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Abstract

For a positive integer 𝑑 which is not a square, we show that there is at
most one value of the positive integer 𝑋 participating in the Pell equation
𝑋2 − 𝑑𝑌 2 = ±4 which is a rep-digit, that is all its base 10 digits are equal,
except for 𝑑 = 2, 5, 13.
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1. Introduction

Let 𝑑 be a positive integer which is not a perfect square. It is well-known that the
Pell equation

𝑋2 − 𝑑𝑌 2 = ±4 (1.1)

has infinitely many positive integer solutions (𝑋,𝑌 ). Furthermore, putting (𝑋1, 𝑌1)
for the smallest such solution (solution with minimal value for 𝑋), all the positive
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integer solutions are of the form (𝑋𝑛, 𝑌𝑛) for some positive integer 𝑛 where

𝑋𝑛 +
√
𝑑𝑌𝑛

2
=

(︃
𝑋1 +

√
𝑑𝑌1

2

)︃𝑛

.

There are many papers in the literature which solve Diophantine equations involv-
ing members of the sequences {𝑋𝑛}𝑛≥1 or {𝑌𝑛}𝑛≥1 being squares, or perfect powers
of larger exponents of some other integers, etc. (see, for example, [4, 5]).

Let 𝑔 ≥ 2 be an integer. A natural number 𝑁 is called a base 𝑔 rep-digit if all
of its base 𝑔-digits are equal; that is, if

𝑁 = 𝑎

(︂
𝑔𝑚 − 1

𝑔 − 1

)︂
, for some 𝑚 ≥ 1 and 𝑎 ∈ {1, 2, . . . , 𝑔 − 1}.

When 𝑔 = 10, we omit the base and simply say that 𝑁 is a rep-digit. Diophantine
equations involving rep-digits were also considered in several papers which found all
rep-digits which are perfect powers, or Fibonacci numbers, or generalized Fibonacci
numbers, and so on (see [1–3, 7, 9, 11–15, 17] for a sample of such results). In this
paper, we study when can 𝑋𝑛 be a rep-digit. This reduces to the Diophantine
equation

𝑋𝑛 = 𝑎

(︂
10𝑚 − 1

9

)︂
, 𝑚 ≥ 1 and 𝑎 ∈ {1, . . . , 9}. (1.2)

Of course, for every positive integer 𝑋, there is a unique square-free integer 𝑑 ≥ 2
such that

𝑋2 − 𝑑𝑌 2 = −4.

Namely 𝑑 is the product of all prime factors of 𝑋2+4 which appear at odd exponents
in its factorization. In particular, taking 𝑋 = 𝑎(10𝑚 − 1)/9, we get that any rep-
digit is the 𝑋-coordinate of the Pell equation (1.1) corresponding to some specific
square-free integer 𝑑. If 𝑋 > 2, we can instead look at 𝑋2 − 4 and write it as 𝑑𝑌 2

for some positive integers 𝑑 and 𝑌 with 𝑑 squarefree, and then

𝑋2 − 𝑑𝑌 2 = 4.

In particular, we can take 𝑋 = 𝑎(10𝑚−1)/9 with 𝑎 ∈ {1, . . . , 9} and 𝑚 ≥ 1, where
we ask in addition that 𝑎 ≥ 3 when 𝑚 = 1. Here, we study the square-free integers
𝑑 such that the sequence {𝑋𝑛}𝑛≥1 contains at least two rep-digits. Our result is
the following.

Theorem 1.1. Let 𝑑 ≥ 2 be square-free. The Diophantine equation

𝑋𝑛 = 𝑎

(︂
10𝑚 − 1

9

)︂
, 𝑚 ≥ 1 and 𝑎 ∈ {1, . . . , 9} (1.3)

has at most one positive integer solution 𝑛 except when 𝑑 = 2, 5, 13 for which we
have

22 − 2 · 22 = −4, 62 − 2 · 42 = 4,

12−5·12 = −4, 32−5·12 = 4, 42−5·22 = −4 72−5·32 = 4, 112−5·52 = −4,

and
32 − 13 · 12 = −4, 112 − 13 · 32 = 4.
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2. Linear forms in logarithms

We need some results from the theory of lower bounds for nonzero linear forms in
logarithms of algebraic numbers. We start by recalling Theorem 9.4 of [4], which is
a modified version of a result of Matveev [16]. Let L be an algebraic number field
of degree 𝑑L. Let 𝜂1, 𝜂2, . . . , 𝜂𝑙 ∈ L not 0 or 1 and 𝑑1, . . . , 𝑑𝑙 be nonzero integers.
We put

𝐷 = max{|𝑑1|, . . . , |𝑑𝑙|, 3},
and

Γ =

𝑙∏︁

𝑖=1

𝜂𝑑𝑖
𝑖 − 1.

