Annales Mathematicae et Informaticae 50 (2019) pp. 131-144 DOI: 10.33039/ami.2018.12.002 http://ami.uni-eszterhazy.hu

On the X-coordinates of Pell equations which are rep-digits, II

Florian Luca^{*a*}, Sossa Victorin Togan^{*b*}, Alain Togbé^{*c*}

^aSchool of Mathematics, University of the Witwatersrand, South Africa and Department of Mathematics, Faculty of Sciences, University of Ostrava, Czech Republic florian.luca@wits.ac.za

^bInstitut de Mathématiques et de Sciences Physiques, Porto-Novo, Bénin tofils74@yahoo.fr

^cDepartment of Mathematics, Statistics and Computer Science Purdue University Northwest,Westville,USA atogbe@pnw.edu

> Submitted: June 27, 2018 Accepted: December 12, 2018 Published online: February 11, 2019

Abstract

For a positive integer d which is not a square, we show that there is at most one value of the positive integer X participating in the Pell equation $X^2 - dY^2 = \pm 4$ which is a rep-digit, that is all its base 10 digits are equal, except for d = 2, 5, 13.

Keywords: Pell equation, Rep-digit, Linear forms in complex logarithms. MSC: 11A25 11B39, 11J86

1. Introduction

Let d be a positive integer which is not a perfect square. It is well-known that the Pell equation

$$X^2 - dY^2 = \pm 4 \tag{1.1}$$

has infinitely many positive integer solutions (X, Y). Furthermore, putting (X_1, Y_1) for the smallest such solution (solution with minimal value for X), all the positive

integer solutions are of the form (X_n, Y_n) for some positive integer n where

$$\frac{X_n + \sqrt{d}Y_n}{2} = \left(\frac{X_1 + \sqrt{d}Y_1}{2}\right)^n.$$

There are many papers in the literature which solve Diophantine equations involving members of the sequences $\{X_n\}_{n\geq 1}$ or $\{Y_n\}_{n\geq 1}$ being squares, or perfect powers of larger exponents of some other integers, etc. (see, for example, [4, 5]).

Let $g \ge 2$ be an integer. A natural number N is called a *base g rep-digit* if all of its base g-digits are equal; that is, if

$$N = a\left(rac{g^m-1}{g-1}
ight), \quad ext{for some} \quad m \ge 1 ext{ and } a \in \{1, 2, \dots, g-1\}.$$

When g = 10, we omit the base and simply say that N is a rep-digit. Diophantine equations involving rep-digits were also considered in several papers which found all rep-digits which are perfect powers, or Fibonacci numbers, or generalized Fibonacci numbers, and so on (see [1–3, 7, 9, 11–15, 17] for a sample of such results). In this paper, we study when can X_n be a rep-digit. This reduces to the Diophantine equation

$$X_n = a\left(\frac{10^m - 1}{9}\right), \quad m \ge 1 \text{ and } a \in \{1, \dots, 9\}.$$
 (1.2)

Of course, for every positive integer X, there is a unique square-free integer $d \geq 2$ such that

$$X^2 - dY^2 = -4.$$

Namely d is the product of all prime factors of X^2+4 which appear at odd exponents in its factorization. In particular, taking $X = a(10^m - 1)/9$, we get that any repdigit is the X-coordinate of the Pell equation (1.1) corresponding to some specific square-free integer d. If X > 2, we can instead look at $X^2 - 4$ and write it as dY^2 for some positive integers d and Y with d squarefree, and then

$$X^2 - dY^2 = 4.$$

In particular, we can take $X = a(10^m - 1)/9$ with $a \in \{1, \ldots, 9\}$ and $m \ge 1$, where we ask in addition that $a \ge 3$ when m = 1. Here, we study the square-free integers d such that the sequence $\{X_n\}_{n\ge 1}$ contains at least two rep-digits. Our result is the following.

Theorem 1.1. Let $d \geq 2$ be square-free. The Diophantine equation

$$X_n = a\left(\frac{10^m - 1}{9}\right), \quad m \ge 1 \text{ and } a \in \{1, \dots, 9\}$$
(1.3)

has at most one positive integer solution n except when d = 2, 5, 13 for which we have

 $2^{2} - 2 \cdot 2^{2} = -4, \quad 6^{2} - 2 \cdot 4^{2} = 4,$ $1^{2} - 5 \cdot 1^{2} = -4, \quad 3^{2} - 5 \cdot 1^{2} = 4, \quad 4^{2} - 5 \cdot 2^{2} = -4, \quad 7^{2} - 5 \cdot 3^{2} = 4, \quad 11^{2} - 5 \cdot 5^{2} = -4,$ and $2^{2} - 4^{2} - 5 \cdot 2^{2} = -4, \quad 7^{2} - 5 \cdot 3^{2} = 4, \quad 11^{2} - 5 \cdot 5^{2} = -4,$

$$3^2 - 13 \cdot 1^2 = -4, \quad 11^2 - 13 \cdot 3^2 = 4.$$

2. Linear forms in logarithms

We need some results from the theory of lower bounds for nonzero linear forms in logarithms of algebraic numbers. We start by recalling Theorem 9.4 of [4], which is a modified version of a result of Matveev [16]. Let \mathbb{L} be an algebraic number field of degree $d_{\mathbb{L}}$. Let $\eta_1, \eta_2, \ldots, \eta_l \in \mathbb{L}$ not 0 or 1 and d_1, \ldots, d_l be nonzero integers. We put

