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Abstract
We provide exact formulae for the rational Bézier representation of caus-

tics of planar Bézier curves of degree greater than one.
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1. Introduction

In optics a caustic is the envelope of light rays reflected or refracted by an object.
We consider only that special case when the rays are parallel and are reflected by
a planar curve.

Recently, caustics of control point based planar curves were studied in [6], how-
ever the special properties of basis functions in use were not exploited. In the
present contribution we concentrate on the caustics of planar Bézier curves, the
basis functions of which are the Bernstein polynomials.

2. Caustic curve

Without the loss of generality we can assume that the direction of the light rays is[︀
1 0

]︀𝑇 , since this only results in an isometric transformation of the curve. We
consider the sufficiently smooth curve

r (𝑡) =

[︂
𝑟𝑥 (𝑡)
𝑟𝑦 (𝑡)

]︂
, 𝑡 ∈ [𝑎, 𝑏] .

Annales Mathematicae et Informaticae
50 (2019) pp. 93–100
doi: 10.33039/ami.2019.11.001
http://ami.uni-eszterhazy.hu

93



The direction of the reflected ray at the point r (𝑡) is

v (𝑡) =

⎡
⎣ 1− 2𝑟̇2𝑦(𝑡)

𝑟̇2𝑥(𝑡)+𝑟̇2𝑦(𝑡)
2𝑟̇𝑥(𝑡)𝑟̇𝑦(𝑡)
𝑟̇2𝑥(𝑡)+𝑟̇2𝑦(𝑡)

⎤
⎦ , 𝑡 ∈ [𝑎, 𝑏]

and the caustic c of the curve r can be written in the form

𝑐𝑥 (𝑡) = 𝑟𝑥 (𝑡) +

(︀
𝑟̇2𝑥 (𝑡)− 𝑟̇2𝑦 (𝑡)

)︀
𝑟̇𝑦 (𝑡)

2 (𝑟̇𝑥 (𝑡) 𝑟𝑦 (𝑡)− 𝑟𝑥 (𝑡) 𝑟̇𝑦 (𝑡))
,

𝑐𝑦 (𝑡) = 𝑟𝑦 (𝑡) +
𝑟̇𝑥 (𝑡) 𝑟̇

2
𝑦 (𝑡)

𝑟̇𝑥 (𝑡) 𝑟𝑦 (𝑡)− 𝑟𝑥 (𝑡) 𝑟̇𝑦 (𝑡)
.

An equivalent of the above formula for the caustic was also derived in [6].
The caustic may have point(s) at infinity, i.e., the curve can be composed of

several branches. This happens where the denominator 𝑟̇𝑥 (𝑡) 𝑟𝑦 (𝑡) − 𝑟𝑥 (𝑡) 𝑟̇𝑦 (𝑡)
vanishes, i.e., where the curvature of r is zero. The asymptote at such a point is
the reflected ray r (𝑡) + 𝜆v (𝑡) , 𝜆 ∈ R itself. In Fig. 1 there is a quartic Bézier
curve the caustic of which has two points at infinity.

Figure 1: A quartic Bézier curve along with its caustic, which has
two points at infinity. The arrow indicates the light direction.
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From here on, we will study the caustics of planar Bézier curves

r (𝑡) =

𝑛∑︁

𝑖=0

𝐵𝑛
𝑖 (𝑡)b𝑖, 𝑡 ∈ [0, 1] , 𝑛 ≥ 2,

where the sequence of points {b𝑖}𝑛𝑖=0 are called control points and 𝐵𝑛
𝑖 denotes the

𝑖th Bernstein polynomial of degree 𝑛. (The case 𝑛 = 1 is out of interest, since then
the curve degenerates to a straight line segment and the reflected rays are parallel.)

