
Optimization of hadoop cluster for
analyzing large-scale sequence data in

bioinformatics

Ádám Tóth, Ramin Karimi

Faculty of Informatics
University of Debrecen
adamtoth102@gmail.com
raminkm2000@yahoo.ca

Submitted: June 13, 2017
Accepted: January 23, 2019

Published online: February 27, 2019

Abstract

Unexpected growth of high-throughput sequencing platforms in recent
years impacted virtually all areas of modern biology. However, the ability to
produce data continues to outpace the ability to analyze them. Therefore,
continuous efforts are also needed to improve bioinformatics applications for
a better use of these research opportunities. Due to the complexity and diver-
sity of metagenomics data, it has been a major challenging field of bioinfor-
matics. Sequence-based identification methods such as using DNA signature
(unique k-mer) are the most recent popular methods of real-time analysis
of raw sequencing data. DNA signature discovery is compute-intensive and
time-consuming.

Hadoop, the application of parallel and distributed computing is one of
the popular applications for the analysis of large scale data in bioinformatics.
Optimization of the time-consumption and computational resource usages
such as CPU consumption and memory usage are the main goals of this
paper, along with the management of the Hadoop cluster nodes.

Keywords: hadoop, optimization, next-Generation Sequencing, DNA signa-
ture, resource management

Annales Mathematicae et Informaticae
50 (2019) pp. 187–202
doi: 10.33039/ami.2019.01.002
http://ami.uni-eszterhazy.hu

187



1. Introduction

Since the announcement of the human genome project completion in 2003 [8], Next-
Generation Sequencing (NGS) technologies have revolutionized exploration of the
secrets in the life science. Due to extraordinary progress in this field, massively
parallel sequencing of the microbial genomes in the complex communities has led
the advent of metagenomics techniques.

Metagenomics, a high-throughput culture-independent technique has provided
the ability to investigate the entire community of microorganisms of an environment
with analyzing their genetic content obtained directly from their natural residence
[9, 15].

Along with technical advances of sequencing, mining the enormous and ever-
growing amount of data generated by sequencing technologies is now one of the
fastest growing fields of big data science, but there are still a lot of difficulties
and challenges ahead. Real-time identification of microorganisms from raw read
sequencing data is one of the key problems of current metagenomics and next-
generation sequencing analysis. It has a pivotal role for pathogenic diagnostics
assays to consider an early treatment.

Sequence-based identification of the species can be classified into two groups:
Assembly and alignment-based approaches and alignment-free approaches [7].

Due to the difficulties, technical challenges, and computational complexity of
alignment and assembly-based approaches, they are not applicable for complex
sequencing data such as metagenomics data. Moreover, they are expensive and
time-consuming.

Reads generated by high-throughput sequencing technology are short in length
and large in volume, very noisy and partial, with too many missing parts [9, 19].
They contain sequencing errors caused by the sequencer machines. Another chal-
lenge is repetitive elements in the DNA sequence of species. As an example, about
half of the human genome is covered by repeats [16]. These challenges cause inca-
pability and unreliability of the results in alignment-based identification. Thus, it
is necessary to develop efficient alignment-free methods for phylogenetic analysis
and rapid identification of species in Metagenomics and clinical diagnostics assays,
based on the sequence reads. Several alignment-free methods have been proposed
in the literature to address this problem. One of the latest methods is using DNA
signature that plays the role of fingerprints for microbial species.

DNA signature is a unique short fragment (k-mer) of DNA, which is specific
for a species that is selected from a target genome database. DNA signature can
be obtained for every individual species in the genome databases by screening
and counting the frequency of k-mers through the entire database. The term k-
mer refers to the existence of all the possible substrings of length k in a genome
sequence. Each k-mer that appears once in a genome database is a unique DNA
signature for the related sequence containing that k-mer. Since comparing k-mers
frequencies are computationally easier than sequence alignment, the method can
also be used as a first stage analysis before an alignment [10].

188 Á. Tóth, R. Karimi



Considering the large size of genome databases, searching the unique DNA
signatures (k-mers) needs powerful computational resources and it is still time-
consuming. This problem can be solved by incorporating parallel and distributed
computing.

