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Abstract

Let (𝐹𝑚)𝑚>0 and (𝑃𝑛)𝑛>0 be the Fibonacci and Padovan sequences given
by the initial conditions 𝐹0 = 0, 𝐹1 = 1, 𝑃0 = 0, 𝑃1 = 𝑃2 = 1 and the
recurrence formulas 𝐹𝑚+2 = 𝐹𝑚+1 + 𝐹𝑚, 𝑃𝑛+3 = 𝑃𝑛+1 + 𝑃𝑛 for all 𝑚,𝑛 > 0,
respectively. In this note we study and completely solve the Diophantine
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equation
𝑃𝑛 − 𝐹𝑚 = 𝑃𝑛1 − 𝐹𝑚1

in non-negative integers (𝑛,𝑚, 𝑛1,𝑚1) with (𝑛,𝑚) ̸= (𝑛1,𝑚1).

Keywords: Fibonacci, Padovan sequences, Pillai’s type problem, Linear form
in logarithms.
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1. Introduction

Let 𝑎, 𝑏 be fixed positive integers and consider the Diophatine equation

𝑎𝑛 − 𝑏𝑚 = 𝑎𝑛1 − 𝑏𝑚1 (1.1)

in positive integers 𝑛,𝑚, 𝑛1,𝑚1 with (𝑛,𝑚) ̸= (𝑛1,𝑚1). In particular, we look for
the integers which can be written as a difference of a power of 𝑎 and a power of 𝑏 in
at least two distinct ways. In [11], Herschfeld proved that in the case (𝑎, 𝑏) = (2, 3)
equation (1.1) has only finitely many solutions. In [15], Pillai extended this result
to the case 𝑎, 𝑏 > 2 being coprime integers. Both results are ineffective. In [16],
Pillai conjectured that in the case (𝑎, 𝑏) = (2, 3) the only solutions of equation (1.1)
are (3, 2, 1, 1), (5, 3, 3, 1) and (8, 5, 4, 1). This conjecture remained open for about
37 years and was confirmed in [20] by Stroeker and Tijdeman by using Baker’s
theory on linear forms in logarithms.

Recently, the above problem now known as the Pillai problem, was posed
in the context of linear recurrence sequences. Namely, let U := (𝑈𝑛)𝑛>0 and
V := (𝑉𝑚)𝑚>0 be two linearly recurrence sequences of integers and look at the
diophantine equation

𝑈𝑛 − 𝑉𝑚 = 𝑈𝑛1 − 𝑉𝑛1 (1.2)

in positive integers 𝑛,𝑚, 𝑛1,𝑚1 with (𝑛,𝑚) ̸= (𝑛1,𝑚1). This reduces to determin-
ing the integers which can be written as a difference of an element of U and an
element of V in at least two distinct ways. This version was started by Ddamulira,
Luca and Rakotomalala in [8] where they considered U as being the Fibonacci
sequence and V as being the sequence of powers of 2. Many other cases have
been studied, see for example [3, 6, 7, 10, 12, 13]. In [5], there is a general result,
namely that if U and V satisfy some natural conditions, then equation (1.2) has
only finitely many solutions which furthermore are all effectively computable. We
recall that the Fibonacci sequence (𝐹𝑚)𝑚>0 is given by 𝐹0 = 0, 𝐹1 = 1 and the
recurrence formula

𝐹𝑚+2 = 𝐹𝑚+1 + 𝐹𝑚 for all 𝑚 > 0.

Its first few terms are

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, . . .
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Now, let (𝑃𝑛)𝑛>0 be the Padovan sequence, named after the architect R. Padovan,
given by 𝑃0 = 0, 𝑃1 = 𝑃2 = 1 and the recurrence formula

𝑃𝑛+3 = 𝑃𝑛+1 + 𝑃𝑛 for all 𝑛 > 0.

This is the sequence A000931 in [18]. Its first few terms are

0, 1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, 49, 65, 86, 114, 151, . . .

In this note, we study another case of equation (1.2) namely with the Fibonacci
and the Padovan sequences. More precisely, we solve the equation

𝑃𝑛 − 𝐹𝑚 = 𝑃𝑛1 − 𝐹𝑚1 (1.3)

in non-negative integers (𝑛,𝑚, 𝑛1,𝑚1) with (𝑛,𝑚) ̸= (𝑛1,𝑚1). To avoid numerical
repeated solutions we assume that 𝑛 ̸= 1, 2, 4 and 𝑛1 ̸= 1, 2, 4. That is whenever
we think of 1 and 2 as members of the Padovan sequence que think of them as
being 𝑃3 and 𝑃5, respectively. In the same way, 𝑚 ̸= 1 and 𝑚1 ̸= 1. With this
conventions, our result is the following:

Theorem 1.1. All non-negative integer solutions (𝑛,𝑚, 𝑛1,𝑚1) of equation (1.3)
belong to the set
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3, 2, 0, 0), (3, 3, 0, 2), (3, 4, 0, 3), (5, 2, 3, 0), (5, 3, 3, 2),
(5, 3, 0, 0), (5, 4, 3, 3), (5, 4, 0, 2), (5, 5, 0, 4), (6, 2, 5, 0),
(6, 3, 5, 2), (6, 3, 3, 0), (6, 4, 5, 3), (6, 4, 3, 2), (6, 4, 0, 0),
(6, 5, 3, 4), (6, 5, 0, 3), (6, 6, 0, 5), (7, 2, 6, 0), (7, 3, 6, 2),
(7, 3, 5, 0), (7, 4, 6, 3), (7, 4, 5, 2), (7, 4, 3, 0), (7, 5, 5, 4),
(7, 5, 3, 3), (7, 5, 0, 2), (7, 6, 3, 5), (8, 2, 7, 0), (8, 3, 7, 2),
(8, 3, 6, 0), (8, 4, 7, 3), (8, 4, 6, 2), (8, 4, 5, 0), (8, 5, 6, 4),
(8, 5, 5, 3), (8, 5, 3, 2), (8, 5, 0, 0), (8, 6, 5, 5), (8, 6, 0, 4),
(8, 7, 0, 6), (9, 3, 8, 0), (9, 4, 8, 2), (9, 4.7, 0), (9, 5, 8, 4),
(9, 5, 7, 3), (9, 5, 6, 2), (9, 5, 5, 0), (9, 6, 7, 5), (9, 6, 5, 4),
(9, 6, 3, 3), (9, 6, 0, 2), (9, 7, 5, 6), (10, 3, 9, 0), (10, 4, 9, 2),
(10, 5, 9, 4), (10, 5, 8, 2), (10, 5, 7, 0), (10, 6, 7, 4), (10, 6, 6, 3),
(10, 6, 5, 2), (10, 6, 3, 0), (10, 7, 7, 6), (10, 7, 3, 5), (10, 8, 3, 7),
(11, 4, 10, 0), (11, 5, 10, 3), (11, 5, 9, 0), (11, 6, 10, 5), (11, 6, 9, 4),
(11, 6, 8, 2), (11, 6, 7, 0), (11, 7, 9, 6), (11, 7, 7, 5), (11, 7, 5, 4),
(11, 7, 3, 3), (11, 7, 0, 2), (11, 8, 7, 7), (12, 5, 11, 2), (12, 6, 10, 2),
(12, 7, 8, 3), (12, 7, 7, 2), (12, 7, 6, 0), (12, 8, 6, 6), (12, 8, 0, 5),
(12, 9, 6, 8), (13, 5, 12, 0), (13, 6, 12, 4), (13, 7, 12, 6), (13, 7, 10, 2),
(13, 8, 8, 5), (13, 8, 6, 4), (13, 8, 5, 3), (13, 8, 3, 2), (13, 8, 0, 0),
(13, 9, 0, 7), (13, 10, 0, 9), (14, 6, 13, 2), (14, 7, 12, 2), (14, 8, 11, 5),
(14, 8, 10, 3), (14, 8, 9, 0), (14, 9, 9, 7), (14, 9, 5, 6), (14, 10, 9, 9),
(15, 8, 13, 5), (15, 8, 12, 0), (15, 9, 12, 7), (15, 9, 8, 3), (15, 9, 7, 2),
(15, 9, 6, 0), (15, 10, 12, 9), (15, 10, 6, 8), (15, 11, 6, 10), (16, 7, 15, 2),
(16, 8, 14, 0), (16, 9, 14, 7), (16, 9, 12, 2), (16, 10, 14, 9), (16, 10, 9, 7),
(16, 10, 5, 6), (17, 8, 16, 5), (17, 10, 11, 3), (18, 8, 17, 0), (18, 9, 17, 7),

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
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⎧
⎪⎪⎨
⎪⎪⎩

(18, 10, 17, 9), (18, 11, 8, 6), (18, 11, 5, 5), (18, 11, 0, 4), (19, 11, 14, 4),
(19, 12, 7, 9), (20, 11, 17, 4), (20, 12, 14, 8), (20, 12, 11, 5), (20, 12, 10, 3),
(20, 12, 9, 0), (20, 13, 9, 11), (20, 14, 9, 13), (21, 11, 19, 4), (21, 13, 3, 9),
(22, 13, 15, 5), (23, 11, 22, 4), (25, 15, 10, 4), (25, 15, 9, 2)

⎫
⎪⎪⎬
⎪⎪⎭

The set of integers which can be written as the difference of a Padovan number
and a Fibonacci number in at least two distinct ways is

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−226, −82, −52, −34, −33, −30, −27, −18, −13,
−12, −9, −8, −6, −5, −4, −3, −2, −1,

0, 1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 13, 15, 16, 20, 25, 28,
31, 32, 36, 44, 52, 62, 65, 111, 262.

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

All such representations of each of these numbers are

−226 = 𝑃20 − 𝐹14 = 𝑃9 − 𝐹13;

−82 = 𝑃20 − 𝐹13 = 𝑃9 − 𝐹11;

−52 = 𝑃15 − 𝐹11 = 𝑃6 − 𝐹10;

−34 = 𝑃13 − 𝐹10 = 𝑃0 − 𝐹9;

−33 = 𝑃21 − 𝐹13 = 𝑃3 − 𝐹9;

−30 = 𝑃19 − 𝐹12 = 𝑃7 − 𝐹9;

−27 = 𝑃14 − 𝐹10 = 𝑃9 − 𝐹9;

−18 = 𝑃12 − 𝐹9 = 𝑃6 − 𝐹8 = 𝑃15 − 𝐹10;

−13 = 𝑃13 − 𝐹9 = 𝑃0 − 𝐹7;

−12 = 𝑃10 − 𝐹8 = 𝑃3 − 𝐹7;