$$D = \max\{|d_1|, \ldots, |d_l|, 3\}$$

and

$$\Gamma = \prod_{i=1}^{l} \eta_i^{d_i} - 1.$$

Let A_1, \ldots, A_l be positive integers such that

$$A_j \ge h'(\eta_j) := \max\{d_{\mathbb{L}}h(\eta_j), |\log \eta_j|, 0.16\}, \text{ for } j = 1, \dots l,$$

where for an algebraic number η of minimal polynomial

$$f(X) = a_0(X - \eta^{(1)}) \cdots (X - \eta^{(k)}) \in \mathbb{Z}[X]$$

over the integers with positive a_0 , we write $h(\eta)$ for its Weil height given by

$$h(\eta) = \frac{1}{k} \left(\log a_0 + \sum_{j=1}^k \max\{0, \log |\eta^{(j)}|\} \right).$$

The following consequence of Matveev's theorem is Theorem 9.4 in [4].

Theorem 2.1. If $\Gamma \neq 0$ and $\mathbb{L} \subseteq \mathbb{R}$, then

$$\log |\Gamma| > -1.4 \cdot 30^{l+3} l^{4.5} d_{\mathbb{L}}^2 (1 + \log d_{\mathbb{L}}) (1 + \log D) A_1 A_2 \cdots A_l.$$

When l = 2 and η_1 , η_2 are positive and multiplicatively independent, we can do better. Namely, let in this case B_1 , B_2 be real numbers larger than 1 such that

$$\log B_i \ge \max\left\{h(\eta_i), \frac{|\log \eta_i|}{d_{\mathbb{L}}}, \frac{1}{d_{\mathbb{L}}}\right\} \quad i = 1, 2,$$

and put

$$b' := \frac{|d_1|}{d_{\mathbb{L}} \log B_2} + \frac{|d_2|}{d_{\mathbb{L}} \log B_1}$$

Furthermore, let

$$\Lambda = d_1 \log \eta_1 + d_2 \log \eta_2.$$

Note that $\Lambda \neq 0$ when η_1 and η_2 are multiplicatively independent.

Theorem 2.2. With the above notations, assuming that \mathbb{L} is real, η_1 , η_2 are positive and multiplicatively independent, then

$$\log |\Lambda| > -24.34 d_{\mathbb{L}}^4 \left(\max \left\{ \log b' + 0.14, \frac{21}{d_{\mathbb{L}}}, \frac{1}{2} \right\} \right)^2 \log B_1 \log B_2.$$

Note that $e^{\Lambda} - 1 = \Gamma$, so Γ is close to zero if and only if Λ is close to zero, which explains the relation between Theorems 2.1 and 2.2.

3. The Baker-Davenport lemma

Here, we recall the Baker-Davenport reduction method (see [8, Lemma 5a]), which turns out to be useful in order to reduce the bounds arising from applying Theorems 2.1 and 2.2.

Lemma 3.1. Let $\kappa \neq 0$ and μ be real numbers. Assume that M is a positive integer. Let P/Q be the convergent of the continued fraction expansion of κ such that Q > 6M and put

$$\xi = \|\mu Q\| - M \cdot \|\kappa Q\|,$$

where $\|\cdot\|$ denotes the distance from the nearest integer. If $\xi > 0$, then there is no solution to the inequality

$$0 < |m\kappa - n + \mu| < AB^{-k}$$

in positive integers m, n and k with

$$\frac{\log\left(AQ/\xi\right)}{\log B} \le k \quad and \quad m \le M.$$

4. Bounding the variables

We assume that (X_1, Y_1) is the minimal solution of the Pell equation (1.1). Set

$$X_1^2 - dY_1^2 =: \pm 4$$

$$x_n = \frac{X_n}{2}, \quad y_n = \frac{Y_n}{2} \quad \text{for all} \quad n \ge 1.$$

We have

$$x_n^2 - dy_n^2 =: \varepsilon_n, \quad \varepsilon_n \in \{\pm 1\}.$$

Put

$$\delta := x_1 + \sqrt{x_1^2 - \varepsilon_1} = x_1 + \sqrt{dy_1}, \quad \eta := x_1 - \sqrt{dy_1} = \varepsilon_1 \delta^{-1}, \quad \text{with} \quad \delta \ge (1 + \sqrt{5})/2.$$

Then, we get

$$x_n = \frac{1}{2}(\delta^n + \eta^n),$$

or, equivalently,

$$X_n = \delta^n + \eta^n.$$

We start with some general considerations concerning equation (1.2). From equation (1.2), we have

$$X_n = a\left(\frac{10^m - 1}{9}\right) > a(1 + 10 + \dots + 10^{m-1}) > 10^{m-1}.$$

We get

$$10^{m-1} \le X_n < 10^m. \tag{4.1}$$

Furthermore,

$$2\delta^n > \delta^n + \eta^n = X_n \ge \delta^n - \delta^{-n} \ge \frac{\delta^n}{2},$$

where the last inequality follows because $n \ge 1$ and $\delta \ge (1 + \sqrt{5})/2 > \sqrt{2}$. So,

$$\frac{\delta^n}{2} \le X_n < 2\delta^n \quad \text{holds for all} \quad n \ge 1.$$
(4.2)

Using now the equations (4.1) and (4.2), we have

$$10^{m-1} \le X_n < 2\delta^n$$
 and $\frac{\delta^n}{2} \le X_n \le 10^m$.

