisenberg group which are invariant under
the 1-parameter groups of isometries.

Keywords: Constant extrinsically Gaussian curvature Surfaces, Homogeneous
group.

MSC: 49Q20 53C22.

1. Introduction

In 1982, W. P. Thurston formulated a geometric conjecture for three dimensional
manifolds, namely every compact orientable 3-manifold admits a canonical decom-
position into pieces, each of them having a canonical geometric structure from the
following eight maximal and simply connected homogenous Riemannian spaces:
E3, S3, H3, S2 × R, H2 × R, 𝑆𝐿(2,R), H3 and 𝑆𝑜𝑙3. See e.g. [34].

During the recent years, there has been a rapidly growing interest in the geom-
etry of surfaces in three homogenous spaces focusing on flat and constant Gaussian
curvature surfaces. Many works are studying the geometry of surfaces in homoge-
neous 3-manifolds. See for example [2–4, 9, 12, 14–16, 21, 22, 24, 36].

The concept of translation surfaces in R3 can be generalized the surfaces in the
three dimensional Lie group, in particular, homogeneous manifolds. In Euclidean
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3-space, every cylinder is flat. Conversely, complete flat surfaces in E3 are cylinders
over complete curves. See [20]. López and Munteanu [17] studied invariant surfaces
with constant mean curvature and constant Gaussian curvature in 𝑆𝑜𝑙3 space. Yoon
and Lee [37] studied translation surfaces in Heisenberg group H3 whose position
vector 𝑥 satisfies the equation ∆𝑥 = 𝐴𝑥, where ∆ is the Laplacian operator of the
surface and 𝐴 is a 3 × 3-real matrix.

Flat 𝐺4-invariant surfaces are nothing but surfaces invariant under 𝑆𝑂(2)-
action, i.e. rotational surfaces. Flat rotational surfaces are classified by Caddeo,
Piu and Ratto in [8].

In [14], J. I. Inoguchi give a classification of intrinsically flat 𝐺1-invariant trans-
lation surfaces in Heisenberg group H3. Let 𝑀 be a surface invariant under 𝐺3,
then 𝑀 is locally expressed as

𝑋(𝑢, 𝑣) = (0, 0, 𝑣).(𝑥(𝑢), 𝑦(𝑢), 0) = (𝑥(𝑢), 𝑦(𝑢), 𝑣), 𝑢 ∈ 𝐼, 𝑣 ∈ R.

Here 𝐼 is an open interval and 𝑢 is the arclength parameter. Note that (𝑥, 𝑦, 0)
and (0, 0, 𝑣) commute. Then the sectional curvature 𝐾(𝑋𝑥 ∧ 𝑋𝑦) = 1

4 and the
extrinsically Gaussian curvature 𝐾𝑒𝑥𝑡 = − 1

4 . Direct computation show that 𝑀 is
flat. (cf. [12–14, 28]).

The paper is divided according the type of surfaces invariant under 1-parameter
subgroups of isometries {𝐺𝑖}𝑖=1,2,3,4. So, in section 3 we classify 𝐺1-invariant
surfaces of the Heisenberg group H3 with constant extrinsically Gaussian curvature
𝐾𝑒𝑥𝑡, including extrinsically flat 𝐺1-invarinant surfaces.

In section 4 we classify 𝐺2-invariant surfaces of the Heisenberg group H3 with
constant extrinsically Gaussian curvature 𝐾𝑒𝑥𝑡, including extrinsically flat 𝐺2-
invariant surfaces.

2. Preliminaries

The 3-dimensional Heisenberg group H3 is the simply connected and connected
2-step nilpotent Lie group. Which has the following standard representation in
𝐺𝐿(3,R) ⎛

⎝
1 𝑟 𝑡
0 1 𝑠
0 0 1

⎞
⎠

with 𝑟, 𝑠, 𝑡 ∈ R. The Lie algebra h3 of H3 is given by the matrices

𝐴 =

⎛
⎝

0 𝑥 𝑧
0 0 𝑦
0 0 0

⎞
⎠
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with 𝑥, 𝑦, 𝑧 ∈ R.The exponential map 𝑒𝑥𝑝 : h3 → H3 is a global diffeomorphism,
and is given by

exp(𝐴) = 𝐼 + 𝐴 +
𝐴2

2
=

⎛
⎝

1 𝑥 𝑧 + 𝑥𝑦
2

0 1 𝑦
0 0 1

⎞
⎠ .

