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Abstract
Single frequency, geometrically symmetric Radio-Frequency (RF) driven atmospheric pressure
plasmas exhibit temporally and spatially symmetric patterns of electron heating, and
consequently, charged particle densities and fluxes. Using a combination of phase-resolved
optical emission spectroscopy and kinetic plasma simulations, we demonstrate that tailored
voltage waveforms consisting of multiple RF harmonics induce targeted disruption of these
symmetries. This confines the electron heating to small regions of time and space and enables the
electron energy distribution function to be tailored.

Keywords: voltage waveform tailoring, atmospheric pressure plasmas, particle-in-cell
simulations, phase-resolved optical emission spectroscopy, electron energy distribution
functions, electron heating, radio-frequency plasmas

Non-thermal Atmospheric Pressure Plasmas (APPs) exhibit
highly non-equilibrium electron dynamics, driven by complex
spatio-temporal patterns of electron heating [1–4]. In geo-
metrically symmetric systems, the sinusoidal Radio-Fre-
quency (RF) voltages often used to drive APPs mean that
these patterns are temporally and spatially symmetric. The
distinct structure of the electron heating imposed by these
symmetries constrains the degree to which the electron

properties in APPs can be influenced by their operating
conditions. This means that control of crucial parameters such
as the electron energy distribution (or probability) function
(EEDF/EEPF), which determines the densities and fluxes of
the active species produced by APPs, is challenging.

APPs driven by multi-frequency voltage waveforms have
previously been investigated using fluid simulations and exper-
imental measurements [5–12]. These works have suggested that
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such waveforms enable a degree of favourable control of the
electron properties. However, the diagnostic challenges asso-
ciated with APPs mean that experiments alone cannot directly
measure the EEDF, while fluid simulations do not calculate it
directly, and therefore do not provide a complete description of
the electron dynamics in the plasma. Kinetic plasma simulations
enable the EEDF to be calculated from first principles, however,
these are challenging at atmospheric pressure due to high elec-
tron-neutral collision frequencies.

Here, we demonstrate that voltage waveform tailoring i.e.
the construction of specific waveform shapes by the sum-
mation of multiple RF harmonics [13–20], is capable of dis-
rupting the temporal and spatial symmetries of electron
heating in APPs. This, in turn leads to spatio-temporal con-
finement of the electron heating, and significantly enhanced
control of the EEPF. This is studied using Particle-In-Cell
simulations with Monte Carlo treatment of collision processes
(PIC/MCC) and phase-resolved optical emission spectrosc-
opy (PROES) [21, 22]. This combined approach allows for
experimental validation of the simulated electron dynamics
from which detailed information on the EEPF and electron
heating, calculated from first principles, can be extracted. The
EEPF control offered by this approach has potential for sig-
nificant impact in the many technological applications of
APPs in analytical [23, 24] and green chemistry [25, 26],
biomedicine [27–31] and material synthesis [32, 33].

Experiments are performed using a COST Microplasma
reference jet [34], with a 1×1×30mm plasma channel,
operated in He with 0.05% Ar admixture. We use 5.0
(99.999%) purity He and Ar gases with flow rates of 1 slm and
0.5 sccm, respectively. Tailored voltage seed waveforms are
generated using an arbitrary waveform generator (Keysight
33600A) and coupled to the powered electrode via a broadband
amplifier (AR RF/Microwave Instrumentation 500A250A,
0.01–250MHz, 500W). The applied voltage is monitored by a
high voltage probe (Tektronix oscilloscope probe P6015A,
75MHz) connected directly to the powered electrode. The
measured signal is transferred via a USB oscilloscope (Pico-
scope 6402c 250MHz, 5 Gs s−1) to a computer and controlled
using LabVIEW software that implements an iterative feedback
loop to impose the desired waveform shape at the electrode.
PROES measurements are carried out using an ICCD camera
(Stanford Computer Optics 4 Picos) equipped with an inter-
ference filter (750 nm FWHM of 10nm, Thorlabs) to observe
emission from the Ar(2p1) state at 750.4 nm. The measurements
use a gate width and step of 1 ns. The time and space resolved
electron-impact excitation rate from the ground state into the
Ar(2p1) state is calculated taking into account the natural life-
time τnat=22.47ns [35], and collisional de-excitation by He
and Ar atoms using the corresponding quenching coefficients
kHe, kAr [36].