Let 𝐴1, . . . , 𝐴𝑙 be positive integers such that

𝐴𝑗 ≥ ℎ′(𝜂𝑗) := max{𝑑Lℎ(𝜂𝑗), | log 𝜂𝑗 |, 0.16}, for 𝑗 = 1, . . . 𝑙,

where for an algebraic number 𝜂 of minimal polynomial

𝑓(𝑋) = 𝑎0(𝑋 − 𝜂(1)) · · · (𝑋 − 𝜂(𝑘)) ∈ Z[𝑋]

over the integers with positive 𝑎0, we write ℎ(𝜂) for its Weil height given by

ℎ(𝜂) =
1

𝑘

⎛
⎝log 𝑎0 +

𝑘∑︁

𝑗=1

max{0, log |𝜂(𝑗)|}

⎞
⎠ .

The following consequence of Matveev’s theorem is Theorem 9.4 in [4].

Theorem 2.1. If Γ ̸= 0 and L ⊆ R, then

log |Γ| > −1.4 · 30𝑙+3𝑙4.5𝑑2L(1 + log 𝑑L)(1 + log𝐷)𝐴1𝐴2 · · ·𝐴𝑙.

When 𝑙 = 2 and 𝜂1, 𝜂2 are positive and multiplicatively independent, we can
do better. Namely, let in this case 𝐵1, 𝐵2 be real numbers larger than 1 such that

log𝐵𝑖 ≥ max

{︂
ℎ(𝜂𝑖),

| log 𝜂𝑖|
𝑑L

,
1

𝑑L

}︂
𝑖 = 1, 2,

and put

𝑏′ :=
|𝑑1|

𝑑L log𝐵2
+

|𝑑2|
𝑑L log𝐵1

.

Furthermore, let
Λ = 𝑑1 log 𝜂1 + 𝑑2 log 𝜂2.

Note that Λ ̸= 0 when 𝜂1 and 𝜂2 are multiplicatively independent.
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Theorem 2.2. With the above notations, assuming that L is real, 𝜂1, 𝜂2 are
positive and multiplicatively independent, then

log |Λ| > −24.34𝑑4L

(︂
max

{︂
log 𝑏′ + 0.14,

21

𝑑L
,

1

2

}︂)︂2

log𝐵1 log𝐵2.

Note that 𝑒Λ−1 = Γ, so Γ is close to zero if and only if Λ is close to zero, which
explains the relation between Theorems 2.1 and 2.2.

3. The Baker-Davenport lemma

Here, we recall the Baker-Davenport reduction method (see [8, Lemma 5a]), which
turns out to be useful in order to reduce the bounds arising from applying Theorems
2.1 and 2.2.

Lemma 3.1. Let 𝜅 ̸= 0 and 𝜇 be real numbers. Assume that 𝑀 is a positive
integer. Let 𝑃/𝑄 be the convergent of the continued fraction expansion of 𝜅 such
that 𝑄 > 6𝑀 and put

𝜉 = ‖𝜇𝑄‖ −𝑀 · ‖𝜅𝑄‖,
where ‖ · ‖ denotes the distance from the nearest integer. If 𝜉 > 0, then there is no
solution to the inequality

0 < |𝑚𝜅− 𝑛 + 𝜇| < 𝐴𝐵−𝑘

in positive integers 𝑚, 𝑛 and 𝑘 with

log (𝐴𝑄/𝜉)

log𝐵
≤ 𝑘 and 𝑚 ≤ 𝑀.

4. Bounding the variables

We assume that (𝑋1, 𝑌1) is the minimal solution of the Pell equation (1.1). Set

𝑋2
1 − 𝑑𝑌 2

1 =: ±4

and
𝑥𝑛 =

𝑋𝑛

2
, 𝑦𝑛 =

𝑌𝑛

2
for all 𝑛 ≥ 1.

We have
𝑥2
𝑛 − 𝑑𝑦2𝑛 =: 𝜀𝑛, 𝜀𝑛 ∈ {±1}.

Put

𝛿 := 𝑥1+
√︁
𝑥2
1 − 𝜀1 = 𝑥1+

√
𝑑𝑦1, 𝜂 := 𝑥1−

√
𝑑𝑦1 = 𝜀1𝛿

−1, with 𝛿 ≥ (1+
√

5)/2.
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Then, we get

𝑥𝑛 =
1

2
(𝛿𝑛 + 𝜂𝑛),

or, equivalently,
𝑋𝑛 = 𝛿𝑛 + 𝜂𝑛.

We start with some general considerations concerning equation (1.2). From equa-
tion (1.2), we have

𝑋𝑛 = 𝑎

(︂
10𝑚 − 1

9

)︂
> 𝑎(1 + 10 + · · · + 10𝑚−1) > 10𝑚−1.