3. Caustic of a Bézier curve

At first, we reformulate the caustic c to have a common denominator of the the
coordinate functions, yielding

𝑐𝑥 (𝑡) =
2 (𝑟̇𝑥 (𝑡) 𝑟𝑦 (𝑡)− 𝑟𝑥 (𝑡) 𝑟̇𝑦 (𝑡)) 𝑟𝑥 (𝑡) + 𝑟̇2𝑥 (𝑡) 𝑟̇𝑦 (𝑡)− 𝑟̇3𝑦 (𝑡)

2 (𝑟̇𝑥 (𝑡) 𝑟𝑦 (𝑡)− 𝑟𝑥 (𝑡) 𝑟̇𝑦 (𝑡))
, (3.1)

𝑐𝑦 (𝑡) =
2 (𝑟̇𝑥 (𝑡) 𝑟𝑦 (𝑡)− 𝑟𝑥 (𝑡) 𝑟̇𝑦 (𝑡)) 𝑟𝑦 (𝑡) + 2𝑟̇𝑥 (𝑡) 𝑟̇

2
𝑦 (𝑡)

2 (𝑟̇𝑥 (𝑡) 𝑟𝑦 (𝑡)− 𝑟𝑥 (𝑡) 𝑟̇𝑦 (𝑡))
. (3.2)

Obviously, numerators of the above expressions are polynomials of degree 3 (𝑛− 1)
and the common denominator is of degree (2𝑛− 3), therefore these coordinate
functions are rational functions of degree 3 (𝑛− 1). In what follows we provide the
rational Bézier representation of such caustics. We introduce notations

ṙ (𝑡) =

𝑛−1∑︁

𝑖=0

𝐵𝑛−1
𝑖 (𝑡)a𝑖, 𝑡 ∈ [0, 1] , a𝑖 = 𝑛 (b𝑖+1 − b𝑖) , 𝑖 = 0, 1, . . . , 𝑛− 1,

r̈ (𝑡) =
𝑛−2∑︁

𝑖=0

𝐵𝑛−2
𝑖 (𝑡)d𝑖, 𝑡 ∈ [0, 1] , d𝑖 = (𝑛− 1) (a𝑖+1 − a𝑖) , 𝑖 = 0, 1, . . . , 𝑛− 2.

Making use of the identity

𝐵𝑛
𝑖 (𝑡)𝐵𝑚

𝑗 (𝑡) =

(︀
𝑛
𝑖

)︀(︀
𝑚
𝑗

)︀
(︀
𝑛+𝑚
𝑖+𝑗

)︀ 𝐵𝑛+𝑚
𝑖+𝑗 (𝑡)

of Bernstein polynomials (cf. [1]), we can derive an identity for the product of two
linear combinations

∑︀𝑛
𝑖=0 𝐵

𝑛
𝑖 (𝑡) 𝑎𝑖 and

∑︀𝑚
𝑗=0 𝐵

𝑚
𝑗 (𝑡) 𝑏𝑗 can be written in the form

𝑛∑︁

𝑖=0

𝐵𝑛
𝑖 (𝑡) 𝑎𝑖

𝑚∑︁

𝑗=0

𝐵𝑚
𝑗 (𝑡) 𝑏𝑗 =

𝑛+𝑚∑︁

ℓ=0

𝐵𝑛+𝑚
ℓ (𝑡)

1(︀
𝑛+𝑚

ℓ

)︀
𝑚∑︁

𝑘=0

(︂
𝑛

ℓ− 𝑘

)︂(︂
𝑚

𝑘

)︂
𝑎ℓ−𝑘𝑏𝑘, (3.3)

provided 𝑛 ≥ 𝑚.
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Now, we study the common denominator. By means of identity 3.3, its first
term is of the form

𝑟̇𝑥 (𝑡) 𝑟𝑦 (𝑡) =

𝑛−1∑︁

𝑖=0

𝐵𝑛−1
𝑖 (𝑡) 𝑎𝑥,𝑖

𝑛−2∑︁

𝑗=0

𝐵𝑛−2
𝑗 (𝑡) 𝑑𝑦,𝑗

=
2𝑛−3∑︁

ℓ=0

𝐵2𝑛−3
ℓ (𝑡)

1(︀
2𝑛−3

ℓ

)︀
𝑛−2∑︁

𝑘=0

(︂
𝑛− 1

ℓ− 𝑘

)︂(︂
𝑛− 2

𝑘

)︂
𝑎𝑥,ℓ−𝑘𝑑𝑦,𝑘.