Hence, we obtain

$$nc_1 \log \delta - c_2 \le m \le nc_1 \log \delta + c_2 + 1, \quad c_1 := 1/\log 10, \quad c_2 := c_1 \log 2.$$
 (4.3)

From the left-hand side inequality of (4.3), we also deduce that

$$n\log\delta < m\log 10 + \log 2. \tag{4.4}$$

Since $\delta \ge (1 + \sqrt{5})/2$, we get that

$$n \le m \frac{\log 10}{\log((1+\sqrt{5})/2)} + \frac{\log 2}{\log((1+\sqrt{5})/2)} < 4.8m + 2$$

If $m \ge 2$, the last inequality above implies that n < 6m. If m = 1, then $X_n \le 9$, so $\delta^n \le 18$ by (4.2). Since $\delta \ge (1 + \sqrt{5})/2$, we get that $n \le 6$, so the inequality $n \le 6m$ holds also when m = 1. We record this as

$$n \le 6m. \tag{4.5}$$

Next, using (1.3), we get

$$\delta^n + \eta^n = a\left(\frac{10^m - 1}{9}\right).$$

Put b := a/9. We have

$$\delta^n b^{-1} 10^{-m} - 1 = -b^{-1} 10^{-m} \eta^n - 10^{-m}$$

Thus,

$$\begin{split} \left| \delta^n b^{-1} 10^{-m} - 1 \right| &\leq \frac{1}{b 10^m \delta^n} + \frac{1}{10^m} = \frac{1}{10^m} \left(1 + \frac{9}{a \delta^n} \right) \\ &< \frac{6}{10^m}, \end{split}$$

using that $a \ge 1$, $n \ge 1$ and $\delta \ge (1 + \sqrt{5})/2$. Thus,

$$\left|\delta^{n}b^{-1}10^{-m} - 1\right| < \frac{6}{10^{m}}.$$
(4.6)

We now assume that $m \ge 2$ and search for an upper bound on it. Since $m \ge 2$, it follows that the right-hand side in (4.6) above is < 1/2. Put

$$\Lambda := n \log \delta - \log b - m \log 10.$$

Since $|e^{\Lambda} - 1| < 1/2$, it follows that

$$|\Lambda| < 2|e^{\Lambda} - 1| < \frac{12}{10^m}.$$

Let us return to (4.6) and put

$$\Gamma := e^{\Lambda} - 1 = \delta^n b^{-1} 10^{-m} - 1.$$

Note that Γ is nonzero. Indeed, if it were zero, then $\delta^n = b10^m$. Hence, $\delta^n \in \mathbb{Q}$. Since δ is an algebraic integer and $n \geq 1$, it follows that $\delta^n \in \mathbb{Z}$. Since δ is a unit, we get that $\delta^n = 1$, so n = 0, which is a contradiction. Thus, $\Gamma \neq 0$. We apply Matveev's theorem. If $a \neq 9$ (so, $b \neq 1$), we then take

$$l = 3, \ \eta_1 = \delta, \ \eta_2 = b, \ \eta_3 = 10, \ d_1 = n, \ d_2 = -1, \ d_3 = -m, \ D = \max\{n, m\}.$$

Clearly, $\mathbb{L} = \mathbb{Q}[\sqrt{d}]$ contains all the numbers η_1 , η_2 , η_3 and has degree $d_{\mathbb{L}} = 2$. We have

 $h(\eta_1) = (1/2) \log \delta$, $h(\eta_2) \le \log 9$ and $h(\eta_3) = \log 10$.

Thus, we can take

$$A_1 = \log \delta$$
, $A_2 = 2 \log 9$ and $A_3 = 2 \log 10$.

Now, Theorem 2.1 tells us that

 $\log |\Gamma| > -1.4 \times 30^6 \times 3^{4.5} \times 2^2 (1 + \log 2)(1 + \log D)(\log \delta)(2\log 9)(2\log 10).$

Comparing the above inequality with (4.6), we get

 $m\log 10 - \log 6 < 1.4 \times 30^6 \times 3^{4.5} \times 2^4 (1 + \log 2)(1 + \log D)(\log \delta)(\log 9)(\log 10).$

Thus,

$$m < 1.4 \times 30^6 \times 3^{4.5} \times 2^4 \times (\log 9)(1 + \log 2) \times (\log \delta) \cdot (1 + \log D)$$

or

$$m < 8.6 \cdot 10^{12} (1 + \log D) \log \delta$$

Since $D \leq 6m$ (see (4.5)), we get

$$m < 8.6 \cdot 10^{12} (1 + \log(6m)) \log \delta. \tag{4.7}$$

This was when $b \neq 1$. In case b = 1, we take l = 2 and apply the same inequality (except that now $\eta_2 := 1$ is no longer present) getting a better result. Finally, this was under the assumption that $m \geq 2$ but if m = 1 then inequality (4.7) also holds. Let us record what we have proved so far.