We get
10𝑚−1 ≤ 𝑋𝑛 < 10𝑚. (4.1)

Furthermore,

2𝛿𝑛 > 𝛿𝑛 + 𝜂𝑛 = 𝑋𝑛 ≥ 𝛿𝑛 − 𝛿−𝑛 ≥ 𝛿𝑛

2
,

where the last inequality follows because 𝑛 ≥ 1 and 𝛿 ≥ (1 +
√

5)/2 >
√

2. So,

𝛿𝑛

2
≤ 𝑋𝑛 < 2𝛿𝑛 holds for all 𝑛 ≥ 1. (4.2)

Using now the equations (4.1) and (4.2), we have

10𝑚−1 ≤ 𝑋𝑛 < 2𝛿𝑛 and
𝛿𝑛

2
≤ 𝑋𝑛 ≤ 10𝑚.

Hence, we obtain

𝑛𝑐1 log 𝛿 − 𝑐2 ≤ 𝑚 ≤ 𝑛𝑐1 log 𝛿 + 𝑐2 + 1, 𝑐1 := 1/ log 10, 𝑐2 := 𝑐1 log 2. (4.3)

From the left-hand side inequality of (4.3), we also deduce that

𝑛 log 𝛿 < 𝑚 log 10 + log 2. (4.4)

Since 𝛿 ≥ (1 +
√

5)/2, we get that

𝑛 ≤ 𝑚
log 10

log((1 +
√

5)/2)
+

log 2

log((1 +
√

5)/2)
< 4.8𝑚 + 2.

If 𝑚 ≥ 2, the last inequality above implies that 𝑛 < 6𝑚. If 𝑚 = 1, then 𝑋𝑛 ≤ 9,
so 𝛿𝑛 ≤ 18 by (4.2). Since 𝛿 ≥ (1 +

√
5)/2, we get that 𝑛 ≤ 6, so the inequality

𝑛 ≤ 6𝑚 holds also when 𝑚 = 1. We record this as

𝑛 ≤ 6𝑚. (4.5)

Next, using (1.3), we get

𝛿𝑛 + 𝜂𝑛 = 𝑎

(︂
10𝑚 − 1

9

)︂
.
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Put 𝑏 := 𝑎/9. We have

𝛿𝑛𝑏−110−𝑚 − 1 = −𝑏−110−𝑚𝜂𝑛 − 10−𝑚.

Thus,

⃒⃒
𝛿𝑛𝑏−110−𝑚 − 1

⃒⃒
≤ 1

𝑏10𝑚𝛿𝑛
+

1

10𝑚
=

1

10𝑚

(︂
1 +

9

𝑎𝛿𝑛

)︂

<
6

10𝑚
,

using that 𝑎 ≥ 1, 𝑛 ≥ 1 and 𝛿 ≥ (1 +
√

5)/2. Thus,

⃒⃒
𝛿𝑛𝑏−110−𝑚 − 1

⃒⃒
<

6

10𝑚
. (4.6)

We now assume that 𝑚 ≥ 2 and search for an upper bound on it. Since 𝑚 ≥ 2, it
follows that the right-hand side in (4.6) above is < 1/2. Put

Λ := 𝑛 log 𝛿 − log 𝑏−𝑚 log 10.

Since |𝑒Λ − 1| < 1/2, it follows that

|Λ| < 2|𝑒Λ − 1| < 12

10𝑚
.

Let us return to (4.6) and put

Γ := 𝑒Λ − 1 = 𝛿𝑛𝑏−110−𝑚 − 1.

Note that Γ is nonzero. Indeed, if it were zero, then 𝛿𝑛 = 𝑏10𝑚. Hence, 𝛿𝑛 ∈ Q.
Since 𝛿 is an algebraic integer and 𝑛 ≥ 1, it follows that 𝛿𝑛 ∈ Z. Since 𝛿 is a unit,
we get that 𝛿𝑛 = 1, so 𝑛 = 0, which is a contradiction. Thus, Γ ̸= 0. We apply
Matveev’s theorem. If 𝑎 ̸= 9 (so, 𝑏 ̸= 1), we then take

𝑙 = 3, 𝜂1 = 𝛿, 𝜂2 = 𝑏, 𝜂3 = 10, 𝑑1 = 𝑛, 𝑑2 = −1, 𝑑3 = −𝑚, 𝐷 = max{𝑛,𝑚}.

Clearly, L = Q[
√
𝑑] contains all the numbers 𝜂1, 𝜂2, 𝜂3 and has degree 𝑑L = 2. We

have
ℎ(𝜂1) = (1/2) log 𝛿, ℎ(𝜂2) ≤ log 9 and ℎ(𝜂3) = log 10.

Thus, we can take

𝐴1 = log 𝛿, 𝐴2 = 2 log 9 and 𝐴3 = 2 log 10.