−9 = 𝑃11 − 𝐹8 = 𝑃7 − 𝐹7;

−8 = 𝑃8 − 𝐹7 = 𝑃0 − 𝐹6;

−6 = 𝑃16 − 𝐹10 = 𝑃14 − 𝐹9 = 𝑃9 − 𝐹7 = 𝑃5 − 𝐹6;

−5 = 𝑃12 − 𝐹8 = 𝑃6 − 𝐹6 = 𝑃0 − 𝐹5;

−4 = 𝑃10 − 𝐹7 = 𝑃7 − 𝐹6 = 𝑃3 − 𝐹5;

−3 = 𝑃18 − 𝐹11 = 𝑃8 − 𝐹6 = 𝑃5 − 𝐹5 = 𝑃0 − 𝐹4;

−2 = 𝑃6 − 𝐹5 = 𝑃3 − 𝐹4 = 𝑃0 − 𝐹3;

−1 = 𝑃11 − 𝐹7 = 𝑃9 − 𝐹6 = 𝑃7 − 𝐹5 = 𝑃5 − 𝐹4 = 𝑃3 − 𝐹3 = 𝑃0 − 𝐹2;

0 = 𝑃13 − 𝐹8 = 𝑃8 − 𝐹5 = 𝑃6 − 𝐹4 = 𝑃5 − 𝐹3 = 𝑃3 − 𝐹2 = 𝑃0 − 𝐹0;

1 = 𝑃10 − 𝐹6 = 𝑃7 − 𝐹4 = 𝑃6 − 𝐹3 = 𝑃5 − 𝐹2 = 𝑃3 − 𝐹0;

2 = 𝑃9 − 𝐹5 = 𝑃8 − 𝐹4 = 𝑃7 − 𝐹3 = 𝑃6 − 𝐹2 = 𝑃5 − 𝐹0;

3 = 𝑃15 − 𝐹9 = 𝑃12 − 𝐹7 = 𝑃8 − 𝐹3 = 𝑃7 − 𝐹2 = 𝑃6 − 𝐹0;

4 = 𝑃11 − 𝐹6 = 𝑃10 − 𝐹5 = 𝑃9 − 𝐹4 = 𝑃8 − 𝐹2 = 𝑃7 − 𝐹0;

5 = 𝑃9 − 𝐹3 = 𝑃8 − 𝐹0;

6 = 𝑃25 − 𝐹15 = 𝑃10 − 𝐹4 = 𝑃9 − 𝐹2;
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7 = 𝑃20 − 𝐹12 = 𝑃14 − 𝐹8 = 𝑃11 − 𝐹5 = 𝑃10 − 𝐹3 = 𝑃9 − 𝐹0;

8 = 𝑃13 − 𝐹7 = 𝑃12 − 𝐹6 = 𝑃10 − 𝐹2;

9 = 𝑃11 − 𝐹4 = 𝑃10 − 𝐹0;

10 = 𝑃17 − 𝐹10 = 𝑃11 − 𝐹3;

11 = 𝑃12 − 𝐹5 = 𝑃11 − 𝐹2;

13 = 𝑃13 − 𝐹6 = 𝑃12 − 𝐹4;

15 = 𝑃16 − 𝐹9 = 𝑃14 − 𝐹7 = 𝑃12 − 𝐹2;

16 = 𝑃15 − 𝐹8 = 𝑃13 − 𝐹5 = 𝑃12 − 𝐹0;

20 = 𝑃14 − 𝐹6 = 𝑃13 − 𝐹2;

25 = 𝑃19 − 𝐹11 = 𝑃14 − 𝐹4;

28 = 𝑃16 − 𝐹8 = 𝑃14 − 𝐹0;

31 = 𝑃18 − 𝐹10 = 𝑃17 − 𝐹9;

32 = 𝑃22 − 𝐹13 = 𝑃15 − 𝐹5;

36 = 𝑃16 − 𝐹7 = 𝑃15 − 𝐹2;

44 = 𝑃17 − 𝐹8 = 𝑃16 − 𝐹5;

52 = 𝑃18 − 𝐹9 = 𝑃17 − 𝐹7;

62 = 𝑃20 − 𝐹11 = 𝑃17 − 𝐹4;

65 = 𝑃18 − 𝐹8 = 𝑃17 − 𝐹0;

111 = 𝑃21 − 𝐹11 = 𝑃19 − 𝐹4;

262 = 𝑃23 − 𝐹11 = 𝑃22 − 𝐹4 .

In [19], Stewart notes that 3, 5 and 21 are both Fibonacci and Padovan num-
bers and asks whether there are any others. This problem was solved by De Weger
in [21], where he proves that all integers which are both Fibonacci and Padovan
numbers are 0, 1, 2, 3, 5, 21. Actually, he proves that the distance between Fi-
bonacci and Padovan numbers growths exponentially. We remark that as a partic-
ular case of our result, we also have a solution of Stewart problem.

2. Tools

In this section, we gather the tools we need to prove Theorem 1.1. Let 𝛼 be an
algebraic number of degree 𝑑, let 𝑎 > 0 be the leading coefficient of its minimal
polynomial over Z and let 𝛼(1), . . . , 𝛼(𝑑) denote its conjugates. The logarithmic
height of 𝛼 is defined as

ℎ(𝛼) =
1

𝑑

(︃
log 𝑎 +

𝑑∑︁

𝑖=1

log max
{︁
|𝛼(𝑖)|, 1

}︁)︃
.