Here, two classes of voltage waveform are generated by
summation of consecutive harmonics using specific expres-
sions: ‘peak’ and ‘sawtooth-up’. Peak waveforms are attained
according to [16–18]:
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fpp is the peak-to-peak voltage. For peak waveforms (see
figure 1(l)) θk=0°.

To generate sawtooth-up waveforms, where the gradient
of the voltage waveform is largest at the fall of the voltage
(see figure 1(k)), the following expression is used [19]:
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Here, f0 is set to give the desired peak-to-peak voltage.
The simulations are based on a bounded one-dimensional

in space and three-dimensional in velocity space (1d3v)
electrostatic PIC/MCC code [37] that traces Ar+, He+ and
electrons. The cross-sections for electron-neutral and ion-
neutral collisions processes are taken from [38, 39]. For
elastic Ar+ + He collisions the Langevin cross-section is
adopted. It is assumed that 50% of those He atoms excited by
electron-impact populate metastables levels. These meta-
stables cause Penning ionization of Ar atoms with a frequency
determined by the rate coefficient for the process [40] as
described in [37]. Ions created from this process are released
at thermal energies, while electrons are released with an
energy of 1eV, both with isotropic initial directions in
velocity space. The neutral gas temperature is set to
Tg=345K [34, 41]. The electron reflection probability at
the electrodes is set to 0.2 and the coefficients for ion-induced
emission of secondary electrons from the electrodes are set for
Ar+, and He+ to 0.07 and 0.2 (based on lowering the value of
0.25 used in [42] according to the findings of [43, 44]),
respectively. 600 equidistant grid points are used to resolve
the 1mm inter-electrode gap and 4×105 time steps are used
within the applied voltage cycle to resolve the temporal
dynamics of all plasma species.

Here, we focus on the electron heating dynamics for three
driving voltage waveforms that represent the extrema of the
electron heating confinement and EEPF control: sinusoidal
(N=1), sawtooth-up (N=4) and peaks (N=4). In all cases
the peak-to-peak voltage is fpp=470V. Figure 1 shows the
measured ((a)–(c)) and computed ((d)–(f)) time and space
resolved electron-impact excitation rate from the ground state to
Ar(2p1), ((g)–(i)) show the computed electron heating rate and
((j)–(l)) the experimental and theoretical voltage across the
plasma for each case. The powered and grounded electrodes are
located at x=0mm and x=1mm, respectively.

For all cases studied, the computed and measured elec-
tron-impact excitation rates are in excellent agreement. For
the sinusoidal driving waveform, the excitation rate exhibits
two dominant maxima of equal intensity during the
13.56MHz cycle, indicating the spatial and temporal sym-
metry of the electron heating. These occur when the sheath
expands at the powered electrode (20–30ns, 0.2–0.4 mm)
and at the grounded electrode (60–70ns, 0.6–0.8 mm).
Additional weaker maxima are observed on the bulk side of
the collapsing sheath edge at both electrodes. Moving from
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these maxima towards the plasma bulk, the excitation rate
decreases in intensity but is still clearly apparent.

The spatio-temporal structure of the electron-impact
excitation can be understood by considering the electron
heating dynamics. At atmospheric pressure, electron heating
is dominated by electric fields generated to overcome the
collisional drag induced by frequent electron-neutral colli-
sions [45, 46] and preserve current continuity across the
plasma. For a given point in time, the current is constant in
space across the plasma bulk and the electric field that forms
is proportional to the loss of electron momentum due to
collisions divided by the electron density [47, 48]. In general,
the current across the plasma peaks shortly after the time of
maximum gradient of the applied voltage waveform. Due to
the relatively low electron density in the sinusoidal case,
strong electric fields are generated at this time to pass the
required current through the plasma. These fields are largest
in regions where the electron density is smallest, i.e. close to
the edges of the plasma sheath, leading to higher electron
heating rates and electron-impact excitation in these regions.
This mode of discharge operation is known as Ω-mode [46].