Now, Theorem 2.1 tells us that

log |Γ| > −1.4 × 306 × 34.5 × 22(1 + log 2)(1 + log𝐷)(log 𝛿)(2 log 9)(2 log 10).
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Comparing the above inequality with (4.6), we get

𝑚 log 10 − log 6 < 1.4 × 306 × 34.5 × 24(1 + log 2)(1 + log𝐷)(log 𝛿)(log 9)(log 10).

Thus,

𝑚 < 1.4 × 306 × 34.5 × 24 × (log 9)(1 + log 2) × (log 𝛿) · (1 + log𝐷)

or
𝑚 < 8.6 · 1012(1 + log𝐷) log 𝛿.

Since 𝐷 ≤ 6𝑚 (see (4.5)), we get

𝑚 < 8.6 · 1012(1 + log(6𝑚)) log 𝛿. (4.7)

This was when 𝑏 ̸= 1. In case 𝑏 = 1, we take 𝑙 = 2 and apply the same inequality
(except that now 𝜂2 := 1 is no longer present) getting a better result. Finally, this
was under the assumption that 𝑚 ≥ 2 but if 𝑚 = 1 then inequality (4.7) also holds.
Let us record what we have proved so far.

Lemma 4.1. Denoting by 𝛿 := 𝑥1 +
√
𝑑𝑦1, all positive integer solutions (𝑚,𝑛) of

equation (1.2) satisfy

𝑚 < 8.6 · 1012(1 + log(6𝑚)) log 𝛿.

All this is for the equation 𝑋𝑛 = 𝑎(10𝑚 − 1)/9. Now we assume that

𝑋𝑛1
= 𝑎1

(︂
10𝑚1 − 1

9

)︂
and 𝑋𝑛2 = 𝑎2

(︂
10𝑚2 − 1

9

)︂
.

where 𝑎1, 𝑎2 ∈ {1, . . . , 9}.
To fix ideas, we assume that 𝑛1 < 𝑛2, so 𝑚1 ≤ 𝑚2. We put as before 𝑏𝑖 := 𝑎𝑖/9

for 𝑖 = 1, 2. From the above analysis, assuming that 𝑚1 ≥ 2, we have that

|𝑛𝑖 log 𝛿 − log 𝑏𝑖 −𝑚𝑖 log 10| < 12

10𝑚𝑖
holds for 𝑖 ∈ {1, 2}. (4.8)

The argument proceeds in two steps according to whether 𝑏1𝑏2 < 1 or 𝑏1𝑏2 = 1.

Suppose now that 𝑏1𝑏2 < 1.

We multiply the equation (4.8) for 𝑖 = 1 with 𝑛2 and the one for 𝑖 = 2 with 𝑛1,
subtract them and apply the absolute value inequality to get

|𝑛2 log 𝑏1 − 𝑛1 log 𝑏2 + (𝑛2𝑚1 − 𝑛1𝑚2) log 10| (4.9)
= |𝑛1(𝑛2 log 𝛿 − log 𝑏2 −𝑚2 log 10) − 𝑛2(𝑛1 log 𝛿 − log 𝑏1 −𝑚1 log 10)|
≤ 𝑛1|𝑛2 log 𝛿 − log 𝑏1 −𝑚2 log 10| + 𝑛2|𝑛1 log 𝛿 − log 𝑏1 −𝑚1 log 10|

≤ 12𝑛1

10𝑚2
+

12𝑛2

10𝑚1
≤ 24𝑛2

10𝑚1
.
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If the right-hand side above is at least 1/2, we then get

10𝑚1 ≤ 48𝑛2 < 300𝑚2,

giving
𝑚1 < 𝑐1 log(300𝑚2). (4.10)

Assume now that the right-hand side in (4.9) is smaller than 1/2. Putting,

Λ0 := 𝑛2 log 𝑏1 − 𝑛1 log 𝑏2 + (𝑛2𝑚1 − 𝑛1𝑚2) log 10,

we get |Λ0| < 1/2. Putting

Γ0 := 𝑏𝑛2
1 𝑏−𝑛1

2 10𝑛2𝑚1−𝑛1𝑚2 − 1,

we get that

|Γ0| = |𝑒Λ0 − 1| < 2|Λ0| <
48𝑛2

10𝑚1
, (4.11)

where the middle inequality above follows from the fact that |Λ0| < 1/2. We apply
Matveev’s theorem to estimate a lower bound on Γ0. But first, let us see that it is
nonzero. Assuming Γ0 = 0, we get

𝑏𝑛2
1 𝑏−𝑛1

2 = 10𝑛2𝑚1−𝑛1𝑚2 . (4.12)

Assume first that 𝑛2𝑚1 − 𝑛1𝑚2 = 0. Then 𝑏𝑛2
1 = 𝑏𝑛1

2 . Thus, 𝑏1 and 𝑏2 are
multiplicatively independent and they belong to the set

{︂
1

9
,

2

9
,

1

3
,

4

9
,

5

9
,

2

3
,

7

9
,

8

9
, 1

}︂
.