This height satisfies the following basic properties. For 𝛼, 𝛽 algebraic numbers
and 𝑚 ∈ Z we have
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∙ ℎ(𝛼 + 𝛽) 6 ℎ(𝛼) + ℎ(𝛽) + log(2),

∙ ℎ(𝛼𝛽) 6 ℎ(𝛼) + ℎ(𝛽),

∙ ℎ(𝛼𝑚) = |𝑚|ℎ(𝛼).

Now, let L be a real number field of degree 𝑑L, 𝛼1, . . . , 𝛼ℓ positive elements of
L and 𝑏1, . . . , 𝑏ℓ ∈ Z ∖ {0}. Let 𝐵 > max{|𝑏1|, . . . , |𝑏ℓ|} and

Λ = 𝛼𝑏1
1 · · ·𝛼𝑏ℓ

ℓ − 1.

Let 𝐴1, . . . , 𝐴ℓ be real numbers with

𝐴𝑖 > max{𝑑L ℎ(𝛼𝑖), | log𝛼𝑖|, 0.16}, 𝑖 = 1, 2, . . . , ℓ.

The first tool we need is the following result due to Matveev in [14] (see also
Theorem 9.4 in [4]).

Theorem 2.1. Assume that Λ ̸= 0. Then

log |Λ| > −1.4 · 30ℓ+3 · ℓ4.5 · 𝑑2L · (1 + log 𝑑L) · (1 + log𝐵)𝐴1 · · ·𝐴ℓ.

In this note we always use ℓ = 3. Further, L = Q(𝛾, 𝛼) has degree 𝑑L = 6,
where 𝛾 and 𝛼 are defined at the beginning of Section 3. Thus, once and for all we
fix the constant

𝐶 := 1.43908 × 1013 > 1.4 · 303+3 · 34.5 · 62 · (1 + log 6)

The second one, is a version of the reduction method of Baker-Davenport based
on Lemma in [1]. We shall use the one given by Bravo, Gómez and Luca in [2] (See
also Dujella and Pethő [9]). For a real number 𝑥, we write ‖𝑥‖ for the distance
from 𝑥 to the nearest integer.

Lemma 2.2. Let 𝑀 be a positive integer. Let 𝜏, 𝜇,𝐴 > 0, 𝐵 > 1 be given real
numbers. Assume that 𝑝/𝑞 is a convergent of 𝜏 such that 𝑞 > 6𝑀 and that 𝜀 :=
‖𝑞 𝜇‖ −𝑀‖𝑞 𝜏‖ > 0. Then there is no solution to the inequality

0 < |𝑛𝜏 −𝑚 + 𝜇| < 𝐴

𝐵𝑤

in positive integers 𝑛,𝑚 and 𝑤 satisfying

𝑛 6 𝑀 and 𝑤 > log(𝐴𝑞/𝜀)

log𝐵
.

Finally, the following result will be very useful. This is Lemma 7 in [17].

Lemma 2.3. If 𝑚 > 1, 𝑇 > (4𝑚2)𝑚 and 𝑇 > 𝑥/(log 𝑥)𝑚. Then

𝑥 < 2𝑚𝑇 (log 𝑇 )𝑚.
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3. Proof of Theorem 1.1

We start with some basic properties of our sequences. For a complex number 𝑧 we
write 𝑧 for its complex conjugate. Let 𝜔 ̸= 1 be a cubic root of 1. Put

𝛾 :=
3

√︃
9 +

√
69

18
+

3

√︃
9 −

√
69

18
, 𝛿 := 𝜔

3

√︃
9 +

√
69

18
+ 𝜔

3

√︃
9 −

√
69

18
,

and

𝛼 :=
1 +

√
5

2
, 𝛽 :=

1 −
√

5

2
.

It is clear that 𝛾, 𝛿, 𝛿 are the roots of the Q-irreducible polynomial 𝑋3 −𝑋 − 1. It
can be proved, by induction for example, that the Binet formulas

𝐹𝑛 =
𝛼𝑛 − 𝛽𝑛

√
5

and 𝑃𝑛 = 𝑐1𝛾
𝑛 + 𝑐2𝛿

𝑛 + 𝑐3𝛿
𝑛

hold for all 𝑛 > 0, (3.1)

where
𝑐1 =

𝛾(𝛾 + 1)

2𝛾 + 3
, 𝑐2 =

𝛿(𝛿 + 1)

2𝛿 + 3
, 𝑐3 = 𝑐2.

The first formula in (3.1) is well known. The second one follows from the general
theorem on linear recurrence sequences since the above polynomial is the charac-
teristic polynomial of the Padovan sequence. Further, the inequalities

𝛼𝑛−2 6 𝐹𝑛 6 𝛼𝑛−1, 𝛾𝑛−3 6 𝑃𝑛 6 𝛾𝑛−1 (3.2)

also hold for all 𝑛 > 1. These can be proved by induction. We note that

𝛾 = 1.32471 . . . , |𝛿| = 0.86883 . . . , 𝑐1 = 0.54511 . . . , |𝑐2| = 0.28241 . . . ,

and
𝛼 = 1.61803 . . . , |𝛽| = 0.61803 . . .