Lemma 4.1. Denoting by $\delta := x_1 + \sqrt{dy_1}$, all positive integer solutions (m, n) of equation (1.2) satisfy

$$m < 8.6 \cdot 10^{12} (1 + \log(6m)) \log \delta.$$

All this is for the equation $X_n = a(10^m - 1)/9$. Now we assume that

$$X_{n_1} = a_1 \left(\frac{10^{m_1} - 1}{9}\right)$$
 and $X_{n_2} = a_2 \left(\frac{10^{m_2} - 1}{9}\right)$.

where $a_1, a_2 \in \{1, \ldots, 9\}$.

To fix ideas, we assume that $n_1 < n_2$, so $m_1 \le m_2$. We put as before $b_i := a_i/9$ for i = 1, 2. From the above analysis, assuming that $m_1 \ge 2$, we have that

$$|n_i \log \delta - \log b_i - m_i \log 10| < \frac{12}{10^{m_i}}$$
 holds for $i \in \{1, 2\}.$ (4.8)

The argument proceeds in two steps according to whether $b_1b_2 < 1$ or $b_1b_2 = 1$.

Suppose now that $b_1b_2 < 1$.

We multiply the equation (4.8) for i = 1 with n_2 and the one for i = 2 with n_1 , subtract them and apply the absolute value inequality to get

$$\begin{aligned} |n_2 \log b_1 - n_1 \log b_2 + (n_2 m_1 - n_1 m_2) \log 10| \quad (4.9) \\ &= |n_1 (n_2 \log \delta - \log b_2 - m_2 \log 10) - n_2 (n_1 \log \delta - \log b_1 - m_1 \log 10)| \\ &\leq n_1 |n_2 \log \delta - \log b_1 - m_2 \log 10| + n_2 |n_1 \log \delta - \log b_1 - m_1 \log 10| \\ &\leq \frac{12n_1}{10^{m_2}} + \frac{12n_2}{10^{m_1}} \leq \frac{24n_2}{10^{m_1}}. \end{aligned}$$

If the right-hand side above is at least 1/2, we then get

$$10^{m_1} \le 48n_2 < 300m_2,$$

giving

$$m_1 < c_1 \log(300m_2).$$
 (4.10)

Assume now that the right-hand side in (4.9) is smaller than 1/2. Putting,

$$\Lambda_0 := n_2 \log b_1 - n_1 \log b_2 + (n_2 m_1 - n_1 m_2) \log 10,$$

we get $|\Lambda_0| < 1/2$. Putting

$$\Gamma_0 := b_1^{n_2} b_2^{-n_1} 10^{n_2 m_1 - n_1 m_2} - 1,$$

we get that

$$|\Gamma_0| = |e^{\Lambda_0} - 1| < 2|\Lambda_0| < \frac{48n_2}{10^{m_1}},\tag{4.11}$$

where the middle inequality above follows from the fact that $|\Lambda_0| < 1/2$. We apply Matveev's theorem to estimate a lower bound on Γ_0 . But first, let us see that it is nonzero. Assuming $\Gamma_0 = 0$, we get

$$b_1^{n_2} b_2^{-n_1} = 10^{n_2 m_1 - n_1 m_2}. aga{4.12}$$

Assume first that $n_2m_1 - n_1m_2 = 0$. Then $b_1^{n_2} = b_2^{n_1}$. Thus, b_1 and b_2 are multiplicatively independent and they belong to the set

$$\left\{\frac{1}{9}, \frac{2}{9}, \frac{1}{3}, \frac{4}{9}, \frac{5}{9}, \frac{2}{3}, \frac{7}{9}, \frac{8}{9}, 1\right\}.$$

They are not both 1 and n_1 and n_2 are both positive. So, the only possibilities are that $b_1 = b_2$, or

$$\{b_1, b_2\} = \left\{\frac{1}{9}, \frac{1}{3}\right\}, \left\{\frac{2}{3}, \frac{4}{9}\right\}.$$
(4.13)

If $b_1 = b_2$, then $b_1^{n_1} = b_2^{n_2}$ implies $n_1 = n_2$, which together with $n_2m_1 = n_1m_2$ leads to $m_1 = m_2$. Thus, $(n_1, m_1) = (n_2, m_2)$ and $a_1 = a_2$ (because $b_1 = b_2$), and this is not convenient for us. If $\{b_1, b_2\}$ is one of the two sets from (4.13), then one of b_1 , b_2 is the square of the other one. Thus, since $b_1^{n_1} = b_2^{n_2}$ and $n_2 > n_1$, we get $n_2 = 2n_1$. Since also $n_2m_1 = n_1m_2$, we have $m_2 = 2m_1$. Hence, also $b_2 = b_1^2$ and $b_1 \in \{1/3, 2/3\}$. So, we get the pair of equations

$$X_{n_1} = b_1 10^{m_1} - b_1$$
 and $X_{2n_1} = b_1^2 10^{2m_1} - b_1^2$

Since in fact

$$X_{2n} = \delta^{2n} + \eta^{2n} = (\delta^n + \eta^n)^2 - 2(\delta\eta)^n = X_n^2 \pm 2,$$