They are not both 1 and 𝑛1 and 𝑛2 are both positive. So, the only possibilities are
that 𝑏1 = 𝑏2, or

{𝑏1, 𝑏2} =

{︂
1

9
,

1

3

}︂
,

{︂
2

3
,

4

9

}︂
. (4.13)

If 𝑏1 = 𝑏2, then 𝑏𝑛1
1 = 𝑏𝑛2

2 implies 𝑛1 = 𝑛2, which together with 𝑛2𝑚1 = 𝑛1𝑚2

leads to 𝑚1 = 𝑚2. Thus, (𝑛1,𝑚1) = (𝑛2,𝑚2) and 𝑎1 = 𝑎2 (because 𝑏1 = 𝑏2), and
this is not convenient for us. If {𝑏1, 𝑏2} is one of the two sets from (4.13), then one
of 𝑏1, 𝑏2 is the square of the other one. Thus, since 𝑏𝑛1

1 = 𝑏𝑛2
2 and 𝑛2 > 𝑛1, we get

𝑛2 = 2𝑛1. Since also 𝑛2𝑚1 = 𝑛1𝑚2, we have 𝑚2 = 2𝑚1. Hence, also 𝑏2 = 𝑏21 and
𝑏1 ∈ {1/3, 2/3}. So, we get the pair of equations

𝑋𝑛1 = 𝑏110𝑚1 − 𝑏1 and 𝑋2𝑛1 = 𝑏21102𝑚1 − 𝑏21.

Since in fact

𝑋2𝑛 = 𝛿2𝑛 + 𝜂2𝑛 = (𝛿𝑛 + 𝜂𝑛)2 − 2(𝛿𝜂)𝑛 = 𝑋2
𝑛 ± 2,
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we get that

𝑏21102𝑚1 − 𝑏21 = 𝑋2𝑛1 = 𝑋2
𝑛1

± 2 = (𝑏110𝑚1 − 𝑏1)2± 2 = 𝑏21102𝑚1 − 2𝑏2110𝑚1 + 𝑏21± 2,

which leads to
2𝑏2110𝑚1 = 2𝑏21 ± 2,

so
10𝑚1 = 1 ± 𝑏−2

1 .

The last equation above is impossible for 𝑚1 ≥ 2. For 𝑚1 = 1 we get 10 = 1± 𝑏−2
1 ,

which gives 𝑏1 = 1/3. Hence,

𝑋𝑛1 =
10 − 1

3
= 3, and 𝑋2𝑛1

=
102 − 1

9
= 11.

Since 𝑋2𝑛1 = 𝑋2
𝑛1

± 2, it follows that the sign is +, so 𝑋2
𝑛1

− 𝑑𝑌 2
𝑛1

= −4, giving
𝑑𝑌 2

𝑛1
= 13, so 𝑑 = 13, 𝑌1 = 1, 𝑛1 = 1. These solutions are among the ones

mentioned in the statement of the main theorem.
This deals with the case when 𝑛2𝑚1 − 𝑛1𝑚2 = 0. Assume next that 𝑛2𝑚1 −

𝑛1𝑚2 ̸= 0. Then in the right-hand side of (4.12), both primes 2 and 5 are involved
at a nonzero exponent. Thus, they should be also involved with nonzero exponents
in the left-hand side of (4.12). Thus, one of 𝑏1, 𝑏2 is 5/9 and the other is in
{2/9, 4/9, 2/3, 8/9}. A minute of reflection shows that in all cases the exponents
of 2 and 5 in the left-hand side of (4.12) have opposite signs, whereas in the right
they have the same sign, and this is impossible.

Thus, Γ0 ̸= 0. Hence, we are entitled to apply Matveev’s theorem in order to
find a lower bound on Γ0. In case 𝑏1 ̸= 1 and 𝑏2 ̸= 1, we take

𝑙 = 3, 𝜂1 = 𝑏1, 𝜂2 = 𝑏2, 𝜂3 = 10, 𝑑1 = 𝑛2, 𝑑2 = −𝑛1, 𝑑3 = 𝑛2𝑚1 − 𝑛1𝑚2.

Clearly, L = Q contains all the numbers 𝜂1, 𝜂2, 𝜂3 and has degree 𝑑L = 1. Further,
𝐷 = max{|𝑑1|, |𝑑2|, |𝑑3|} ≤ 𝑛2𝑚2 ≤ 6𝑚2

2. We have

ℎ(𝜂1) ≤ log 9, ℎ(𝜂2) ≤ log 9 and ℎ(𝜂3) = log 10.

Thus, we can take

𝐴1 = log 9, 𝐴2 = log 9, 𝐴3 = log 10.

Now, Theorem 2.1 tells us that

log |Γ0| > −1.4 × 306 × 34.5(1 + log𝐷)(log 9)2(log 10).