The Heisenberg group H3 is represented as the cartesian 3-space R3(𝑥, 𝑦, 𝑧) with
group structure:

(𝑥1, 𝑦1, 𝑧1).(𝑥2, 𝑦2, 𝑧2) :=

(︂
𝑥1 + 𝑥2, 𝑦1 + 𝑦2, 𝑧1 + 𝑧2 +

1

2
𝑥1𝑦2 −

1

2
𝑥2𝑦1

)︂
.

We equip H3 with the following left invariant Riemannian metric

𝑔 := 𝑑𝑥2 + 𝑑𝑦2 +

(︂
𝑑𝑧 +

1

2
(𝑦𝑑𝑥− 𝑥𝑑𝑦)

)︂2

.

The identity component 𝐼∘(H3) of the full isometry group of (H3, 𝑔) is the
semi-direct product 𝑆𝑂(2) nH3. The action of 𝑆𝑂(2) nH3 is given explicitly by

𝐴 =

⎛
⎝
[︂

cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

]︂
.

⎡
⎣

𝑎
𝑏
𝑐

⎤
⎦
⎞
⎠ .

⎡
⎣

𝑥
𝑦
𝑧

⎤
⎦

=

⎡
⎣

cos 𝜃 − sin 𝜃 0
sin 𝜃 cos 𝜃 0

1
2 (𝑎 sin 𝜃 − 𝑏 cos 𝜃) 1

2 (𝑎 cos 𝜃 + 𝑏 sin 𝜃) 1

⎤
⎦ .

⎡
⎣

𝑥
𝑦
𝑧

⎤
⎦+

⎡
⎣

𝑎
𝑏
𝑐

⎤
⎦ .

In particular, rotational around the 𝑧-axis and translations:

(𝑥, 𝑦, 𝑧) → (𝑥, 𝑦, 𝑧 + 𝑎), 𝑎 ∈ R

along the 𝑧-axis are isometries of H3.
The Lie algebra h3 of 𝐼∘(H3) is generated by the following Killing vector fields:

𝐹1 =
𝜕

𝜕𝑥
+

𝑦

2

𝜕

𝜕𝑧
, 𝐹2 =

𝜕

𝜕𝑦
− 𝑥

2

𝜕

𝜕𝑧
,

𝐹3 =
𝜕

𝜕𝑧
, 𝐹4 = −𝑦

𝜕

𝜕𝑥
+ 𝑥

𝜕

𝜕𝑦
.

One can check that 𝐹1, 𝐹2, 𝐹3 are infinitesimal transformations of the 1-parameter
groups of isometries defined by

𝐺1 = {(𝑡, 0, 0)|𝑡 ∈ R}, 𝐺2 = {(0, 𝑡, 0)|𝑡 ∈ R}, 𝐺3 = {(0, 0, 𝑡)|𝑡 ∈ R},

respectively. Here this groups acts on H3 by the left translation. The vector field
𝐹4 generates the group of rotations around the 𝑧-axis. Thus 𝐺4 is identified with
𝑆𝑂(2).
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Definition 2.1. A surface Σ in the Heisenberg space H3 is said to be invariant
surface if it is invariant under the action of the 1-parameter subgroups of isometries
{𝐺𝑖}, with 𝑖 ∈ {1, 2, 3, 4}.

The Lie algebra h3 of H3 has an orthonormal basis {𝐸1, 𝐸2, 𝐸3} defined by

𝐸1 =
𝜕

𝜕𝑥
− 𝑦

2

𝜕

𝜕𝑧
, 𝐸2 =

𝜕

𝜕𝑦
+

𝑥

2

𝜕

𝜕𝑧
, 𝐸3 =

𝜕

𝜕𝑧
.