The second term can analogously be expressed, yielding

𝑟̇𝑦 (𝑡) 𝑟𝑥 (𝑡) =
2𝑛−3∑︁

ℓ=0

𝐵2𝑛−3
ℓ (𝑡)

1(︀
2𝑛−3

ℓ

)︀
𝑛−2∑︁

𝑘=0

(︂
𝑛− 1

ℓ− 𝑘

)︂(︂
𝑛− 2

𝑘

)︂
𝑎𝑦,ℓ−𝑘𝑑𝑥,𝑘

and the denominator has the form

2 (𝑟̇𝑥 (𝑡) 𝑟𝑦 (𝑡)− 𝑟𝑥 (𝑡) 𝑟̇𝑦 (𝑡)) =

2𝑛−3∑︁

ℓ=0

𝑤ℓ𝐵
2𝑛−3
ℓ (𝑡) , (3.4)

where

𝑤ℓ =
2(︀

2𝑛−3
ℓ

)︀
𝑛−2∑︁

𝑘=0

(︂
𝑛− 1

ℓ− 𝑘

)︂(︂
𝑛− 2

𝑘

)︂
(𝑎𝑥,ℓ−𝑘𝑑𝑦,𝑘 − 𝑎𝑦,ℓ−𝑘𝑑𝑥,𝑘) . (3.5)

We elevate the degree of (3.4) by 𝑛, using the general degree elevation formula

𝑠∑︁

𝑖=0

𝐵𝑠
𝑖 (𝑡)𝑤𝑖 =

𝑠+𝑧∑︁

𝑖=0

𝐵𝑠+𝑧
𝑖 (𝑡)𝑤

[𝑧]
𝑖 , 𝑧 > 0, (3.6)

𝑤
[𝑧]
𝑖 = 𝑤

[𝑧−1]
𝑖 +

𝑖

𝑠+ 𝑧

(︁
𝑤

[𝑧−1]
𝑖−1 − 𝑤

[𝑧−1]
𝑖

)︁
, 𝑖 = 0, 1, . . . , 𝑠+ 𝑧

𝑤
[0]
𝑖 = 𝑤𝑖, 𝑖 = 0, 1, . . . , 𝑠.

with substitutions 𝑠 = 3 (𝑛− 1) and 𝑧 = 𝑛.
The degree elevated denominator is

3(𝑛−1)∑︁

ℓ=0

𝑤
[𝑛]
ℓ 𝐵

3(𝑛−1)
ℓ (𝑡) , 𝑡 ∈ [0, 1] .

The numerator of the 𝑥 coordinate function is

2 (𝑟̇𝑥 (𝑡) 𝑟𝑦 (𝑡)− 𝑟𝑥 (𝑡) 𝑟̇𝑦 (𝑡)) 𝑟𝑥 (𝑡) + 𝑟̇2𝑥 (𝑡) 𝑟̇𝑦 (𝑡)− 𝑟̇3𝑦 (𝑡) .

Its first term can be expressed as

2 (𝑟̇𝑥 (𝑡) 𝑟𝑦 (𝑡)− 𝑟𝑥 (𝑡) 𝑟̇𝑦 (𝑡)) 𝑟𝑥 (𝑡)
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=

3(𝑛−1)∑︁

ℓ=0

𝐵
3(𝑛−1)
ℓ (𝑡)

1(︀
3(𝑛−1)

ℓ

)︀
(︃

𝑛∑︁

𝑘=0

(︂
2𝑛− 3

ℓ− 𝑘

)︂(︂
𝑛

𝑘

)︂
𝑤ℓ−𝑘𝑏𝑥,𝑘

)︃

and the second one as

𝑟̇2𝑥 (𝑡) 𝑟̇𝑦 (𝑡) =

3(𝑛−1)∑︁

ℓ=0

𝐵
3(𝑛−1)
ℓ (𝑡)