Combining this with estimate (4.11) and using the fact that 48𝑛2 < 300𝑚2 (see
inequality (4.5)) we get

𝑚1 log 10 ≤ log 300 + log𝑚2 + 1.6 × 1012(1 + log(6𝑚2
2)),
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giving
𝑚1 < 7 × 1011(1 + log(6𝑚2

2)). (4.14)

The right-hand side of inequality (4.14) is larger than the right-hand side of in-
equality (4.10). So, regardless whether 24𝑛2/10𝑚1 is at least 1/2 or smaller than
1/2, estimate (4.14) holds. From equation (4.4), we get

log 𝛿 < (𝑚1 + 1) log 10 < 1.7 × 1012(1 + log(6𝑚2
2)),

which together with Lemma 4.1 gives

𝑚2 <
(︀
8.6 × 1012(1 + log(6𝑚2))

)︀ (︀
1.7 × 1012(1 + log(6𝑚2

2))
)︀
,

so
𝑚2 < 1.5 × 1025(1 + log(6𝑚2))(1 + log(6𝑚2

2)).

This gives 𝑚2 < 1.5 × 1029. This was if both 𝑏1 and 𝑏2 are different than 1. If one
of them is 1, we simply apply Matveev’s theorem with 𝑙 = 2 getting an even better
bound for 𝑚2.

Suppose now that 𝑏1 = 𝑏2 = 1.

We return to (4.11) getting that 8/9 ≤ 24𝑛2/10𝑚1 , which leads to (4.10), un-
less 𝑛1𝑚2 = 𝑛2𝑚1. In this last case, we get that 𝑛2/𝑚2 = 𝑛1/𝑚1. Thus, writ-
ing 𝑛1/𝑚1 = 𝑟/𝑠 in reduced terms, we get that (𝑛1,𝑚1) = (ℓ1𝑟, ℓ1𝑠) and that
(𝑛2,𝑚2) = (ℓ2𝑟, ℓ2𝑠) for some positive integers ℓ1 < ℓ2. Hence, we have

𝑋𝑟ℓ1 = 10𝑠ℓ1 − 1, 𝑋𝑟ℓ2 = 10𝑠ℓ2 − 1.

The greatest common divisor of the right hand sides above is 10𝑠 − 1 ≥ 9. The
greatest common divisor of the left-hand sides above is 𝑋𝑟 if ℓ1ℓ2 is odd and 1 or
2 otherwise. Thus, ℓ1ℓ2 must be odd and

𝑋𝑟 = 10𝑠 − 1.

Consequently,

𝛿𝑟 − 10𝑠 = −𝜂𝑟 − 1 and 𝛿ℓ2𝑟 − 10ℓ2𝑠 = −𝜂ℓ2𝑟 − 1.

From the two equations above we get

𝛿(ℓ2−1)𝑟 + 𝛿(ℓ2−2)10𝑠 + · · · + 10(ℓ2−1)𝑠 =
−𝜂ℓ2𝑟 − 1

−𝜂𝑟 − 1
.

The last relation above is impossible since its left-hand side is > 10 and its right
hand side is

≤ 2

1 − 2
1+

√
5

< 10,

a contradiction.
In conclusion, (4.10) holds, which is stronger than (4.14), and the above argu-

ments imply that 𝑚2 < 1.5 × 1029. Hence, we have the following result.
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Lemma 4.2. The inequality

𝑚2 < 1.5 × 1029

holds.

Now one needs to apply LLL to the bound

|Λ0| <
24𝑛2

10𝑚1
<

24 × 6 × 1.5 × 1029

10𝑚1
<

1

10𝑚1−32

to get a reasonably small bound on 𝑚1.

∙ First, we will consider the case 𝑏1 = 𝑏2 := 𝑏; i.e., 𝑎1 = 𝑎2 := 𝑎 or

{𝑏1, 𝑏2} ∈
{︂

1

9
,

1

3

}︂
,

{︂
2

3
,

4

9

}︂
.

In
Λ0 := 𝑛2 log 𝑏1 − 𝑛1 log 𝑏2 + (𝑛2𝑚1 − 𝑛1𝑚2) log 10, (4.15)

we set 𝑋 := 𝑛1 − 𝑛2 or 𝑋 := 2𝑛2 − 𝑛1, and 𝑌 := 𝑛2𝑚1 − 𝑛1𝑚2 and divide both
sides by 𝑌 log 𝑏 (with 𝑏 = 𝑏1 = 𝑏2 ∈ {1/9, 2/9, 3/9, 4/9, 5/9, 6/9, 7/9, 8/9}) to get

⃒⃒
⃒⃒ log 10

log 𝑏
− 𝑋

𝑌

⃒⃒
⃒⃒ < 1

𝑌 (log(1/𝑏))10𝑚1−32
. (4.16)

We assume that 𝑚1 is so large that the right-hand side in (4.16) is smaller than
1/(2𝑌 2). This certainly holds if

10𝑚1−32 > 2(log(1/𝑏))−1𝑌. (4.17)

Since |𝑌 | < 1.5×1059, it follows that the last inequality (4.17) holds provided that
𝑚1 ≥ 92 in all cases, which we now assume. In this case, 𝑋/𝑌 is a convergent of
the continued fraction of 𝜂 := log 10/ log 𝑏 and 𝑋 < 1.5 × 1059. Writing

𝑎 = 1, 𝜂 := [−2, 1, 19, 1, 5, 1, 6, 2, 5, 15, 3, . . . , 7, 2, 121, 1, . . . , 2, 569, 1, 2, 27, 7, . . .]