Several tools and algorithms of k-mers frequency counting and DNA signature
discovery have been proposed in the literature. Some of them use the applications
of parallel and distributed computing. Hadoop and MapReduce are among these
applications. The Apache Hadoop software [18], is a platform for parallel and
distributed computing of large data set and MapReduce [3] is a programming model
for parallel and distributed data processing.

In this paper, we have proposed optimization techniques to reduce time-consum-
ing and to use less computational resources. Accordingly, we designed the nodes
and managed the performance of the nodes in the Hadoop cluster. Managing the
CPU consumption and memory usage according to the size of data and the number
of maps, monitoring and comparing the running time of the maps were other issues
that we have considered in this study.

The aim of this research is to enhance the possibility of using ordinary computers
as a distributed system, in order to allow the process of searching DNA signatures
and k-mers frequency to be applicable for the entire research community.

2. Background

This section contains a brief overview of the basic concepts that are used in this
paper.

2.1. Next-Generation Sequencing (NGS)
Next-generation sequencing (NGS) refers to methods that have emerged in the
last decade. NGS technologies allow simultaneous determination of nucleotide se-
quences of a variety of different DNA strands. It provides reading of billions of
nucleotides per day. NGS is also known as massive parallel sequencing. The NGS
has dramatically improved in recent years, making the number of bases that can
be sequenced per unit price has grown exponentially. Therefore the new platforms
are distinguished by their ability to sequence millions of DNA fragments parallel
to a much cheaper price per base. In this technology, experimental advances in
chemistry, engineering, molecular biology and nanotechnology are integrated with
high-performance computing to increase the speed at which data is obtained. Its
potential has allowed the development of new applications and biological diagnos-
tic assays that will revolutionize, in the near future, the diagnosis of genetic and
pathogenic diseases [1, 12–14, 17, 20].

Optimization of hadoop cluster for analyzing large-scale sequence data . . . 189



2.2. Metagenomics
For the first time, the word “metagenomics” appeared in 1998 in the article written
by Jo Handelsman [6]. Metagenomics is the study of the entire genetic material
of microorganisms obtained directly from the environment. The main goals of
metagenomics are to determine the taxonomic (phylogenetic) and functional com-
position of microbial communities and understanding that how they interact with
each other in the term of metabolism. Historically, the bacterial composition was
determined by culturing bacterial cells, but the majority of bacteria are simply not
cultivated. You can isolate a separate species and study its genome, but this is
long, since there are many species together as a diverse community [5, 19].

2.3. Alignment-based analysis
One of the most effective and convenient methods for classification and identi-
fication of sequence similarity is an alignment method. Alignment of the new
sequences with already well-studied makes it possible to quantify the level of simi-
larity of these sequences, as well as to indicate the most likely regions of similarity
structures. The most commonly used programs for the comparison of sequences are
BLAST, FASTA and the Smith-Waterman (SW) is the most sensitive and popular
algorithm is used. The applications of sequence alignment are limited to apply for
closely related sequences, but when the sequences are divergent, the results cannot
be reliable. Alignment-based approaches are computationally complex, expensive,
and time-consuming and therefore aligning large-scale sequence data is another
limitation [11]. Inability of this method becomes more visible when facing massive
sequencing reads in metagenomics.

2.4. Alignment-free analysis
Alignment-free methods are an alternative to overcome various difficulties of tra-
ditional sequence alignment approaches, they are increasingly used in NGS se-
quence analysis, such as searching sequence similarity, clustering, classification of
sequences, and more recently in phylogeny reconstruction and taxonomic assign-
ments [2, 4]. They are much faster than alignment-based methods. The recent
most common alignment-free methods are based on k-mer/word frequency. DNA
signature is a unique short fragment (k-mer) of DNA, which is specific for a species
that is selected from a target genome database. DNA signature can be obtained
for every individual species in the genome databases by screening and counting the
frequency of k-mers through the entire database [10].

3. System model

In our investigation we create a cluster which consists of three computers (N1, N2,
N3). The next table (see Table 1) shows the main components of them.