The Levi-Civita connection ∇ of 𝑔,in terms of the basis {𝐸𝑖}𝑖=1,2,3 is explicitly
given as follows

⎧
⎨
⎩

∇𝐸1𝐸1 = 0,∇𝐸1𝐸2 = 1
2𝐸3,∇𝐸1𝐸3 = − 1

2𝐸2

∇𝐸2
𝐸1 = − 1

2𝐸3,∇𝐸2
𝐸2 = 0,∇𝐸2

𝐸3 = 1
2𝐸1

∇𝐸3𝐸1 = − 1
2𝐸2,∇𝐸3𝐸2 = 1

2𝐸1,∇𝐸3𝐸3 = 0

The Riemannian curvature tensor 𝑅 is a tensor field on H3 defined by

𝑅(𝑋,𝑌 )𝑍 = ∇𝑋∇𝑌 𝑍 −∇𝑌 ∇𝑋𝑍 −∇[𝑋,𝑌 ]𝑍.

The components {𝑅𝑙
𝑖𝑗𝑘} are computed as

𝑅1
212 = −3

4
, 𝑅1

313 =
1

4
, 𝑅2

323 =
1

4
.

Let us denote 𝐾𝑖𝑗 = 𝐾(𝐸𝑖, 𝐸𝑗) the sectional curvature of the plane spanned by 𝐸𝑖

and 𝐸𝑗 .Then we get easily the following:

𝐾12 = −3

4
, 𝐾13 = −1

4
, 𝐾23 = −1

4
.

The Ricci curvature 𝑅𝑖𝑐 is defined by

𝑅𝑖𝑐(𝑋,𝑌 ) = 𝑡𝑟𝑎𝑐𝑒{𝑍 → 𝑅(𝑍,𝑋)𝑌 }.

The components {𝑅𝑖𝑗} of 𝑅𝑖𝑐 are defined by

𝑅𝑖𝑐(𝐸𝑖, 𝐸𝑗) = 𝑅𝑖𝑗 =
3∑︁

𝑘=1

⟨𝑅(𝐸𝑖, 𝐸𝑘)𝐸𝑘, 𝐸𝑗⟩ .

The components {𝑅𝑖𝑗} are computed as

𝑅11 = −1

2
, 𝑅12 = 𝑅13 = 𝑅23 = 0, 𝑅22 = −1

2
, 𝑅33 =

1

2
.

The scalar curvature 𝑆 of H3 is constant and we have

𝑆 = 𝑡𝑟𝑅𝑖𝑐 =

3∑︁

𝑖=1

𝑅𝑖𝑐(𝐸𝑖, 𝐸𝑖) = −1

2
.
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3. Constant extrinsically Gaussian curvature
𝐺1-invariant translation surfaces in Heisenberg
group H3H3H3

3.1.
In this subsection we study complete extrinsically flat translation surfaces Σ in
Heisenberg group H3 which are invariant under the one parameter subgroup 𝐺1.
Clearly, such a surface is generated by a curve 𝛾 in the totally geodesic plane
{𝑥 = 0}. Discarding the trivial case of a vertical plane {𝑦 = 𝑦0}. Thus 𝛾 is given
by 𝛾(𝑦) = (0, 𝑦, 𝑣(𝑦)). Therefore the generated surface is parameterized by

𝑋(𝑥, 𝑦) = (𝑥, 0, 0).(0, 𝑦, 𝑣(𝑦)) = (𝑥, 𝑦, 𝑣(𝑦) +
𝑥𝑦

2
), (𝑥, 𝑦) ∈ R2.

We have an orthogonal pair of vector fields on (Σ), namely,

𝑒1 := 𝑋𝑥 = (1, 0,
𝑦

2
) = 𝐸1 + 𝑦𝐸3.

and
𝑒2 := 𝑋𝑦 = (0, 1, 𝑣′ +

𝑥

2
) = 𝐸2 + 𝑣′𝐸3.

The coefficients of the first fundamental form are:

𝐸 = ⟨𝑒1, 𝑒1⟩ = 1 + 𝑦2, 𝐹 = ⟨𝑒1, 𝑒2⟩ = 𝑦𝑣′, 𝐺 = ⟨𝑒2, 𝑒⟩ = 1 + 𝑣′2.