𝑎 = 2, 𝜂 := [−2, 2, 7, 1, 1, 2, 4, 2, 99, . . .]1, 292, 1, 6, 1, 3, 3, 2, 2, 5, . . . , 1, 1, 1, 42, . . .]

𝑎 = 3, 𝜂 := [−3, 1, 9, 2, 2, 1, 13, 1, 7, 18, . . . , 2, 10, 3, 1, 1, 1, 1, 1, 6, . . . , 1, 284, 2, . . .]

𝑎 = 4, 𝜂 := [−3, 6, 4, 2, 1, 1, 1, 1, 45, 89, 1, 6, 1, 9, 1, 2, 625, . . . , 2, 2, 1, 1716, 1, 1, . . .]

𝑎 = 5, 𝜂 := [−4, 12, 9, 1, 1, 1, 1, 1, 2, 1, . . . , 10, 1, 1, 12, 8860, 4, 13, 1, 1, 5, 3, 9, 1, . . .]

𝑎 = 6, 𝜂 := [−6, 3, 8, 1, 3, 3, 22, 1, 1, 44, . . . , 1, 1, 38, 1, 5, 1, 857, 1, 3, 1, 3, 1, 2, 1, . . .]

𝑎 = 7, 𝜂 := [−10, 1, 5, 6, 118, 2, 8, 1, 2, 1, . . . , 8, 23, 1, 30, 2, 2, 8, 1, 4, 2, 1, 1, 255, . . .]

𝑎 = 8, 𝜂 := [−20, 2, 4, 1, 1, 3, 2, 7, 1, 2, 1, 9, 2, 6, . . . , 1, 2, 1332, 1, 12, 1, 5, 1, 1, 2, . . .]
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for the continued fraction of 𝜂 and 𝑝𝑘/𝑞𝑘 for the 𝑘th convergent, we get that
𝑋/𝑌 = 𝑝𝑗/𝑞𝑗 for some 𝑗 ≤ 122 in all cases. Furthermore, putting 𝑀 := max{𝑎𝑗 :
0 ≤ 𝑗 ≤ 122}, we get 𝑀 = 8860 (for 𝑎 = 5). From the known properties of the
continued fractions, we then get that

1

8862𝑌 2
=

1

(𝑀 + 2)𝑌 2
≤
⃒⃒
⃒⃒𝜂 − 𝑋

𝑌

⃒⃒
⃒⃒ < 1

𝑌 (log 𝑏)10𝑚1−32
,

giving
10𝑚1−32 < 8862(log 𝑏)−1𝑌 < 8862(log 𝑏)−1(1.5 × 1059),

leading to 𝑚1 ≤ 96.
∙ We now consider the remaining cases. We transform the linear form (4.15)

into one of the following forms:

Λ1 = (𝑚1𝑛2 −𝑚2𝑛1 + 𝛿1𝑛1 + 𝛿2𝑛2) log 2 + (𝜆1𝑛1 + 𝜆2𝑛2) log 3

+(𝑚1𝑛2 −𝑚2𝑛1 + 𝜇1𝑛1 + 𝜇2𝑛2) log 5,

Λ2 := (𝜆1𝑛1 + 𝜆2𝑛2) log 3 + (𝜈1𝑛1 + 𝜈2𝑛2) log 7 + (𝑚1𝑛2 −𝑚2𝑛1) log 10,

Λ3 = (𝑚1𝑛2 −𝑚2𝑛1 + 𝛿1𝑛1 + 𝛿2𝑛2) log 2 + (𝜆1𝑛1 + 𝜆2𝑛2) log 3

+(𝑚1𝑛2 −𝑚2𝑛1 + 𝜇1𝑛1 + 𝜇2𝑛2) log 5 + (𝜈1𝑛1 + 𝜈2𝑛2) log 7,

where |𝛿𝑖| ≤ 3, |𝜆𝑖| ≤ 2, |𝜇𝑖| ≤ 1, |𝜈𝑖| ≤ 1, for 𝑖 = 1, 2.
Now, we will estimate lower bounds for Λ𝑖, 𝑖 = 1, 2, 3 via the LLL algorithm