Now we start with the study of our equation (1.3) in non-negative integers
(𝑛,𝑚, 𝑛1,𝑚1) with (𝑛,𝑚) ̸= (𝑛1,𝑚1) where, as we have said, 𝑛, 𝑛1 ̸= 1, 2, 4,
𝑚,𝑚1 ̸= 1. We note, if 𝑚 = 𝑚1 then 𝑃𝑛 = 𝑃𝑛1 which implies 𝑛 = 𝑛1, a con-
tradiction. Thus, we assume that 𝑚 > 𝑚1. Rewriting equation (1.3) as

𝑃𝑛 − 𝑃𝑛1 = 𝐹𝑚 − 𝐹𝑚1 (3.3)

we observe the right-hand is positive. So, the left-hand side is also positive and
therefore, 𝑛 > 𝑛1. Now, we compare both sides of (3.3) using (3.2). We have

𝛾𝑛−8 6 𝑃𝑛 − 𝑃𝑛1
= 𝐹𝑚 − 𝐹𝑚1

6 𝐹𝑚 6 𝛼𝑚−1.

Indeed, the left-hand side inequality is clear if 𝑛1 = 0. If 𝑛1 = 3, 𝑛 > 5. For 𝑛 = 5
it is also clear and for 𝑛 > 6 we have 𝑃𝑛−𝑃𝑛1 > 𝑃𝑛−𝑃𝑛−1 = 𝑃𝑛−5 > 𝛾𝑛−8. Thus,
𝛾𝑛−8 6 𝛼𝑚−1. In a similar way,

𝛾𝑛−1 > 𝑃𝑛 − 𝑃𝑛1
= 𝐹𝑚 − 𝐹𝑚1

> 𝛼𝑚−4.
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where the inequality at the right-hand side is clear for both 𝑚1 = 0 and 𝑚1 ̸= 0.
Thus,

(𝑛− 8)
log 𝛾

log𝛼
6 𝑚− 1 and (𝑛− 1)

log 𝛾

log𝛼
> 𝑚− 4. (3.4)

Since log 𝛾/ log𝛼 = 0.584357 . . . we have that if 𝑛 6 540 then 𝑚 6 318. A brute
force search with Mathematica in the range 0 6 𝑛1 < 𝑛 6 540, 0 6 𝑚1 < 𝑚 6 318,
with our conventions, we obtained all solutions listed in Theorem 1.1.

From now on, we assume that 𝑛 > 540. Thus, from (3.4), we have that 𝑚 > 311
and also that 𝑛 > 𝑚. From Binet’s formula (3.1), we rewrite our equation as

⃒⃒
⃒⃒𝑐1𝛾𝑛 − 𝛼𝑚

√
5

⃒⃒
⃒⃒ 6 2|𝑐2||𝛿|𝑛 +

1√
5

+ 𝛾𝑛1−1 + 𝛼𝑚1−1 < max{𝛾𝑛1+6, 𝛼𝑚1+4}.

Dividing through by 𝛼𝑚/
√

5 we get
⃒⃒
⃒
√

5𝑐1𝛾
𝑛𝛼−𝑚 − 1

⃒⃒
⃒ < max{𝛾𝑛1−𝑛+16, 𝛼𝑚1−𝑚+6}, (3.5)

where we have used 𝛾𝑛−8 6 𝛼𝑚−1,
√

5 < 𝛼𝛾2 and
√

5 < 𝛼2. Let Λ be the expression
inside the absolute value in the left-hand side of (3.5). Observe that Λ ̸= 0. To see
this, we consider the Q-automorphism 𝜎 of the Galois extension K := Q(𝛼, 𝛾, 𝛿)
over Q defined by 𝜎(𝛾) := 𝛿, 𝜎(𝛿) := 𝛾 and 𝜎(𝛼) := 𝛼. We note that 𝜎(𝛿) = 𝛿 and
𝜎(𝛽) = 𝛽. If Λ = 0 then 𝜎(Λ) = 0 and we get

𝛼𝑚

√
5

= 𝜎(𝑐1𝛾
𝑛) = 𝑐2𝛿

𝑛.

Thus,
𝛼𝑚

√
5

= |𝑐2||𝛿|𝑛 < 1,

which is absurd since 𝑚 > 311. So, Λ ̸= 0. We apply Matveev’s inequality to Λ by
taking

𝛼1 =
√

5𝑐1, 𝛼2 = 𝛾, 𝛼3 = 𝛼, 𝑏1 = 1, 𝑏2 = 𝑛, 𝑏3 = −𝑚.

Thus, 𝐵 = 𝑛. Further, ℎ(𝛼2) = log 𝛾/3, ℎ(𝛼3) = log𝛼/2. For 𝛼1 we use the
properties of the height to conclude

ℎ(𝛼1) 6 log 𝛾 + 7 log 2.

So we take 𝐴1 = 30.8, 𝐴2 = 0.57, 𝐴3 = 1.45. From Matveev’s inequality we obtain

log |Λ| > −𝐶(1 + log 𝑛) · 30.8 · 0.57 · 1.45 > −3.66336 × 1014(1 + log 𝑛),

which, compared with (3.5) we obtain

min{(𝑛− 𝑛1) log 𝛾, (𝑚−𝑚1) log𝛼} 6 3.66337 × 1014(1 + log 𝑛).

Now we study each one of these two possibilities.
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Case 1. min{(𝑛− 𝑛1) log 𝛾, (𝑚−𝑚1) log𝛼} = (𝑛− 𝑛1) log 𝛾.