we get that

$$b_1^2 10^{2m_1} - b_1^2 = X_{2n_1} = X_{n_1}^2 \pm 2 = (b_1 10^{m_1} - b_1)^2 \pm 2 = b_1^2 10^{2m_1} - 2b_1^2 10^{m_1} + b_1^2 \pm 2,$$

which leads to

$$2b_1^2 10^{m_1} = 2b_1^2 \pm 2,$$

 \mathbf{SO}

$$10^{m_1} = 1 \pm b_1^{-2}.$$

The last equation above is impossible for $m_1 \ge 2$. For $m_1 = 1$ we get $10 = 1 \pm b_1^{-2}$, which gives $b_1 = 1/3$. Hence,

$$X_{n_1} = \frac{10-1}{3} = 3$$
, and $X_{2n_1} = \frac{10^2 - 1}{9} = 11$

Since $X_{2n_1} = X_{n_1}^2 \pm 2$, it follows that the sign is +, so $X_{n_1}^2 - dY_{n_1}^2 = -4$, giving $dY_{n_1}^2 = 13$, so d = 13, $Y_1 = 1$, $n_1 = 1$. These solutions are among the ones mentioned in the statement of the main theorem.

This deals with the case when $n_2m_1 - n_1m_2 = 0$. Assume next that $n_2m_1 - n_1m_2 \neq 0$. Then in the right-hand side of (4.12), both primes 2 and 5 are involved at a nonzero exponent. Thus, they should be also involved with nonzero exponents in the left-hand side of (4.12). Thus, one of b_1 , b_2 is 5/9 and the other is in $\{2/9, 4/9, 2/3, 8/9\}$. A minute of reflection shows that in all cases the exponents of 2 and 5 in the left-hand side of (4.12) have opposite signs, whereas in the right they have the same sign, and this is impossible.

Thus, $\Gamma_0 \neq 0$. Hence, we are entitled to apply Matveev's theorem in order to find a lower bound on Γ_0 . In case $b_1 \neq 1$ and $b_2 \neq 1$, we take

$$l = 3, \ \eta_1 = b_1, \ \eta_2 = b_2, \ \eta_3 = 10, \ d_1 = n_2, \ d_2 = -n_1, \ d_3 = n_2 m_1 - n_1 m_2.$$

Clearly, $\mathbb{L} = \mathbb{Q}$ contains all the numbers η_1 , η_2 , η_3 and has degree $d_{\mathbb{L}} = 1$. Further, $D = \max\{|d_1|, |d_2|, |d_3|\} \le n_2 m_2 \le 6m_2^2$. We have

$$h(\eta_1) \le \log 9$$
, $h(\eta_2) \le \log 9$ and $h(\eta_3) = \log 10$.

Thus, we can take

$$A_1 = \log 9, \quad A_2 = \log 9, \quad A_3 = \log 10.$$

Now, Theorem 2.1 tells us that

$$\log |\Gamma_0| > -1.4 \times 30^6 \times 3^{4.5} (1 + \log D) (\log 9)^2 (\log 10).$$

Combining this with estimate (4.11) and using the fact that $48n_2 < 300m_2$ (see inequality (4.5)) we get

$$m_1 \log 10 \le \log 300 + \log m_2 + 1.6 \times 10^{12} (1 + \log(6m_2^2)),$$

giving

$$m_1 < 7 \times 10^{11} (1 + \log(6m_2^2)).$$
 (4.14)

The right-hand side of inequality (4.14) is larger than the right-hand side of inequality (4.10). So, regardless whether $24n_2/10^{m_1}$ is at least 1/2 or smaller than 1/2, estimate (4.14) holds. From equation (4.4), we get

$$\log \delta < (m_1 + 1) \log 10 < 1.7 \times 10^{12} (1 + \log(6m_2^2)),$$

which together with Lemma 4.1 gives

$$m_2 < (8.6 \times 10^{12} (1 + \log(6m_2))) (1.7 \times 10^{12} (1 + \log(6m_2^2))),$$

 \mathbf{SO}

 $m_2 < 1.5 \times 10^{25} (1 + \log(6m_2))(1 + \log(6m_2^2)).$

This gives $m_2 < 1.5 \times 10^{29}$. This was if both b_1 and b_2 are different than 1. If one of them is 1, we simply apply Matveev's theorem with l = 2 getting an even better bound for m_2 .

Suppose now that $b_1 = b_2 = 1$.

We return to (4.11) getting that $8/9 \leq 24n_2/10^{m_1}$, which leads to (4.10), unless $n_1m_2 = n_2m_1$. In this last case, we get that $n_2/m_2 = n_1/m_1$. Thus, writing $n_1/m_1 = r/s$ in reduced terms, we get that $(n_1, m_1) = (\ell_1 r, \ell_1 s)$ and that $(n_2, m_2) = (\ell_2 r, \ell_2 s)$ for some positive integers $\ell_1 < \ell_2$. Hence, we have

$$X_{r\ell_1} = 10^{s\ell_1} - 1, \quad X_{r\ell_2} = 10^{s\ell_2} - 1.$$

The greatest common divisor of the right hand sides above is $10^s - 1 \ge 9$. The greatest common divisor of the left-hand sides above is X_r if $\ell_1 \ell_2$ is odd and 1 or 2 otherwise. Thus, $\ell_1 \ell_2$ must be odd and

$$X_r = 10^s - 1.$$

Consequently,

$$\delta^r - 10^s = -\eta^r - 1$$
 and $\delta^{\ell_2 r} - 10^{\ell_2 s} = -\eta^{\ell_2 r} - 1.$

From the two equations above we get

$$\delta^{(\ell_2-1)r} + \delta^{(\ell_2-2)} 10^s + \dots + 10^{(\ell_2-1)s} = \frac{-\eta^{\ell_2 r} - 1}{-\eta^r - 1}.$$

The last relation above is impossible since its left-hand side is > 10 and its right hand side is

$$\le \frac{2}{1 - \frac{2}{1 + \sqrt{5}}} < 10$$

a contradiction.