For the sawtooth waveform, in both experiment and
simulation, strong electron-impact excitation is observed at the
start of the voltage cycle as electrons are accelerated away from

the powered electrode on the ‘down’ phase of the waveform.
Several nanoseconds later, a slightly more intense electron-
impact excitation structure occurs at the grounded electrode as
the adjacent sheath is collapsing. In this case, the electron
heating is more localised in space to the sheath expansion and
collapse regions, in contrast to the sinusoidal case where it spans
over the entire plasma bulk. This is a result of the higher electron
density in the sawtooth case, which reduces the electric field
required to drive current through the plasma bulk. Further, the
slope asymmetry of the sawtooth waveform leads to weaker
electron heating when the applied voltage is increasing i.e.
temporal electron heating asymmetry. Together, these factors
mean that the electron energy relaxes more in the bulk plasma
for the sawtooth waveform compared to the sinusoidal case.
This, combined with the faster sheath collapse velocity in the
sawtooth case, leads to stronger electron acceleration in the
sheath collapse region to drive the required current.

The slight spatial asymmetry in electron heating leads to a
small electrical asymmetry in the form of a normalised dc self-
bias ( pph h f= / , where η is the dc self-bias voltage) of ≈−4%
in the experiment. The simulation predicts a normalised dc self-
bias of ≈−5%, again showing excellent agreement with the
measurement. This weak electrical asymmetry is in contrast to

Figure 1. Time and space resolved (a)–(c) experimentally determined and (d)–(f) computed electron-impact excitation rate from the ground
state to Ar(2p1), and (g)–(i) computed electron heating rate for the voltage across the plasma shown in (j)–(l). Electron heating progresses
from symmetric (sinusoidal) to temporally asymmetric (sawtooth) to spatially and temporally asymmetric (peaks). The dashed white lines and
boxes in (d)–(f) represent the Regions Of Interest (ROIs) for which EEPFs are plotted in figure 3.
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electropositive plasmas driven by sawtooth waveforms at low-
pressure, which typically exhibit a strong electrical asymmetry
[19, 20]. Overall in APPs, sawtooth-up waveforms are found to
induce a strong temporal asymmetry (electron heating during the
fall time of the voltage is greater than during the rise time) and
confinement of electron heating, while remaining spatially and
electrically approximately symmetric.

For peak waveforms, the electron-impact excitation
exhibits both spatial and temporal asymmetry, with the
electron heating confined in both space and time. Here, the
major electron heating structure occurs during the sheath
collapse phase from 65–74ns near the powered electrode
(x=0–0.2 mm). Two weaker features are also observed, one
during the sheath expansion phase several nanoseconds ear-
lier at the grounded electrode, and the second during the
sheath expansion phase at the powered electrode at the start of
the voltage cycle. For the peak waveform the measured and
simulated normalised dc self-bias are both ≈−6%. As with
the sawtooth waveform, the absence of a strong electrical
asymmetry when using a peak waveform is in contrast to low-
pressure electropositive plasmas driven by peak waveforms
which typically exhibit large values of h̄ [16, 17, 49].

The stronger spatio-temporal electron heating confine-
ment in the peak waveform case originates from the long time
between the sheath expansion and collapse at the powered
electrode as well as the short duration of the sheath collapse in
this region. After the initial period of electron heating fol-
lowing sheath expansion, electrons in the bulk plasma lose
energy over the majority of the voltage cycle in collisions
with the background gas depleting the high-energy electron
population at the discharge centre more than in the sawtooth
case. As a result, when the sheath at the powered electrode
collapses at the end of the voltage cycle an even stronger
electric field must be generated to drive the required electron
current to the powered electrode leading to pronounced
electron heating in this region. Moreover, due to the short
sheath collapse a large instantaneous electron current must be
driven to the powered electrode to compensate the time-
averaged ion flux to this surface. This enhances the instan-
taneous electric field as well.

Figure 2 shows the computed time-averaged Ar+ density
profiles across the inter-electrode gap for the three cases. The
shapes of the density profiles correlate with the spatial profiles

of the electron heating i.e. the sinusoidal case exhibits a
symmetric profile and the sawtooth-up case exhibits a weak
asymmetry with slightly higher ion densities close to the
grounded electrode. The peak case exhibits higher ion den-
sities close to the powered electrode, with a local maximum
around x=0.1mm as a result of the strong electron heating
and ionization in this region. These results demonstrate that
control of the spatial distribution of electron heating allows
tailoring of the ion density profile, which in turn influences
the flux of species to a given electrode. This leads to the
opportunity for directing the ion flux towards one electrode or
the other, and therefore advanced control of surface mod-
ification processes where the ion flux is an important factor.
In addition, the local maximum in the ion density for the peak
case influences the electron heating in this region by gen-
erating an ambipolar electric field that accelerates electrons
towards the powered electrode. This acts to self-amplify the
strong electron heating occurring at the sheath collapse,
leading to more intense electron heating that would be present
with a continuously decreasing ion density profile. Similar
effects are observed in low-pressure electronegative plasmas
[45, 50, 51].