As a unit normal field we can take

𝑁 =
−𝑦√︀

1 + 𝑦2 + 𝑣′2
𝐸1 −

𝑣′√︀
1 + 𝑦2 + 𝑣′2

𝐸2 +
1√︀

1 + 𝑦2 + 𝑣′2
𝐸3

The covariant derivatives are
̃︀∇𝑒1𝑒1 = −𝑦𝐸2

̃︀∇𝑒1𝑒2 =
𝑦

2
𝐸1 −

𝑣′

2
𝐸2 +

1

2
𝐸3

̃︀∇𝑒2𝑒2 = 𝑣′𝐸1 + 𝑣′′𝐸3.

The coefficients of the second fundamental form are

𝑙 = ⟨̃︀∇𝑒1𝑒1, 𝑁⟩ =
𝑦𝑣′√︀

1 + 𝑦2 + 𝑣′2

𝑚 = ⟨̃︀∇𝑒1𝑒2, 𝑁⟩ =
−𝑦2

2 + 𝑣′2

2 + 1
2√︀

1 + 𝑦2 + 𝑣′2

𝑛 = ⟨̃︀∇𝑒2𝑒2, 𝑁⟩ =
−𝑦𝑣′ + 𝑣′′√︀
1 + 𝑦2 + 𝑣′2

.
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Let 𝐾𝑒𝑥𝑡 be the extrinsic Gauss curvature of Σ,

𝐾𝑒𝑥𝑡 =
𝑙𝑛−𝑚2

𝐸𝐺− 𝐹 2
=

−𝑦2𝑣′2 + 𝑦𝑣′𝑣′′ − (−𝑦2

2 + 𝑣′2

2 + 1
2 )2

(1 + 𝑦2 + 𝑣′2)2
.

Thus Σ is extrinsically flat invariant surface in Heisenberg group H3 if and only if

𝐾𝑒𝑥𝑡 = 0,

that is, if and only if

−𝑦2𝑣′2 + 𝑦𝑣′𝑣′′ −
(︂
−𝑦2

2
+

𝑣′2

2
+

1

2

)︂2

= 0 (3.1)

to classify extrinsically flat invariant surfaces must solve the equation (3.1). We
can writes equation (3.1) as

𝑦2 + 𝑦𝑣′𝑣′′ −
(︂
𝑦2

2
+

𝑣′2

2
+

1

2

)︂2

= 0 (3.2)

we assume that 𝑧 = 𝑦2

2 + 𝑣′2

2 + 1
2 . Then
⎧
⎨
⎩

𝑧′ = 𝑦 + 𝑣′𝑣′′

𝑣′𝑣′′ = 𝑧′ − 𝑦
𝑣′2 = 2𝑧 − 𝑦2 − 1.

(3.3)

Therefore equation (3.2) becomes

𝑦𝑧′ − 𝑧2 = 0. (3.4)

equation (3.4) implies that

− 𝑧′

𝑧2
= −1

𝑦
. (3.5)

and equation (3.5) implies that

𝑧 =
1

− ln(𝑦) + 𝛼
. (3.6)

where 𝛼 ∈ R, and if 𝑦 ̸= 𝑒𝛼.
From (3.3) and (3.6), we have

𝑣′2 = 2𝑧 − 𝑦2 − 1

=
2

− ln(𝑦) + 𝛼
− 𝑦2 − 1.

Thus

𝑣′ =

√︃
2

− ln(𝑦) + 𝛼
− 𝑦2 − 1.

As conclusion, we have
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Theorem 3.1. ∙The only non-extendable extrinsically flat translation surfaces in
the 3-dimensional Heisenberg group H3 invariant under the 1-parameter subgroup
𝐺1 = {(𝑡, 0, 0) ∈ H3/𝑡 ∈ R}, are the surfaces whose parametrization is 𝑋(𝑥, 𝑦) =(︀
𝑥, 𝑦, 𝑣(𝑦) + 𝑥𝑦

2

)︀
where 𝑦 and 𝑣 satisfy

𝑣(𝑦) =

∫︁ √︃
2

− ln(𝑦) + 𝛼
− 𝑦2 − 1𝑑𝑦.

where 𝛼 ∈ R, and 𝑦 ̸= 𝑒𝛼.
∙There are no complete extrinsically flat translation surfaces in the 3-dimensio-

nal Heisenberg group H3 invariant under the 1-parameter subgroup 𝐺1 = {(𝑡, 0, 0) ∈
H3/𝑡 ∈ R}.