In conclusion, (4.10) holds, which is stronger than (4.14), and the above arguments imply that $m_2 < 1.5 \times 10^{29}$. Hence, we have the following result.

Lemma 4.2. The inequality

$$m_2 < 1.5 \times 10^{29}$$

holds.

Now one needs to apply LLL to the bound

$$|\Lambda_0| < \frac{24n_2}{10^{m_1}} < \frac{24 \times 6 \times 1.5 \times 10^{29}}{10^{m_1}} < \frac{1}{10^{m_1 - 32}}$$

to get a reasonably small bound on m_1 .

• First, we will consider the case $b_1 = b_2 := b$; i.e., $a_1 = a_2 := a$ or

$$\{b_1, b_2\} \in \left\{\frac{1}{9}, \frac{1}{3}\right\}, \left\{\frac{2}{3}, \frac{4}{9}\right\}.$$

In

$$\Lambda_0 := n_2 \log b_1 - n_1 \log b_2 + (n_2 m_1 - n_1 m_2) \log 10, \tag{4.15}$$

we set $X := n_1 - n_2$ or $X := 2n_2 - n_1$, and $Y := n_2m_1 - n_1m_2$ and divide both sides by $Y \log b$ (with $b = b_1 = b_2 \in \{1/9, 2/9, 3/9, 4/9, 5/9, 6/9, 7/9, 8/9\}$) to get

$$\left|\frac{\log 10}{\log b} - \frac{X}{Y}\right| < \frac{1}{Y(\log(1/b))10^{m_1 - 32}}.$$
(4.16)

We assume that m_1 is so large that the right-hand side in (4.16) is smaller than $1/(2Y^2)$. This certainly holds if

$$10^{m_1 - 32} > 2(\log(1/b))^{-1}Y.$$
(4.17)

Since $|Y| < 1.5 \times 10^{59}$, it follows that the last inequality (4.17) holds provided that $m_1 \ge 92$ in all cases, which we now assume. In this case, X/Y is a convergent of the continued fraction of $\eta := \log 10/\log b$ and $X < 1.5 \times 10^{59}$. Writing

$$\begin{split} a &= 1, \quad \eta := [-2, 1, 19, 1, 5, 1, 6, 2, 5, 15, 3, \dots, 7, 2, 121, 1, \dots, 2, 569, 1, 2, 27, 7, \dots] \\ a &= 2, \quad \eta := [-2, 2, 7, 1, 1, 2, 4, 2, 99, \dots] 1, 292, 1, 6, 1, 3, 3, 2, 2, 5, \dots, 1, 1, 1, 42, \dots] \\ a &= 3, \quad \eta := [-3, 1, 9, 2, 2, 1, 13, 1, 7, 18, \dots, 2, 10, 3, 1, 1, 1, 1, 1, 6, \dots, 1, 284, 2, \dots] \\ a &= 4, \quad \eta := [-3, 6, 4, 2, 1, 1, 1, 1, 45, 89, 1, 6, 1, 9, 1, 2, 625, \dots, 2, 2, 1, 1716, 1, 1, \dots] \\ a &= 5, \quad \eta := [-4, 12, 9, 1, 1, 1, 1, 1, 2, 1, \dots, 10, 1, 1, 12, 8860, 4, 13, 1, 1, 5, 3, 9, 1, \dots] \\ a &= 6, \quad \eta := [-6, 3, 8, 1, 3, 3, 22, 1, 1, 44, \dots, 1, 1, 38, 1, 5, 1, 857, 1, 3, 1, 3, 1, 2, 1, \dots] \\ a &= 7, \quad \eta := [-10, 1, 5, 6, 118, 2, 8, 1, 2, 1, \dots, 8, 23, 1, 30, 2, 2, 8, 1, 4, 2, 1, 1, 255, \dots] \\ a &= 8, \quad \eta := [-20, 2, 4, 1, 1, 3, 2, 7, 1, 2, 1, 9, 2, 6, \dots, 1, 2, 1332, 1, 12, 1, 5, 1, 1, 2, \dots] \end{split}$$

for the continued fraction of η and p_k/q_k for the *k*th convergent, we get that $X/Y = p_j/q_j$ for some $j \leq 122$ in all cases. Furthermore, putting $M := \max\{a_j : 0 \leq j \leq 122\}$, we get M = 8860 (for a = 5). From the known properties of the continued fractions, we then get that

$$\frac{1}{8862Y^2} = \frac{1}{(M+2)Y^2} \le \left|\eta - \frac{X}{Y}\right| < \frac{1}{Y(\log b)10^{m_1 - 32}},$$

giving

$$10^{m_1-32} < 8862(\log b)^{-1}Y < 8862(\log b)^{-1}(1.5 \times 10^{59}),$$

leading to $m_1 \leq 96$.