In this case, using Binet’s formulas (3.1), we rewrite our equation as
⃒⃒
⃒⃒𝑐1(𝛾𝑛−𝑛1 − 1)𝛾𝑛1 − 𝛼𝑚

√
5

⃒⃒
⃒⃒ 6 4|𝑐2||𝛿|𝑛1 + 1 + 𝛼𝑚1−1 < 2 · 𝛼𝑚1+2 6 𝛼𝑚1+4.

Thus, ⃒⃒
⃒𝑐1

√
5(𝛾𝑛−𝑛1 − 1)𝛾𝑛1𝛼−𝑚 − 1

⃒⃒
⃒ < 1

𝛼𝑚−𝑚1−6
. (3.6)

Let Λ1 be the expression inside the absolute value in the left-hand side of (3.6). We
note that Λ1 ̸= 0. For if not, we apply the above 𝜎 to it and we have 𝜎(Λ1) = 0.
Thus,

𝛼𝑚

√
5

= |𝜎(𝑐1)(𝛿𝑛 − 𝛿𝑛1)| 6 2|𝑐2| < 1,

which is absurd since 𝑚 > 311. We apply Matveev’s inequality to Λ1 and for this
we take

𝛼1 =
√

5𝑐1(𝛾𝑛−𝑛1 − 1), 𝛼2 = 𝛾, 𝛼3 = 𝛼, 𝑏1 = 1, 𝑏2 = 𝑛1, 𝑏3 = −𝑚.

We have 𝐵 = 𝑛. The heights of 𝛼2 and 𝛼3 are already calculated. For 𝛼1 we use
the height properties and we get

ℎ(𝛼1) 6 3.66338 × 1014(1 + log 𝑛)

3
.

Thus, we can take 𝐴1 = 7.32676 × 1014(1 + log 𝑛) and 𝐴2, 𝐴3 as above. From
Matveev’s inequality we obtain

log |Λ1| > −𝐶(1 + log 𝑛) · (7.32676 × 1014(1 + log 𝑛)) · 0.57 · 1.45,

which compared with (3.6) gives

(𝑚−𝑚1) log𝛼 < 8.71446 × 1027(1 + log 𝑛)2.

Case 2. min{(𝑛− 𝑛1) log 𝛾, (𝑚−𝑚1) log𝛼} = (𝑚−𝑚1) log𝛼.

To this case, we rewrite our equation as
⃒⃒
⃒⃒𝑐1𝛾𝑛 − (𝛼𝑚−𝑚1 − 1)𝛼𝑚1

√
5

⃒⃒
⃒⃒ < 𝛾𝑛1−1 + 2|𝑐2| + 1 < 𝛾𝑛1+4.

Thus, ⃒⃒
⃒⃒1 −

(︂
𝛼𝑚−𝑚1 − 1√

5𝑐1

)︂
𝛾−𝑛𝛼𝑚1

⃒⃒
⃒⃒ < 1

𝛾𝑛−𝑛1−7
, (3.7)

where we have used 1 < 𝑐1𝛾
3 . Let Λ2 be the expression inside the absolute value

in the left-hand side of (3.7). We note that Λ2 ̸= 0. Indeed, if it is not the case
then by applying the above 𝜎 to it we obtain 𝜎(Λ2) = 0. Thus

1 <
𝛼𝑚−1(𝛼− 1)√

5
6 𝛼𝑚 − 𝛼𝑚1

√
5

=
√

5|𝑐2||𝛿|𝑛 <
√

5|𝑐2| < 1,
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where the left-hand side inequality holds since 𝑚 > 311, which is absurd. So,
Λ2 ̸= 0 and we apply Matveev’s inequality to it. To do this, we take

𝛼1 =
𝛼𝑚−𝑚1 − 1√

5𝑐1
, 𝛼2 = 𝛾, 𝛼3 = 𝛼, 𝑏1 = 1, 𝑏2 = −𝑛, 𝑏3 = 𝑚1.

Thus, 𝐵 = 𝑛. The heights of 𝛼2 and 𝛼3 are already calculated. From the properties
of the height for 𝛼1 we obtain

ℎ(𝛼1) 6 3.66338 × 1014(1 + log 𝑛)

2
.

Thus, we can take 𝐴1 = 1.09901 × 1015(1 + log 𝑛) and 𝐴2, 𝐴3 as above. Hence,
from Matveev’s inequality we obtain

log |Λ2| > −𝐶(1 + log 𝑛) ·
(︀
1.09901 × 1015(1 + log 𝑛)

)︀
· 0.57 · 1.45,

which compared with (3.7) we get

(𝑛− 𝑛1) log 𝛾 < 1.30717 × 1028(1 + log 𝑛)2.

So, from the conclusion of the two cases we have that

max{(𝑛− 𝑛1) log 𝛾, (𝑚−𝑚1) log 2} < 1.30717 × 1028(1 + log 𝑛)2.

Now we get a bound on 𝑛. To do this we rewrite our equation as
⃒⃒
⃒⃒𝑐1(𝛾𝑛−𝑛1 − 1)𝛾𝑛1 − (𝛼𝑚−𝑚1 − 1)𝛼𝑚1

√
5

⃒⃒
⃒⃒ < 4|𝑐2| + 1 < 2.2.