190 Á. Tóth, R. Karimi



Node Processor Memory Hard disk
N1 Intel Core i3-2120 (3.3 GHz) 4 GB ST1500DL003-9VT16L (1.5 TB)
N2 Intel Core i7-3770K (3.5 GHz) 16 GB WDC WD20EZRX-00DC0B0 (2 TB)
N3 Intel Core i7-4771 (3.5 GHz) 16 GB TOSHIBA DT01ACA200 (2 TB)

Table 1: Main components of the nodes

To run Hadoop, Java is required to be installed and we use version of 1.8.0-
111. Throughout the investigation on each computer runs Ubuntu 14.04.5 Server
(64-bit) and to collect information of utilization of cpu, memory, I/O of the nodes
we choose collectl tool which is suitable for benchmarking, monitoring a system’s
general heath, providing lightweight collection of device performance information.
In this paper the input data is part of the genome database which contains k-mers.
In our case k is 18, so that each file contains lines of 18 character lengths. We
configure block size as the input for running the maps to be exactly 1GB so after
loading the data into HDFS it will be divided into 1GB parts. We considered 1GB
of RAM to each map process. We downloaded the bacterial genome database in
FASTA format from the National Center for Biotechnology Information (NCBI)
database. The size of this database is 9.7 GB after decompression. In order to
generate k-mers from the FASTA files, we used GkmerG software to generate all
the possibilities of 18-mers from individual bacterial genomes of the whole database
with a total size of 177.35 GB. The result is a file containing a single column of
k-mers with length 18. The length of k-mers can differ according to the needs.
Since, the aim of this paper is optimizing the process of searching the frequency of
k-mers, the large file must be split in the same size (1GB) for each map to compare
the running time of the maps, therefore we assume that the large file is pre-sorted
and the same k-mers is not located in different files after splitting. For the real
data processing we have to split the large file in an intelligence manner.

During our investigation we use one of the example program on the input data
called grep that extracts matching strings from text files and counts how many
time they occurred.

Hadoop is designed to scale up from single servers to thousands of machines,
each proposing local computation and storage, giving the opportunity to the system
to be highly-available. Usually in practice the chosen machine, which is the master
node, does not store any data so it does not do the job of datanode. In our case
there is only one “real” datanode (N3) which is opposite of Hadoop’s principles.
However, in our scenario in that way we can focus on the efficiency of the utilization
of resources during running Hadoop and also with that configuration we decrease
network traffic as low as possible. Because YARN only supports CPU and memory
reservation with our setting we can discover the crucial point of the system. The
nodes of the cluster are configured in the following way: N1 is the master node
(Resourcemanager runs on it), on every occasion only the applicationmaster (AM)
runs on N2 because 15 GB RAM is given to AM and on N3 the default setting
remains (1536MB) and Hadoop chooses N2 to start running AM. 14GB is given to
yarn on N3 meaning that maximum 14 maps can run simultaneously. Every block

Optimization of hadoop cluster for analyzing large-scale sequence data . . . 191



is located physically on N3 and every container (so every map process) runs on N3
except the AM.

The following table (see Table 2) includes the main features of Cases.

Case Number of map Size of the block Size of dataset Given memory to N3
a 1 1 GB 1 GB 14 GB
b 2 1 GB 2 GB 14 GB
c 3 1 GB 3 GB 14 GB
d 4 1 GB 4 GB 14 GB
e 5 1 GB 5 GB 14 GB
f 6 1 GB 6 GB 14 GB
g 7 1 GB 7 GB 14 GB
h 8 1 GB 8 GB 14 GB
i 9 1 GB 9 GB 14 GB
j 10 1 GB 10 GB 14 GB
k 11 1 GB 11 GB 14 GB
l 12 1 GB 12 GB 14 GB
m 13 1 GB 13 GB 14 GB
n 14 1 GB 14 GB 14 GB