• We now consider the remaining cases. We transform the linear form (4.15) into one of the following forms:

$$\Lambda_1 = (m_1 n_2 - m_2 n_1 + \delta_1 n_1 + \delta_2 n_2) \log 2 + (\lambda_1 n_1 + \lambda_2 n_2) \log 3 + (m_1 n_2 - m_2 n_1 + \mu_1 n_1 + \mu_2 n_2) \log 5,$$

$$\Lambda_2 := (\lambda_1 n_1 + \lambda_2 n_2) \log 3 + (\nu_1 n_1 + \nu_2 n_2) \log 7 + (m_1 n_2 - m_2 n_1) \log 10,$$

$$\begin{split} \Lambda_3 = & (m_1 n_2 - m_2 n_1 + \delta_1 n_1 + \delta_2 n_2) \log 2 + (\lambda_1 n_1 + \lambda_2 n_2) \log 3 \\ & + (m_1 n_2 - m_2 n_1 + \mu_1 n_1 + \mu_2 n_2) \log 5 + (\nu_1 n_1 + \nu_2 n_2) \log 7, \end{split}$$

where $|\delta_i| \leq 3$, $|\lambda_i| \leq 2$, $|\mu_i| \leq 1$, $|\nu_i| \leq 1$, for i = 1, 2.

Now, we will estimate lower bounds for Λ_i , i = 1, 2, 3 via the LLL algorithm (see Proposition 2.3.20 in [6]). One knows that $\Lambda_i \neq 0$, i = 1, 2, 3 by what is done above. We set $X_1 = X_3 := 10^{60}$ as upper bounds for $|m_1n_2 - m_2n_1 + \delta_1n_1 + \delta_2n_2|$, $|m_1n_2 - m_2n_1 + \mu_1n_1 + \mu_2n_2|$ and $X_2 = X_4 := 10^{31}$ as upper bounds for $|\lambda_1n_1 + \lambda_2n_2|$, $|\nu_1n_1 + \nu_2n_2|$. We take $C := (3X_1)^3$ for Λ_1 , Λ_2 and $C := (4X_1)^4$ for Λ_3 . Moreover, we consider the lattice Ω spanned by

$$v_1 := (1, 0, \lfloor C \log 2 \rfloor), \ v_2 := (0, 1, \lfloor C \log 3 \rfloor), \ v_3 := (0, 0, \lfloor C \log 5 \rfloor),$$

for Λ_1

$$v_1 := (1, 0, \lfloor C \log 3 \rfloor), \ v_2 := (0, 1, \lfloor C \log 7 \rfloor), \ v_3 := (0, 0, \lfloor C \log 10 \rfloor),$$

for Λ_2

$$v_1 := (1, 0, 0, \lfloor C \log 2 \rfloor), \quad v_2 := (0, 1, 0, \lfloor C \log 3 \rfloor), v_3 := (0, 0, 1, \lfloor C \log 5 \rfloor), \quad v_4 := (0, 0, 0, \lfloor C \log 7 \rfloor),$$

for Λ_3 . Then, we compute Q, T, c_1, m according to Proposition 2.3.20 in [6] and we obtain:

$$5.5 \cdot 10^{-122} < |\Lambda_1| < \frac{1}{10^{m_1 - 32}} \quad \Rightarrow \quad m_1 \le 153;$$

$$3.2 \cdot 10^{-122} < |\Lambda_2| < \frac{1}{10^{m_1 - 32}} \quad \Rightarrow \quad m_1 \le 153;$$

$$8.1 \cdot 10^{-183} < |\Lambda_3| < \frac{1}{10^{m_1 - 32}} \quad \Rightarrow \quad m_1 \le 214.$$

Hence, we have the following numerical result.

Lemma 4.3. The estimate $m_1 \leq 214$ holds.

For $a_1 \in \{1, 2, \dots, 9\}$, $1 \le n_1 \le 1284$, $1 \le m_1 \le 214$, we solve the equations

$$x_{n_1} = P_{n_1}(x_1) = a_1\left(\frac{10^{m_1} - 1}{9}\right)$$

to see for which values of the triple (n_1, m_1) it has a solution $x_1 = X_1/2$ with positive integer X_1 , where

$$x_n = P_n(X/2) = \left(\frac{X + \sqrt{X^2 \pm 4}}{2}\right)^n + \left(\frac{X - \sqrt{X^2 \pm 4}}{2}\right)^n.$$

We used a program written in Maple to see that $n_1 = 1$ in all cases. Here, $P_n(X)$ is one of the two polynomials giving x_n in terms of x_1 for the equation $x^2 - dy^2 = \pm 4$.