1(︀
3(𝑛−1)

ℓ

)︀

×
𝑛−1∑︁

𝑘=0

(︃(︂
𝑛− 1

𝑘

)︂
𝑎𝑦,𝑘

𝑛−1∑︁

𝑧=0

(︂
𝑛− 1

ℓ− 𝑘 − 𝑧

)︂(︂
𝑛− 1

𝑧

)︂
𝑎𝑥,ℓ−𝑘−𝑧𝑎𝑥,𝑧

)︃

while the third one as

𝑟̇3𝑦 (𝑡) =

3(𝑛−1)∑︁

ℓ=0

𝐵
3(𝑛−1)
ℓ (𝑡)

1(︀
3(𝑛−1)

ℓ

)︀

×
𝑛−1∑︁

𝑘=0

(︃(︂
𝑛− 1

𝑘

)︂
𝑎𝑦,𝑘

𝑛−1∑︁

𝑧=0

(︂
𝑛− 1

ℓ− 𝑘 − 𝑧

)︂(︂
𝑛− 1

𝑧

)︂
𝑎𝑦,ℓ−𝑘−𝑧𝑎𝑦,𝑧

)︃
.

Thus, the numerator of Eq. (3.1) can be written in the form

3(𝑛−1)∑︁

ℓ=0

𝐵
3(𝑛−1)
ℓ (𝑡) 𝑞𝑥,ℓ,

where

𝑞𝑥,ℓ =
1(︀

3(𝑛−1)
ℓ

)︀
(︃

𝑛∑︁

𝑘=0

(︂
2𝑛− 3

ℓ− 𝑘

)︂(︂
𝑛

𝑘

)︂
𝑤ℓ−𝑘𝑏𝑥,𝑘 +

𝑛−1∑︁

𝑘=0

(︂
𝑛− 1

𝑘

)︂
𝑎𝑦,𝑘

×
𝑛−1∑︁

𝑧=0

(︂
𝑛− 1

ℓ− 𝑘 − 𝑧

)︂(︂
𝑛− 1

𝑧

)︂
(𝑎𝑥,ℓ−𝑘−𝑧𝑎𝑥,𝑧 − 𝑎𝑦,ℓ−𝑘−𝑧𝑎𝑦,𝑧)

)︃
. (3.7)

Analogously, we can obtain the numerator of (3.2) in the form

3(𝑛−1)∑︁

ℓ=0

𝐵
3(𝑛−1)
ℓ (𝑡) 𝑞𝑦,ℓ,

where

𝑞𝑦,ℓ =
1(︀

3(𝑛−1)
ℓ

)︀
(︃

𝑛∑︁

𝑘=0

(︂
2𝑛− 3

ℓ− 𝑘

)︂(︂
𝑛

𝑘

)︂
𝑤ℓ−𝑘𝑏𝑦,𝑘 + 2

𝑛−1∑︁

𝑘=0

(︂
𝑛− 1

𝑘

)︂
𝑎𝑥,𝑘

×
𝑛−1∑︁

𝑧=0

(︂
𝑛− 1

ℓ− 𝑘 − 𝑧

)︂(︂
𝑛− 1

𝑧

)︂
𝑎𝑦,ℓ−𝑘−𝑧𝑎𝑦,𝑧

)︃
. (3.8)
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Finally, the rational Bézier representation of the caustic curve is

c (𝑡) =

3(𝑛−1)∑︁

ℓ=0

𝑤
[𝑛]
ℓ 𝐵

3(𝑛−1)
ℓ (𝑡)

∑︀3(𝑛−1)
𝑘=0 𝑤

[𝑛]
𝑘 𝐵

3(𝑛−1)
𝑘 (𝑡)

qℓ, 𝑡 ∈ [0, 1]

where weights
{︁
𝑤

[𝑛]
ℓ

}︁3(𝑛−1)

ℓ=0
are the coefficients obtained by the degree elevation of

the denominator, and control points are specified by

qℓ =
1

𝑤
[𝑛]
ℓ

[︂
𝑞𝑥,ℓ
𝑞𝑦,ℓ

]︂
, ℓ = 0, 1, . . . , 3 (𝑛− 1) . (3.9)

Figure 2: A quartic Bézier curve and its caustic along with the
reflected rays. The control polygon of the rational Bézier represen-
tation (which is of degree 9) is also displayed. The arrow indicates

the light direction.