Table 2: Scenario A

4. Numerical results

4.1. Scenario A
As it is indicated earlier we use collectl to get information about the utilization of
resources of the nodes. It works under linux operating system and basically reads
data from /proc and writes its results into a file or on the terminal. It is capable
of monitoring any of a broad set of subsystems which currently include buddyinfo,
cpu, disk, inodes, infiniband, lustre, memory, network, nfs, processes, quadrics,
slabs, sockets and tcp. Collectl output can also be saved in a rolling set of logs
for later playback or displayed interactively in a variety of formats. The command
can be run with lots of arguments and it can be freely customized in which mode
collectl runs or how its output is saved. Below (see Table 3) we can see some
results about running times. The first column indicates the whole running time
of the application, the second one shows the mean running time of the map jobs,
the third one the initialization period which means after hadoop starts some time
is needed before launching map jobs (e.g. deciding which node will be the master
node). The last column represents the whole running time divided by the number
of map jobs.

It can be seen that as more map processes are running in parallel the average
processing time of 1 GB data starts to decrease then it remains around a constant
value.

192 Á. Tóth, R. Karimi



Running time Average running time of the maps Initialization period Average processing time of 1 GB data
a 33 22 11 33 sec
b 39 26 13 19.5 sec
c 61 49 12 20.33 sec
d 78 65 13 19.5 sec
e 92 80 12 18.4 sec
f 109 96 13 18.17 sec
g 129 117 12 18.43 sec
h 150 137 13 18.75 sec
i 161 149 12 17.89 sec
j 187 174 13 18.7 sec
k 204 191 13 18.54 sec
l 226 213,4 12 18.83 sec
m 242 230 12 18.61 sec
n 267 255 12 19.07 sec

Table 3: Results in connection with running times

4.1.1. Results in connection with the node where AM is located

As mentioned earlier the AM runs on this node on every occasion. Because of
the rounding and the way of configuring collectl figures might not demonstrate the
exact beginning of the running process but the deviation is very little. Because of
the lots of data the graphs would be unclear so the achieved results are divided
into two groups according to the number of processed blocks:

∙ Number of processed blocks are odd (1,3,5,7,9,11,13)

∙ Number of processed blocks are even (2,4,6,8,10,12,14)

Figure 1: CPU usage of N2

On Figure 1 the data of cpu usage of N2 node is shown. As on N2 just the AM
runs it can be seen after the jobs are initiated CPU usage increases to about 35%,
it lasts for a while then it remains almost 0% till the application runs. Some jumps
can be observable at the end of the Cases which are caused by the fact that map
jobs come to an end.

Figure 2 shows the utilization of disk capacity on N2 node. Similarly to cpu
usage when the jobs are initiated usage of disk rises then it drops independently of
the number of map processes and also some jumps occur at the end of Cases when
map jobs are finished.

Optimization of hadoop cluster for analyzing large-scale sequence data . . . 193



Figure 2: Speed of disk reading of N2

Figure 3: Size of reserved memory of N2

Figure 3 displays the memory usage of N2 node. Size of the reserved memory
is independent of the number of initiated map processes.

4.1.2. Results in connection with the node where the “real” datanode is
located

Figure 4: Cpu usage of N3

Figure 4 represents the cpu usage of N3 node. When one map is running (Case
a) it reserves one of the four cores so cpu usage barely passes 25%. When two
maps are running (Case b) it reserves two of the four cores so the maximum cpu
usage can not step over 50% but it is around 40%. Whenever three or more maps
are running simultaneously apart from the initial jump cpu usage stabilizes around

194 Á. Tóth, R. Karimi



30%. The reason for this is the limit of disk reading capability as Figure 6 will
prove that statement.

Figure 5: Speed of disk reading of N3

Figure 5 represents the utilization of capability of disk reading of N3 node.
In case of 1 map to read 1 GB it uses approximately the half of disk capability

because only 1 core is reserved which is fully loaded.
When two maps are running two cpu cores are reserved and around 3/4 of disk

capability is used. To read 2 GB into the memory lasts almost the same as in
the first case but the speed of disk reading is almost twice as much as in Case
a. Furthermore whenever three or more maps are running the limit of I/O arises
because of the emerging congestion in the system. That is why cpu usage does not
increase after Case b.