(see Proposition 2.3.20 in [6]). One knows that Λ𝑖 ̸= 0, 𝑖 = 1, 2, 3 by what is done
above. We set 𝑋1 = 𝑋3 := 1060 as upper bounds for |𝑚1𝑛2 −𝑚2𝑛1 + 𝛿1𝑛1 + 𝛿2𝑛2|,
|𝑚1𝑛2 −𝑚2𝑛1 + 𝜇1𝑛1 + 𝜇2𝑛2| and 𝑋2 = 𝑋4 := 1031 as upper bounds for |𝜆1𝑛1 +
𝜆2𝑛2|, |𝜈1𝑛1 + 𝜈2𝑛2|. We take 𝐶 := (3𝑋1)3 for Λ1, Λ2 and 𝐶 := (4𝑋1)4 for Λ3.
Moreover, we consider the lattice Ω spanned by

𝑣1 := (1, 0, ⌊𝐶 log 2⌋), 𝑣2 := (0, 1, ⌊𝐶 log 3⌋), 𝑣3 := (0, 0, ⌊𝐶 log 5⌋),

for Λ1

𝑣1 := (1, 0, ⌊𝐶 log 3⌋), 𝑣2 := (0, 1, ⌊𝐶 log 7⌋), 𝑣3 := (0, 0, ⌊𝐶 log 10⌋),

for Λ2

𝑣1 := (1, 0, 0, ⌊𝐶 log 2⌋), 𝑣2 := (0, 1, 0, ⌊𝐶 log 3⌋),
𝑣3 := (0, 0, 1, ⌊𝐶 log 5⌋), 𝑣4 := (0, 0, 0, ⌊𝐶 log 7⌋),

for Λ3. Then, we compute 𝑄,𝑇, 𝑐1,𝑚 according to Proposition 2.3.20 in [6] and we
obtain:

5.5 · 10−122 < |Λ1| <
1

10𝑚1−32
⇒ 𝑚1 ≤ 153;

3.2 · 10−122 < |Λ2| <
1

10𝑚1−32
⇒ 𝑚1 ≤ 153;
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8.1 · 10−183 < |Λ3| <
1

10𝑚1−32
⇒ 𝑚1 ≤ 214.

Hence, we have the following numerical result.

Lemma 4.3. The estimate 𝑚1 ≤ 214 holds.

For 𝑎1 ∈ {1, 2, . . . , 9}, 1 ≤ 𝑛1 ≤ 1284, 1 ≤ 𝑚1 ≤ 214, we solve the equations

𝑥𝑛1 = 𝑃𝑛1(𝑥1) = 𝑎1

(︂
10𝑚1 − 1

9

)︂

to see for which values of the triple (𝑛1,𝑚1) it has a solution 𝑥1 = 𝑋1/2 with
positive integer 𝑋1, where

𝑥𝑛 = 𝑃𝑛(𝑋/2) =

(︃
𝑋 +

√
𝑋2 ± 4

2

)︃𝑛

+

(︃
𝑋 −

√
𝑋2 ± 4

2

)︃𝑛

.

We used a program written in Maple to see that 𝑛1 = 1 in all cases. Here, 𝑃𝑛(𝑋) is
one of the two polynomials giving 𝑥𝑛 in terms of 𝑥1 for the equation 𝑥2−𝑑𝑦2 = ±4.

From equation (4.8), for 𝑖 = 2 we get
⃒⃒
⃒⃒𝑛2

log 𝛿

log 10
− log 𝑏2

log 10
−𝑚2

⃒⃒
⃒⃒ < 12

(log 10)10𝑚2
, (4.18)

where 𝛿 = 𝑥1 + 𝑦1
√
𝑑 = 𝑥1 +

√︀
𝑥2
1 ± 4, 𝑥1 = 𝑎1(10𝑚1 − 1)/9, and 𝑏2 = 𝑎2/9 with

𝑎1 ̸= 𝑎2. To apply Lemma 3.1 to inequality (4.18), we put

𝜅 =
log 𝛿

log 10
, 𝜇 =

log 𝑏2
log 10

, 𝐴 =
12

log 10
, 𝐵 = 10, and 𝑀 = 1.5 · 1029.

The program was developed in PARI/GP running with 200 digits, for 1 ≤ 𝑚1 ≤
214. For the computations, if the first convergent such that 𝑞 > 6𝑀 does not
satisfy the condition 𝜂 > 0, then we use the next convergent until we find the one
that satisfies the conditions. In a few minutes, all the computations were done. In
all cases, after the first run we obtained 𝑚2 ≤ 35. We set 𝑀 = 35 and the second
run of the reduction method yields 𝑚2 ≤ 8. In conclusion, we have

𝑛1 = 1, 1 ≤ 𝑚1 ≤ 8, 1 ≤ 𝑚2 ≤ 8, 1 ≤ 𝑛2 ≤ 48.

Now a verification by hand yields the final result.
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