Thus,
⃒⃒
⃒⃒
(︂√

5𝑐1
𝛾𝑛−𝑛1 − 1

𝛼𝑚−𝑚1 − 1

)︂
𝛾𝑛1𝛼−𝑚1 − 1

⃒⃒
⃒⃒ < 2.2 ·

√
5

𝛼𝑚 − 𝛼𝑚1
6 6.6 ·

√
5

𝛼𝑚
<

1

𝛾𝑛−16
, (3.8)

where we have used 𝛾𝑛−8 < 𝛼𝑚−1 and 6.6 ·
√

5 < 𝛼𝛾8. Let Λ3 be the expression
inside the absolute value in the left-hand side of (3.8). As above, if Λ3 = 0 we
apply the above 𝜎 and we obtain 𝜎(Λ3) = 0. Then

1 <
𝛼𝑚−1(𝛼− 1)√

5
6 𝛼𝑚 − 𝛼𝑚1

√
5

= |𝑐2(𝛿𝑛 − 𝛿𝑛1)| 6 2|𝑐2| <
2

3
,

and as above, we get a contradiction. Thus, Λ3 ̸= 0 and we apply Matveev’s
inequality to it. To do this, we take

𝛼1 =
√

5𝑐1
𝛾𝑛−𝑛1 − 1

𝛼𝑚−𝑚1 − 1
, 𝛼2 = 𝛾, 𝛼3 = 𝛼, 𝑏1 = 1, 𝑏2 = 𝑛1, 𝑏3 = −𝑚1.
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Hence, 𝐵 = 𝑛. The height of 𝛼2 and 𝛼3 have already been calculated. For 𝛼1 we
use the properties of the height to conclude that

ℎ(𝛼1) 6 log 𝛾 + (𝑛− 𝑛1)
log 𝛾

3
+ (𝑚−𝑚1)

log𝛼

2
+ 9 log 2

<
6.53586 × 1028(1 + log 𝑛)2

6
.

Thus, we can take 𝐴1 = 6.53586 × 1028(1 + log 𝑛)2 and 𝐴2, 𝐴3 as above. From
Matveev’s inequality we get

log |Λ3| > −𝐶 ·
(︀
(1 + log 𝑛) · 6.53586 × 1028(1 + log 𝑛)2

)︀
· 0.57 · 1.45,

which compared with (3.8) yields 𝑛 < 2.2116×1043(log 𝑛)3. Thus, from Lemma 2.3
we obtain

𝑛 < 1.75894 × 1050. (3.9)

Now we reduce this upper bound on 𝑛. To do this, let Γ be defined as

Γ = 𝑛 log 𝛾 −𝑚 log𝛼 + log
(︁√

5 𝑐1

)︁
,

and we go to (3.5). Assume that min{𝑛 − 𝑛1,𝑚 − 𝑚1} > 20. Observe that
𝑒Γ − 1 = Λ ̸= 0. Therefore Γ ̸= 0. If Γ > 0, then

0 < Γ < 𝑒Γ − 1 = |Λ| < max{𝛾𝑛1−𝑛+16, 𝛼𝑚1−𝑚+6}.

If Γ < 0, we then have 1 − 𝑒Γ = |𝑒Γ − 1| = |Λ| < 1/2. Thus, 𝑒|Γ| < 2 and we get

0 < |Γ| < 𝑒|Γ| − 1 = 𝑒|Γ||Λ| < 2 max{𝛾𝑛1−𝑛+16, 𝛼𝑚1−𝑚+6}.

So, in both cases we have

0 < |Γ| < 2 max{𝛾𝑛1−𝑛+16, 𝛼𝑚1−𝑚+6}.

Dividing through log𝛼 we get

0 < |𝑛𝜏 −𝑚 + 𝜇| < max

{︂
374

𝛾𝑛−𝑛1
,

75

𝛼𝑚−𝑚1

}︂
,

where

𝜏 :=
log 𝛾

log𝛼
, 𝜇 :=

log
(︀√

5 𝑐1
)︀

log𝛼
.

We apply Lemma 2.2. To do this we take 𝑀 := 1.75894 × 1050 which is the upper
bound on 𝑛 by (3.9). With the help of Mathematica we found that the convergent

𝑝111
𝑞111

=
10550181102903844192795827490150215250922708545039517997

18054337085897707605265391296915471978898809258369491754
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of 𝜏 satisfies that 𝑞111 > 6𝑀 and that 𝜀 := ‖𝑞111𝜇‖ −𝑀‖𝑞111𝜏‖ = 0.450294 > 0.
Thus, by Lemma 2.2 with 𝐴 := 374, 𝐵 := 𝛾 or 𝐴 := 75, 𝐵 := 𝛼, we get that either

𝑛− 𝑛1 6 476 or 𝑚−𝑚1 6 275.

Now we study each one of these two cases. We first assume that 𝑛− 𝑛1 6 476
and 𝑚−𝑚1 > 20. In this case, we consider

Γ1 = 𝑛1 log 𝛾 −𝑚 log𝛼 + log(
√

5𝑐1(𝛾𝑛−𝑛1 − 1))

and we go to (3.6). We see that 𝑒Γ1 −1 = Λ1 ̸= 0. Thus, Γ1 ̸= 0 and, with a similar
argument as the previous one we obtain

0 < |Γ1| <
2𝛼6

𝛼𝑚−𝑚1
.