Figure 6: Comparison of cpu usage

We investigate the scenario when we preload the necessary dataset into the
memory so there is no I/O procedure during the running of the map tasks and
the program reaches the data directly from the memory. From Figure 6 it can be
observed when the data is reachable from the memory CPU usage reach the theoret-
ical maximum in all Cases (Case_a_cache, Case_b_cache and Case_c_cache)

Optimization of hadoop cluster for analyzing large-scale sequence data . . . 195



so it is clear that the cross section point is the I/O capability (reading).

Figure 7: Size of reserved memory of N3

Figure 7 shows the size of reserved memory of N3. As time goes by the amount
of memory usage increases.

4.2. Scenario B
From the obtained results it appears that in Case a limit of cpu usage arises while
in the other Cases limit of I/O capability restricts the performance. So in the
next scenario the system is changed a little bit. Almost everything is the same as
in Scenario A except that instead of 14 GB 2 GB RAM is given to yarn on N3
(see Table 4). This little modification has a remarkable effect on the operation of
Hadoop, in Scenario B 2 maps can run in parallel at the same time altogether.

Case Number of parallel maps Number of total maps Size of dataset Given memory to N3
a 1 1 1 GB 2 GB
b 2 2 2 GB 2 GB
c 2 3 3 GB 2 GB
d 2 4 4 GB 2 GB
e 2 5 5 GB 2 GB
f 2 6 6 GB 2 GB
g 2 7 7 GB 2 GB
h 2 8 8 GB 2 GB
i 2 9 9 GB 2 GB
j 2 10 10 GB 2 GB
k 2 11 11 GB 2 GB
l 2 12 12 GB 2 GB
m 2 13 13 GB 2 GB
n 2 14 14 GB 2 GB

Table 4: Scenario B

Below (see Table 5) some results about running times can be noticeable, this
table is the same as Table 3 with the results of Scenario B:

The same tendency takes place here as in Scenario B namely as more map
processes are running in parallel the average processing time of 1 GB data starts
to decrease then it remains around a constant value.

196 Á. Tóth, R. Karimi



Running time Average running time of a map Initialization period Average processing time of 1 GB data
a 34 22 12 34 sec
b 48 36 12 24 sec
c 58 25 12 19.33 sec
d 68 28 12 17 sec
e 85 26,4 11 17 sec
f 92 26,1666667 12 15.33 sec
g 115 27 11 16.43 sec
h 126 28,5 11 15.75 sec
i 133 24,333 13 14.77 sec
j 142 25,5 11 14.2 sec
k 157 23,818181 13 14.27 sec
l 173 26,08333 13 14.42 sec
m 190 25,384615 12 14.62 sec
n 191 24,47143 13 13.64 sec

Table 5: Results in connection with running times

4.2.1. Results in connection with the node where AM is located

As mentioned earlier the AM runs on this node on every occasion.
We use the same style as previously so the achieved results are divided into two

groups according to the number of processed blocks:

∙ Number of processed blocks are odd (1,3,5,7,9,11,13)

∙ Number of processed blocks are even (2,4,6,8,10,12,14)

Figure 8: CPU usage of N2

On Figure 8 we can see the data of CPU usage of N2. We get back almost the
same result as in Scenario A even the values are practically identical.

We can see the speed of disk reading of N2 on Figure 9. The situation is the
same as in case of Scenario A. These figures also imply the fact that the little
modification does not change the utilization of the resources of N2.

Figure 10 present the memory usage of N2. It is evident that the size of reserved
memory depends a little on the number of launched map processes.

4.2.2. Results in connection with the node where the “real” datanode is
located

Figure 11 demonstrates the CPU usage of N3. It is noticeable that in particular
intervals the CPU usage boosts. These phenomena can by explained by the fact

Optimization of hadoop cluster for analyzing large-scale sequence data . . . 197



Figure 9: Speed of disk reading of N2

Figure 10: Size of reserved memory of N2

Figure 11: CPU usage of N3

that 2 map processes can run in parallel at the same time so when 3 GB or more
data are processed launching a new map process requires some time. In these
intervals the CPU usage is greater. Another interesting situation is observable in
cases of odd numbered processed blocks because at the end of the running of the
last map process CPU usage decreases to about 25% as only one map is running
at that time.