Remark 3.2. Let Σ be a 𝐺1-invariant translation surfaces in the 3-dimensional
Heisenberg space. Then Σ is locally expressed as

𝑋(𝑥, 𝑦) = (0, 𝑦, 𝑣(𝑦)) . (𝑥, 0, 0) =
(︁
𝑥, 𝑦, 𝑣(𝑦) − 𝑥𝑦

2

)︁
.

Then the extrinsically Gaussian curvature 𝐾𝑒𝑥𝑡 of Σ is computed as

𝐾𝑒𝑥𝑡 =

(︀
(𝑣′ − 𝑥)2 − 1

)︀2

4 (1 + (𝑣′ − 𝑥)2)
2 .

Thus Σ can not be of constant extrinsically Gaussian curvature.

3.2.
In this subsection we study complete constant extrinsically Gaussian curvature
translation surfaces Σ in Heisenberg group H3 which are invariant under the one
parameter subgroup 𝐺1. Clearly, such a surface is generated by a curve 𝛾 in the
totally geodesic plane {𝑥 = 0}. Discarding the trivial case of a vertical plane
{𝑦 = 𝑦0}. Thus 𝛾 is given by 𝛾(𝑦) = (0, 𝑦, 𝑣(𝑦)). Therefore the generated surface
is parameterized by

𝑋(𝑥, 𝑦) = (𝑥, 0, 0).(0, 𝑦, 𝑣(𝑦)) = (𝑥, 𝑦, 𝑣(𝑦) +
𝑥𝑦

2
), (𝑥, 𝑦) ∈ R2.

Theorem 3.3. ∙The 𝐺1-invariant constant extrinsically Gaussian curvature trans-
lation surfaces in the 3-dimensional Heisenberg group H3, are:

1. 𝐾𝑒𝑥𝑡 = − 1
4 .

The surfaces of equation

𝑧 = 𝑣(𝑦) +
𝑥𝑦

2
=

𝑥𝑦

2
+

1

2
𝑦
√︀

2𝛽 − 𝑦2 + arctan

(︃
𝑦√︀

𝛽 − 𝑦2

)︃
,

where 𝛽 ∈ R.

Surfaces with constant extrinsically Gaussian curvature in the Heisenberg group 11



2. 𝐾𝑒𝑥𝑡 ̸= − 1
4 .

Then 𝑦 and 𝑣 satisfy

𝑣(𝑦) =

∫︁ √︃
1

−2(𝐾𝑒𝑥𝑡 + 1
4 ) ln(𝑦) + 𝛾

− 𝑦2 − 1𝑑𝑦.

where 𝛾 ∈ R, and 𝑦 ̸= 𝑒
𝛾

2(𝐾𝑒𝑥𝑡+
1
4
) .

∙ There are no complete constant extrinsically Gaussian curvature translation sur-
faces in the 3-dimensional Heisenberg group H3 invariant under the 1-parameter
subgroup 𝐺1.

Proof. From (4.1) and (3.2) we have

𝐾𝑒𝑥𝑡 =
𝑙𝑛−𝑚2

𝐸𝐺− 𝐹 2
=

𝑦2 + 𝑦𝑣′𝑣′′ − 1
4

(︀
1 + 𝑦2 + 𝑣′2

)︀2

(1 + 𝑦2 + 𝑣′2)2
. (3.7)

1. If 𝐾𝑒𝑥𝑡 = − 1
4 . Then equation (3.7) becomes

𝑦2 + 𝑦𝑣′𝑣′′ = 0 (3.8)

We note that 𝑦 equal zero is solution of the equation(3.8).
If 𝑦 is different to zero (𝑦 ̸= 0), equation (3.8) becomes

𝑣′𝑣′′ = −𝑦.

Integration gives us

𝑣(𝑦) =
1

2
𝑦
√︀

2𝛽 − 𝑦2 + arctan

(︃
𝑦√︀

𝛽 − 𝑦2

)︃
,

where 𝛽 ∈ R.