From equation (4.8), for i = 2 we get

$$\left| n_2 \frac{\log \delta}{\log 10} - \frac{\log b_2}{\log 10} - m_2 \right| < \frac{12}{(\log 10)10^{m_2}},\tag{4.18}$$

where $\delta = x_1 + y_1\sqrt{d} = x_1 + \sqrt{x_1^2 \pm 4}$, $x_1 = a_1(10^{m_1} - 1)/9$, and $b_2 = a_2/9$ with $a_1 \neq a_2$. To apply Lemma 3.1 to inequality (4.18), we put

$$\kappa = \frac{\log \delta}{\log 10}, \quad \mu = \frac{\log b_2}{\log 10}, \quad A = \frac{12}{\log 10}, \quad B = 10, \text{ and } M = 1.5 \cdot 10^{29}$$

The program was developed in PARI/GP running with 200 digits, for $1 \leq m_1 \leq 214$. For the computations, if the first convergent such that q > 6M does not satisfy the condition $\eta > 0$, then we use the next convergent until we find the one that satisfies the conditions. In a few minutes, all the computations were done. In all cases, after the first run we obtained $m_2 \leq 35$. We set M = 35 and the second run of the reduction method yields $m_2 \leq 8$. In conclusion, we have

$$n_1 = 1, \quad 1 \le m_1 \le 8, \quad 1 \le m_2 \le 8, \quad 1 \le n_2 \le 48.$$

Now a verification by hand yields the final result.

Acknowledgements. F. L. was supported in part by grant CPRR160325161141 and an A-rated scientist award both from the NRF of South Africa and by grant no. 17-02804S of the Czech Granting Agency. This paper was finalized during a visit of A.T. at the School of Mathematics of Wits University in August 2017. This author thanks this institution for its hospitality and the CoEMaSS at Wits for support.

References

- S. D. ALVARADO, F. LUCA: Fibonacci numbers which are sums of two repdigits, in: Proceedings of the XIVth International Conference on Fibonacci numbers and their applications, vol. 20, Sociedad Matematica Mexicana, Aportaciones Matemáticas, Investigación, 2011, pp. 97–108.
- J. J. BRAVO, F. LUCA: On a conjecture about repdigits in k-generalized Fibonacci sequences, Publ. Math. Debrecen 82 (2013), pp. 623–639, DOI: 10.5486/pmd.2013.5390.
- [3] Y. BUGEAUD, M. MIGNOTTE: On integers with identical digits, Mathematika 46 (1999), pp. 411–417, DOI: 10.1112/s0025579300007865.
- [4] Y. BUGEAUD, M. MIGNOTTE, S. SIKSEK: Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect powers, Annals of Mathematics 163 (2006), pp. 969–1018, DOI: 10.4007/annals.2006.163.969.
- [5] Y. BUGEAUD, P. MIHĂILESCU: On the Nagell-Ljunggren equation (xⁿ 1)/(x 1) = y^q, Math. Scand. 101 (2007), pp. 177–183, DOI: 10.7146/math.scand.a-15038.
- [6] H. COHEN: Number Theory, Vol. I: Tools and Diophantine Equations, New York: Springer, 2007, DOI: 10.5860/choice.45-2655.
- [7] A. DOSSAVI-YOVO, F. LUCA, A. TOGBÉ: On the x-coordinates of Pell equations which are rep-digits, Publ. Math. Debrecen 88 (2016), pp. 381–391, DOI: 10.5486/pmd.2016.7378.
- [8] A. DUJELLA, A. PETHŐ: A generalization of a theorem of Baker and Davenport, Quart. J. Math. 49.195 (1998), pp. 291-306, DOI: 10.1093/qjmath/49.195.291.
- B. FAYE, F. LUCA: On x-coordinates of Pell equations which are repdigits, Fibonacci Quart. 56 (2018), pp. 52–62.
- [10] M. LAURENT, M. MIGNOTTE, Y. NESTERENKO: Formes linéaires en deux logarithmes et déterminants d'interpolation, J. Number Theory 55 (1995), pp. 285–321, DOI: 10.1006/ jnth.1995.1141.
- F. LUCA: Fibonacci and Lucas numbers with only one distinct digit, Port. Math. 57 (2000), pp. 243-254.
- [12] F. LUCA: Repdigits which are sums of at most three Fibonacci number, Math. Comm. 17 (2012), pp. 1–11.
- [13] F. LUCA, A. TOGBÉ: On the x-coordinates of Pell equations which are Fibonacci numbers, Math. Scand. 122 (2018), pp. 18-30, DOI: 10.7146/math.scand.a-97271.
- [14] D. MARQUES, A. TOGBÉ: On repdigits as product of consecutive Fibonacci numbers, Rend. Istit. Mat. Univ. Trieste 44 (2012), pp. 393–397.
- [15] D. MARQUES, A. TOGBÉ: On terms of linear recurrence sequences with only one distinct block of digits, Colloq. Math. 124 (2011), pp. 145–155, DOI: 10.4064/cm124-2-1.
- [16] E. M. MATVEEV: An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers, II, Izv. Math. 64 (2000), pp. 1217–1269, DOI: 10.1070/ im2000v064n06abeh000314.
- [17] R. OBLÁTH: Une propriété des puissances parfaites, Mathesis 65 (1956), pp. 356-364.
- [18] W. R. SPICKERMAN: Binet's formula for the Tribonacci numbers, Fibonacci Quart. 20 (1982), pp. 118–120.
- K. YU: p-adic logarithmic forms and group varieties II, Acta Arith. 89 (1999), pp. 337–378, DOI: 10.4064/aa-89-4-337-378.