Figure 12 shows the speed of disk reading of N3. The same tendency can be
observed as in CPU usage. Here we reserve less resources compare to the other
scenario. Just 2 maps can run at the same time in parallel so the factor of congestion
is smaller but we do lose some time whenever a map finishes/starts. Despite that
fact it still results greater speed of disk reading in overall compared to Scenario A.

198 Á. Tóth, R. Karimi



Figure 12: Speed of disk reading of N3

Figure 13: Comparison of cpu usage

Figure 13 presents the situation when the necessary dataset is available from
memory. The difference is still there among the appropriate Cases (like between
Case b and Case_b_cache or Case c and Case_c_cache) but it is smaller than in
Scenario A.

Figure 14: Size of reserved memory of N3

Figure 14 show the size of reserved memory of N3. As time goes by the amount

Optimization of hadoop cluster for analyzing large-scale sequence data . . . 199



of memory usage increases.
Let introduce the following notations:

∙ n(t): at time 𝑡 the number of parallelly running maps

∙ T: entire running time of the map in seconds

∙ g: the cost of required resource of one map

∙ K: the cost of the entire running time

Then
𝑇∑︁

𝑡=0

(𝑔 * 𝑛(𝑡)).

In the Table 6 we used the following formula: 𝐾 = 𝑇 * 𝑛 * 𝑔, where n is the
maximum number of executable maps.

The next table compares the investigated scenarios where 𝑔 = 0.9:

∙ We gave 14 GB memory to YARN so the whole dataset can be executable in
parallel. The number of parallelly executable maps are 14 (MAP14).

∙ We gave 2 GB memory to YARN. The number of parallelly executable maps
are 2 (MAP2).

Number of blocks Running time (Scenario A) Cost (Scenario A) Running time (Scenario B) Cost (Scenario B)
1 33 29,7 34 30,6
2 39 70,2 48 86,4
3 61 164,7 58 104,4
4 78 280,8 68 122,4
5 92 414 85 153
6 109 588,6 92 165,6
7 129 812,7 115 207
8 150 1080 126 226,8
9 161 1304,1 133 239,4
10 187 1683 142 255,4
11 204 2019,6 157 282,6
12 226 2440,8 173 311,4
13 242 2831,4 190 342
14 267 3364,2 191 343,8

Table 6: Comparison of the scenarios

5. Conclusion

This paper addressed optimization techniques for reducing the time-consumption
and computational resource usage in a Hadoop cluster. Running time, CPU us-
age, memory usage, and Speed of disk reading of the nodes are the subjects that
have been screened in the Hadoop cluster to examine the proposed optimization
techniques for searching the frequency of DNA signatures (k-mers) in the genomic

200 Á. Tóth, R. Karimi



data. The obtained results show that using all the resources (CPU, memory) is
not always the best solution and our scenarios is a prime example of it. Managing
the maps according to the size of data and memory is critical. Our results also
indicate that the speed of I/O greatly affects the effectiveness of performance. To
get a better and faster operation, optimizing the configurations and parameters of
Hadoop is also required in order to reduce the data transfer and communication
between nodes of the cluster. Comparing two Scenarios show another remarkable
result; running the maps in parallel causes shorter processing time. The aim of this
research is to enhance the possibility of using ordinary computers as a distributed
computing system for the entire research community to analyze large-scale dataset.

References

[1] L. Barzon, E. Lavezzo, V. Militello, S. Toppo, G. Palù: Applications of Next-Genera-
tion Sequencing Technologies to Diagnostic Virology, International Journal of Molecular
Sciences 12.11 (2011), pp. 7861–7884, doi: 10.3390/ijms12117861.

[2] C. X. Chan, M. A. Ragan: Next-generation phylogenomics, Biology Direct 8.3 (2013), doi:
10.1186/1745-6150-8-3.

[3] J. Dean, S. Ghemawat: MapReduce: Simplified Data Processing on Large Clusters, Com-
munications of the ACM 51.1 (2008), pp. 107–113, doi: 10.1145/1327452.1327492.