To further understand the electron energy confinement
induced by each waveform, EEPFs are plotted in figure 3 for
the regions of interest highlighted in figures 1(d)–(f), focusing
on the excitation maxima at sheath expansion and collapse for
each waveform, as well as the centre of the discharge. For the
sinusoidal case, the EEPFs at sheath expansion and collapse
are similar in shape. The EEPF integrated along the centre of
the discharge is depleted slightly for all energies above
≈3eV, exhibiting an enhanced low-energy electron popula-
tion. The higher energy tails of the EEPFs at sheath expansion
and collapse are a result of the strong electron heating in these
regions, whereas the low-energy electron population at the
centre of the gap results from regions where electrons are not
actively heated.

Significant differences in the EEPFs are apparent
between the asymmetric peak and sawtooth waveforms and
the symmetric sinusoidal case. The strong temporal energy
confinement in the sawtooth case leads to an enhancement of
the high-energy tail of the EEPFs at sheath expansion and
collapse and a significant reduction in the fraction of high-
energy electrons present at the centre of the gap when com-
pared to the sinusoidal case. For the peak waveform the
addition of a spatial asymmetry further increases electron
heating confinement. As a result, the high-energy tail of the
EEPF at sheath collapse is strongly enhanced compared to
that at sheath expansion and with respect to the EEPFs in
the sinusoidal and sawtooth cases. The high-energy tail at the
discharge centre is further depleted relative to that of the
sawtooth waveform.

Figure 3(d) shows the temporally and spatially integrated
EEPFs for the sinusoidal, sawtooth and peak waveforms. The
EEPF in the sinusoidal case is essentially Maxwellian for
energies up to 20 eV, where excitation of He begins to deplete
the electron energy. When driven by peak and sawtooth
waveforms the EEPFs become highly non-Maxwellian,
exhibiting enhanced populations of electrons at low energies

Figure 2. Time-averaged Ar+ density profile for sinusoidal,
sawtooth-up and peak waveforms.
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and a depleted population at intermediate energies (1–20 eV)
relative to the sinusoidal case. Above ≈22 eV the EEPFs for
the peak and sawtooth cases exhibit a higher population of
electrons compared to the sinusoidal case. The peak wave-
form has the highest proportion of high-energy electrons due
to the strong confinement of electron heating to the sheath
collapse region at the powered electrode.

In general, different energy ranges are important for dif-
ferent aspects of the chemistry of APPs. When small quantities
of molecular gases are used, as is the case in many applications,
the low-energy range (<1 eV) is important for vibrational acti-
vation of molecules. The intermediate range (1–20 eV) is where
most direct electron-impact excitation and dissociation processes
occur (for example, electron-impact dissociation of O2 requires
6–10 eV), and the high-energy range (>20 eV) is important for
formation of high-energy excited states, such as those of He, and
for direct electron-impact ionization. In this context, the EEPFs

generated through breaking the symmetry of electron heating
using peaks and sawtooth waveforms open up new possibilities
for plasma control in applications. For example, the enhanced
population of low-energy electrons for peak and sawtooth
waveforms will lead to increased excitation of vibrational states,
the presence of which has been associated with more efficient
dissociation of molecules compared to direct electron-impact.
On the other hand, the enhanced population of high-energy
electrons will be useful in the production of He metastable or
radiative states, which could be used as VUV light, or ionization
sources.

In conclusion, we have demonstrated that tailored voltage
waveforms are capable of disrupting the symmetry of electron
heating in atmospheric pressure plasmas. Sawtooth driving
voltage waveforms mainly induce a temporal asymmetry, con-
fining the electron heating in time, but offer limited control of
the electron heating in space. Peaks waveforms induce both
spatial and temporal asymmetries, confining electron heating in
both space and time. The electron heating confinement induced
by these waveforms has a strong influence on the time and space
resolved and time and space averaged EEPF offering the
potential for enhanced control of the electron-driven chemistry
in APPs, which will be crucial for future applications.
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