Dividing through log𝛼 we get

0 < |𝑛1𝜏 −𝑚 + 𝜇| < 75

𝛼𝑚−𝑚1
,

where 𝜏 is the same one as above and

𝜇 :=
log(

√
5𝑐1(𝛾𝑛−𝑛1 − 1))

log𝛼
.

We note that 𝑛1 > 0, since otherwise we would have 𝑛 6 476 which contradicts
𝑛 > 540. Thus, we can apply Lemma 2.2. Consider

𝜇𝑘 :=
log(

√
5𝑐1(𝛾𝑘 − 1))

log𝛼
, 𝑘 = 1, 2, . . . , 476.

With the help of Mathematica we found that the denominator of the 111-th con-
vergent above of 𝜏 is such that 𝑞111 > 6𝑀 and 𝜀𝑘 > 0.00129842 > 0 for all
𝑘 = 1, 2, . . . , 476. Thus, by Lemma 2.2 with 𝐴 := 75, 𝐵 := 𝛼 we obtain that
the maximum value of log(𝑞111 · 75/𝜀𝑘)/ log𝛼, 𝑘 = 1, 2, . . . , 476, is less than 287.
Therefore 𝑚−𝑚1 6 287.

In a similar way we study the other case. Assume that 𝑚 − 𝑚1 6 275 and
𝑛− 𝑛1 > 20. In this case we consider

Γ2 = 𝑛 log 𝛾 −𝑚1 log𝛼 + log

(︃ √
5𝑐1

𝛼𝑚−𝑚1 − 1

)︃

and we go to (3.7). Observe that 1 − 𝑒−Γ2 = Λ2 ̸= 0. Hence, Γ2 ̸= 0 and, with an
argument as above we conclude that

0 < |Γ2| <
2𝛾7

𝛾𝑛−𝑛1
,
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Dividing through by log𝛼 we get

0 < |𝑛𝜏 −𝑚1 + 𝜇| < 30

𝛾𝑛−𝑛1
.

where 𝜏 is as above and

𝜇 :=
log
(︀√

5𝑐1/(𝛼𝑚−𝑚1 − 1)
)︀

log𝛼
.

We note that 𝑚1 > 0. Indeed, for if not, we get 𝑚 6 275 which contradicts
𝑚 > 311. Thus, we can apply Lemma 2.2 again. Consider

𝜇ℓ :=
log
(︀√

5𝑐1/(𝛼ℓ − 1)
)︀

log𝛼
, ℓ = 1, . . . , 275.

Again, with Mathematica we quickly found that the same 111-th convergent
of 𝜏 satisfies 𝑞111 > 6𝑀 and 𝜀ℓ > 0.000693865 > 0 for all ℓ = 1, . . . , 257. Thus,
from Lemma 2.2 with 𝐴 := 30, 𝐵 := 𝛾 we obtain that the maximum value of
log(𝑞111 · 30/𝜖ℓ)/ log 𝛾, ℓ = 1, . . . , 257 is 6 490. Hence, 𝑛− 𝑛1 6 490.

Summarizing what we have done, we first got that either 𝑛 − 𝑛1 6 476 or
𝑚 − 𝑚1 6 257. Assuming the first one we obtained that 𝑚 − 𝑚1 6 287, and
assuming the second one we obtained 𝑛 − 𝑛1 6 490. So, altogether we have that
𝑛− 𝑛1 6 490, 𝑚−𝑚1 6 287. It remains to study this case.

Consider

Γ3 = 𝑛1 log 𝛾 −𝑚1 log𝛼 + log

(︂√
5𝑐1

𝛾𝑛−𝑛1 − 1

𝛼𝑚−𝑚1 − 1

)︂
,

and we go to (3.8). Note that 𝑒Γ3 − 1 = Λ3 ̸= 0. Thus, Γ3 ̸= 0 and since 𝑛 > 540
with an argument as before we get

0 < |Γ3| <
2𝛾16

𝛾𝑛
.

Dividing through by log𝛼 we obtain

𝑜 < |𝑛1𝜏 −𝑚1 − 𝜇| < 374

𝛾𝑛
,

where 𝜏 is as above and

𝜇 :=
log
(︀√

5𝑐1 (𝛾𝑛−𝑛1 − 1/𝛼𝑚−𝑚1 − 1)
)︀

log𝛼
.

As above we note that 𝑛1 and 𝑚1 are positives. We apply Lemma 2.2 again.
Consider

𝜇𝑘,𝑙 :=
log
(︀√

5𝑐1
(︀
𝛾𝑘 − 1/𝛼ℓ − 1

)︀)︀

log𝛼
, 𝑘 = 1, . . . , 490 ℓ = 1, . . . , 287.
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With Mathematica we find that the same 111-th convergent above of 𝜏 works
again. That is, 𝑞111 > 6𝑀 and 𝜀𝑘,ℓ ≥ 5.28933−8 > 0 for all 𝑘 = 1, . . . , 490 and
ℓ = 1, . . . , 287. Thus, by Lemma 2.2 with 𝐴 := 374 and 𝐵 := 𝛾 we obtain that
the maximum value of log(𝑞111374/𝜀𝑘,ℓ)/ log 𝛾, 𝑘 = 1, . . . , 490 and ℓ = 1, . . . , 287,
is 6 533. Thus, 𝑛 6 533 which contradicts our assumption on 𝑛. This completes
the proof of Theorem 1.1.
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