Now, we summarize our results.

Proposition 3.1. The caustic of a Bézier curve of degree 𝑛 (if exists) is a rational
Bézier curve of degree 3 (𝑛− 1). Its weights and control points are specified by (3.5),
(3.6) and (3.7), (3.8), (3.9), respectively.

Remark 3.2. The caustic of a quadratic Bézier curve (𝑛 = 2) (if exists) is a cubic
polynomial curve, since in this case the common denominator of (3.1) and (3.2) is
the constant

1∑︁

ℓ=0

𝐵1
ℓ (𝑡)

(︃
2

1∑︁

𝑘=0

(︀
2−1
ℓ−𝑘

)︀(︀
0
𝑘

)︀
(︀
1
ℓ

)︀ (𝑎𝑥,ℓ−𝑘𝑑𝑦,𝑘 − 𝑎𝑦,ℓ−𝑘𝑑𝑥,𝑘)

)︃

= 2
1∑︁

ℓ=0

𝐵1
ℓ (𝑡) (𝑎𝑥,ℓ𝑑𝑦,0 − 𝑎𝑦,ℓ𝑑𝑥,0)
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= 2 (𝑎𝑥,0𝑎𝑦,1 − 𝑎𝑥,1𝑎𝑦,0)
(︀
𝐵1

0 (𝑡) +𝐵1
1 (𝑡)

)︀

= 2 (𝑎𝑥,0𝑎𝑦,1 − 𝑎𝑥,1𝑎𝑦,0) ,

therefore the caustic is a cubic polynomial curve. It is well-known that the caustic
of a parabola is a Tschirnhausen cubic, if the rays are not parallel to the axis of
the parabola, we have just obtained its Bézier representation.

Figure 3: A quintic Bézier curve the caustic of which has two
cusps. The control polygon of the rational Bézier representation of
the caustic is also shown. The arrow indicates the light direction.

Remark 3.3. The cusp(s) of the caustic may be of interest. The caustic c has a cusp
at 𝑡0 ∈ [0, 1], if ‖ċ (𝑡0)‖ = 0, i.e., if the tangent vector vanishes, that we can find
numerically. Actually, it is a root finding problem, which can be solved efficiently
with high precision and stability, since the polynomials are specified in Bernstein
basis (cf. [2, 5]).

In Fig. 2 there is a quartic Bézier curve and its caustic, along with the control
polygon of the rational Bézier representation of the caustic. Fig. 3 shows such a
quintic Bézier curve whose caustic has two cusps.

4. Conclusions

We have provided ready to implement exact formulae for the rational Bézier rep-
resentation of caustics (if exist) of planar Bézier curves of degree greater than
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one. This method can be extended to other control point based curves, i.e., curves
described in the form

c (𝑡) =
𝑛∑︁

𝑖=0

𝐹𝑛
𝑖 (𝑡)d𝑖, 𝑡 ∈ [𝑎, 𝑏] .

We assume that function system ℱ := {𝐹𝑖 | 𝐹𝑖 : [𝑎, 𝑏] → R}𝑛𝑖=0 consists of suffi-
ciently smooth non-negative functions, forming a partition of unity. Additional
requirements are the existence of degree elevation and product formulae in the ba-
sis ℱ . These requirements are fulfilled by the B-basis of trigonometric (cf. [3]) and
that of hyperbolic polynomials (cf. [4]), besides the Bernstein basis.
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