[4] M. Domazet-Lošo, B. Haubold: Alignment-free detection of local similarity among vi-
ral and bacterial genomes. Bioinformatics. 27.11 (2011), pp. 1466–1472, doi: 10 . 1093 /
bioinformatics/btr176.

[5] J. A. Gilbert, C. L. Dupont: Microbial metagenomics: beyond the genome. Annual review
of marine science. 3 (2011), pp. 347–371, doi: 10.1146/annurev-marine-120709-142811.

[6] J. Handelsmanl, M. R. Rondon, S. F. Brady, J. Clardy, R. M. Goodman: Molecu-
lar biological access to the chemistry of unknown soil microbes: a new frontier for natural
products. Chemistry & biology 5.10 (1998), R245–R249.

[7] B. Haubold, F. Reed, P. Pfaffelhuber: Alignment-free estimation of nucleotide diver-
sity, PLOS Computational Biology 27.4 (2011), pp. 449–455, doi: 10.1093/bioinformatics/
btq689.

[8] Human Genome Project, https://web.ornl.gov/sci/techresources/Human_Genome/index.
shtml.

[9] R. Karimi, L. Bellatreche, P. Girard, A. Boukorca, A. Hajdu: BINOS4DNA: Bitmap
Indexes and NoSQL for Identifying Species with DNA Signatures through Metagenomics
Samples, in: Information Technology in Bio- and Medical Informatics, Switzerland: Springer,
Cham, 2014, pp. 1–14, doi: 10.1007/978-3-319-10265-8_1.

[10] R. Karimi, A. Hajdu: HTSFinder: Powerful Pipeline of DNA Signature Discovery by
Parallel and Distributed Computing, Evolutionary bioinformatics online 12 (2016), pp. 73–
85, doi: 10.4137/EBO.S35545.

[11] C. Kemena, C. Notredame: Upcoming challenges for multiple sequence alignment methods
in the high-throughput era. Bioinformatics. 25.19 (2009), pp. 2455–2465, doi: 10 . 1093 /
bioinformatics/btp452.

[12] S. Moorthie, C. J. Mattocks, C. F. Wright: Review of massively parallel DNA se-
quencing technologies, The HUGO journal 5.1-4 (2011), pp. 1–12, doi: 10.1007/s11568-
011-9156-3.

[13] C. S. Pareek, R. Smoczynski, A. Tretyn: Sequencing technologies and genome sequenc-
ing. Journal of applied genetics. 52.4 (2011), pp. 413–435, doi: 10.1007/s13353-011-0057-x.

Optimization of hadoop cluster for analyzing large-scale sequence data . . . 201



[14] E. Pettersson, J. Lundeberg, A. Ahmadian: Generations of sequencing technologies.
Genomics. 94.2 (2009), pp. 105–111, doi: 10.1016/j.ygeno.2008.10.003.

[15] T. Thomas, J. Gilbert, F. Meyer: Metagenomics - a guide from sampling to data anal-
ysis, Microbial Informatics and Experimentation 2.3 (2012), doi: 10.1186/2042-5783-2-3.

[16] T. J. Treangen, S. L. Salzberg: Repetitive DNA and next-generation sequencing: com-
putational challenges and solutions. Nature reviews. Genetics. 13.1 (2011), pp. 36–46, doi:
10.1038/nrg3117.

[17] K. V. Voelkerding, S. A. Dames, J. D. Durtschi: Next-generation sequencing: from
basic research to diagnostics. Clinical chemistry. 55.4 (2009), pp. 641–658, doi: 10.1373/
clinchem.2008.112789.

[18] T. White: Hadoop: The Definitive Guide, Sebastopol, California, USA: O’Reilly Media,
2015.

[19] J. C. Wooley, A. Godzik, I. Friedberg: A Primer on Metagenomics, PLOS Computa-
tional Biology 6.2 (2010), doi: 10.1371/journal.pcbi.1000667.

[20] J. Zhang, R. Chiodini, A. Badr, G. Zhang: The impact of next-generation sequencing
on genomics, J Genet Genomics. 38.3 (2011), pp. 95–109, doi: 10.1016/j.jgg.2011.02.003.

202 Á. Tóth, R. Karimi