2. If 𝐾𝑒𝑥𝑡 ̸= − 1
4 . Then equation (3.7) becomes

𝑦2 + 𝑦𝑣′𝑣′′ = (𝐾𝑒𝑥𝑡 +
1

4
)(1 + 𝑦2 + 𝑣′2)2.

In fact, put 𝑧 = 1 + 𝑦2 + 𝑣′2. Then 𝑧 satisfies

1

2
𝑦𝑧′ = (𝐾𝑒𝑥𝑡 +

1

4
)𝑧2.

Hence we have
𝑧 =

1

−2(𝐾𝑒𝑥𝑡 + 1
4 )𝑦 + 𝛾

,

where 𝛾 ∈ R, and 𝑦 ̸= 𝑒
𝛾

2(𝐾𝑒𝑥𝑡+
1
4
) . Using the equation 𝑧 = 1 + 𝑦2 + 𝑣′2, we get

𝑣′2 =
1

−2(𝐾𝑒𝑥𝑡 + 1
4 )𝑦 + 𝛾

− 𝑦2 − 1.
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4. Constant extrinsically Gaussian curvature
𝐺2-invariant translation surfaces in Heisenberg
group H3H3H3

In this section we study constant complete extrinsically flat translation surfaces
Σ in Heisenberg group H3 which are invariant under the one parameter subgroup
𝐺2. Clearly, such a surface is generated by a curve 𝛾 in the totally geodesic plane
{𝑦 = 0}. Discarding the trivial case of a vertical plane {𝑥 = 𝑥0}. Thus 𝛾 is given
by 𝛾(𝑥) = (𝑥, 0, 𝑓(𝑥)). Therefore the generated surface is parameterized by

𝑋(𝑥, 𝑦) = (0, 𝑦, 0).(𝑥, 0, 𝑓(𝑥)) = (𝑥, 𝑦, 𝑓(𝑥) − 𝑥𝑦

2
), (𝑥, 𝑦) ∈ R2.

We have an orthogonal pair of vector fields on (Σ), namely,

𝑒1 := 𝑋𝑥 = (1, 0, 𝑓 ′ − 𝑦

2
) = 𝐸1 + 𝑓 ′𝐸3.

and
𝑒2 := 𝑋𝑦 = (0, 1,−𝑥

2
) = 𝐸2 − 𝑥𝐸3.

The coefficients of the first fundamental form are:

𝐸 = ⟨𝑒1, 𝑒1⟩ = 1 + 𝑓 ′2, 𝐹 = ⟨𝑒1, 𝑒2⟩ = −𝑥𝑓 ′, 𝐺 = ⟨𝑒2, 𝑒⟩ = 1 + 𝑥2.

As a unit normal field we can take

𝑁 =
−𝑓 ′

√︀
1 + 𝑥2 + 𝑓 ′2

𝐸1 +
𝑥√︀

1 + 𝑥2 + 𝑓 ′2
𝐸2 +

1√︀
1 + 𝑥2 + 𝑓 ′2

𝐸3.

The covariant derivatives are

̃︀∇𝑒1𝑒1 = −𝑓 ′𝐸2 + 𝑓 ′′𝐸3

̃︀∇𝑒1𝑒2 =
𝑓 ′

2
𝐸1 +

𝑥

2
𝐸2 −

1

2
𝐸3

̃︀∇𝑒2𝑒2 = −𝑥𝐸1.

The coefficients of the second fundamental form are

𝑙 = ⟨̃︀∇𝑒1𝑒1, 𝑁⟩ =
−𝑥𝑓 ′ + 𝑓 ′′

√︀
1 + 𝑥2 + 𝑓 ′2

𝑚 = ⟨̃︀∇𝑒1𝑒2, 𝑁⟩ =
− 𝑓 ′2

2 + 𝑥2

2 − 1
2√︀

1 + 𝑥2 + 𝑓 ′2

𝑛 = ⟨̃︀∇𝑒2𝑒2, 𝑁⟩ =
−𝑦𝑣′ + 𝑣′′√︀
1 + 𝑦2 + 𝑣′2

.
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Let 𝐾𝑒𝑥𝑡 be the extrinsic Gauss curvature of Σ,

𝐾𝑒𝑥𝑡 =
𝑙𝑛−𝑚2

𝐸𝐺− 𝐹 2
=

𝑥2 + 𝑥𝑓 ′𝑓 ′′ − 1
4 (𝑥2 + 𝑓 ′2 + 1)2

(1 + 𝑥2 + 𝑓 ′2)2
. (4.1)

Thus Σ is extrinsically flat invariant surface in Heisenberg group H3 if and only if

𝐾𝑒𝑥𝑡 = 0,

that is, if and only if

𝑥2 + 𝑥𝑓 ′𝑓 ′′ − 1

4
(𝑥2 + 𝑓 ′2 + 1)2 = 0. (4.2)

to classify extrinsically flat invariant surfaces must solve the equation (4.2).
We remark that the equation (4.2) is similarly to the equation (3.1), It is suffi-

cient to change 𝑦 by 𝑥 and 𝑣 by 𝑓 .
As conclusion, we have

Theorem 4.1. ∙The only non-extendable extrinsically flat translation surfaces in
the 3-dimensional Heisenberg group H3 invariant under the 2-parameter subgroup
𝐺2 = {(0, 𝑡, 0) ∈ H3/𝑡 ∈ R}, are the surfaces whose parametrization is 𝑋(𝑥, 𝑦) =(︀
𝑥, 𝑦, 𝑓(𝑥) − 𝑥𝑦

2

)︀
where 𝑥 and 𝑓 satisfy

𝑓(𝑥) =

∫︁ √︃
2

− ln(𝑥) + 𝛼
− 𝑥2 − 1𝑑𝑦.

where 𝛼 ∈ R, and 𝑥 ̸= 𝑒𝛼.
∙There are no complete extrinsically flat translation surfaces in the 3-dimensio-

nal Heisenberg group H3 invariant under the 1-parameter subgroup 𝐺2 = {(0, 𝑡, 0) ∈
H3/𝑡 ∈ R}.

Remark 4.2. Let Σ be a 𝐺2-invariant translation surfaces in the 3-dimensional
Heisenberg space. Then Σ is locally expressed as

𝑋(𝑥, 𝑦) = (𝑥, 0, 𝑓(𝑥)) . (0, 𝑦, 0) =
(︁
𝑥, 𝑦, 𝑓(𝑥) +

𝑥𝑦

2

)︁
.

Then the extrinsically Gaussian curvature 𝐾𝑒𝑥𝑡 of Σ is computed as

𝐾𝑒𝑥𝑡 = −
(︀
(𝑓 ′ + 𝑦)2 − 1

)︀2

4 (1 + (𝑣′ − 𝑥)2)
2 .

Thus Σ can not be of constant extrinsically Gaussian curvature.

Theorem 4.3. ∙ The 𝐺2-invariant constant extrinsically Gaussian curvature trans-
lation surfaces in the 3-dimensional Heisenberg group H3, are:
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1. 𝐾𝑒𝑥𝑡 = − 1
4 .

The surfaces of equation

𝑧 = 𝑓(𝑥) − 𝑥𝑦

2
= −𝑥𝑦

2
+

1

2
𝑥
√︀

2𝛽 − 𝑥2 + arctan

(︃
𝑥√︀

𝛽 − 𝑥2

)︃
,

where 𝛽 ∈ R.

2. 𝐾𝑒𝑥𝑡 ̸= − 1
4 .

Then 𝑥 and 𝑓 satisfy

𝑓(𝑥) =

∫︁ √︃
1

−2(𝐾𝑒𝑥𝑡 + 1
4 ) ln(𝑥) + 𝛾

− 𝑥2 − 1𝑑𝑦.

where 𝛾 ∈ R, and 𝑥 ̸= 𝑒
𝛾

2(𝐾𝑒𝑥𝑡+
1
4
) .

∙ There are no complete constant extrinsically Gaussian curvature translation sur-
faces in the 3-dimensional Heisenberg group H3 invariant under the 1-parameter
subgroup 𝐺2.
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