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Abstract

We present a scaling behavior of a rectifying bipolar nanopore as a function of the

parameter ξ = RP/(λzif), where RP is the radius of the pore, λ is the characteristic

screening length of the electrolyte filling the pore, and zif =
√
z+|z−| is a scaling factor

that makes scaling work for electrolytes containing multivalent ions (z+ and z− are

cation and the anion valences). By scaling we mean that the rectification of the pore

(defined as the ratio of currents in the forward and reversed biased states) depends on

pore radius, concentration, c, and ion valences via the parameter ξ implicitly. This fea-

ture is based on the fact that rectification depends on the voltage-sensitive appearance

of depletion zones that, in turn, depend on the relation of RP to the rescaled screening

length λzif . In this modeling study, we use the Poisson-Nernst-Planck (PNP) theory

and a particle simulation method, the Local Equilibrium Monte Carlo (LEMC). The

latter can compute ion correlations that are ignored in the mean-field treatment of

PNP and that are very important for multivalent ions (we show results for 1:1, 2:1,

3:1, and 2:2 electrolytes). In addition to the zif factor, we show that one must choose

a screening length appropriate to the system, in our case the Debye length for λ for

PNP and the screening length given by the Mean Spherical Approximation for LEMC.

1 Introduction

Nanopores are often defined superficially as pores whose radius, RP, falls into the nanometer

range. A more functional definition, however, is that nanopores are distinguished from

micropores by the feature that their radius is comparable to the characteristic screening

length, λ, of the electrolyte with which we fill the pore. The screening length, λ, (to be

specified later) depends on the concentration of the electrolyte, c, properties of ions (e.g.,

valences, zi, and radii, Ri), and properties of the solvent (e.g., dielectric constant, ε), namely
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λ = λ(c, z+, z−, R+, R−, ε) (1)

for a given temperature. This definition binds the geometrical features of the pore to the

properties of the electrolyte, the medium in which charge transport takes place.

In this paper, we quantify this statement and show that the scaling parameter of the ratio

of pore radius to screening length, RP/λ, is a factor that determines some pore behaviors.

Scaling means that the device function depends only on a combined parameter (e.g., RP/λ)

that is put together from other variables (e.g., RP, c, z+, z−); that is, it depends on these

only implicitly via the combined parameter.

The scaling RP/λ is not new in principle or in practice. Many studies have used the ratio

of pore radius to screening length to describe various aspects of fluidic pore behavior.1–10

Here, we introduce two generalizations that extend the scaling idea to electrolytes with

multivalent ions. First, we pick a screening length that is appropriate to the system being

considered. Specifically, we generally do not use the Debye length, λD, like previous studies.

Electrolytes, especially those with multivalent ions, are not well described by the Poisson-

Boltzmann (PB) theory from which the Debye length is derived. Therefore, it is generally

not the best choice of screening length.

Second, we include an additional factor of zif =
√
z+|z−|, previously derived from field-

theoretic arguments,11 to modify the screening length. As we will show in Section 3.4, the

appropriate scaling parameter that is valid even for multivalent electrolytes is

ξ =
RP

λzif
. (2)

Here, we show that rectification in a bipolar nanopore can be described by the scaling

parameter ξ. Rectification is the ratio of the currents in the ON and OFF (forward and
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reverse biased) states of the nanopore:

r =
ION

IOFF
, (3)

where ION = I(200 mV) and IOFF = |I(−200 mV)| are the absolute values of the total

currents in the ON and OFF states, respectively, where 200 mV is a representative value

of the voltage. (When talking about current values in this work, we always mean absolute

values, even though currents are negative for negative voltages.)

Scaling means that a smooth function

r = r(ξ) (4)

exists and that r is the same for different combinations of RP, c, R+, R−, z+, and z− when

ξ is the same for these combinations. We show this first for 1:1 electrolytes and then extend

it to 2:1, 3:1, and 2:2 electrolytes. We present scaling behavior in the parameter space of

pore radius, RP, concentration, c, and ion valences, z+ and z− (cations and anions will be

denoted by + and −, respectively).

Such scaling behavior is both a way to understand physics of how a device operates and

a practical tool. Imagine that we have a nanopore of radius RP and electrolytes of concen-

trations c. Measuring the device function (r, for example) for a series of concentrations,

we can establish the function r(ξ). This makes it possible to predict r for another pore

radius R′P, an unstudied electrolyte concentration c′, or a completely different electrolyte, all

without actually fabricating the nanopore of radius R′P or mixing new electrolytes. Because

fabrication and experiments are expensive and/or difficult, the predictive power of such a

simple formula can be very useful in the design of nanodevices.

In this study, we show our proposed scaling for rectification by simulating the nanopore

and its ionic current. The electrolyte is modeled in the implicit solvent framework, an
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approximation common in nanopore modeling studies1,12–16 and one that captures the device-

level physics.17,18

This work was inspired by our previous study in which we found the presence of scaling.19

A symmetric charge pattern was used in that study for a model nanofluidic transistor, where

current was modulated with the surface charge of the central region. Defining the ON and

OFF states of the transistor at characteristic values of that surface charge, we defined the

device function as the ratio of the ON and OFF currents quantifying switching. We showed

that the device function scaled with RP/λD for a 1:1 electrolye. In that study,19 we used the

Debye length to characterize screening in the electrolyte:

λD =

(∑
i

e2z2i ci
ε0εkT

)−1/2
, (5)

where e is the unit charge, ci is the bulk concentration of ionic species i, ε0 is the permittivity

of vacuum, k is Boltzmann’s constant, and T is the absolute temperature. Basically, for a

given electrolyte system (z+:z−), the Debye length increases with decreasing concentration.

In the simple electrolyte considered here, ion concantrations are related to salt concentration

via c = c+/|z−| = c−/z+.

The relation of the pore dimension and the screening length was discussed in several

experimental and modeling works.1–10 Note that there are length scales used to characterize

nanofluidic devices beyond pore radius and electrolyte screening length discussed, for exam-

ple, by Bocquet and Charlaix.6 In our paper we do not change the length of the pore, for

example; we leave that to later studies. The surface charge is also fixed in this work; the

length scale associated with surface charge is the Dukhin length characterizing pore width

below which surface conduction dominates over the bulk conductance.

This shows that the idea of finding simple relations between basic characteristics of the

nanopore is quite old. The merit of this study is that we provide a quantitative analysis of
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scaling with the new ξ parameter which also encompasses multivalent ions.

The importance of multivalent ions in achieving peculiar conductance behavior of nanopores

due, for example, to charge inversion or charge selectivity, is well known.20–27 Still, the num-

ber of papers dealing with multivalent electrolytes (either z+ > 1 or |z−| > 1) compared to

NaCl or KCl is relatively small, also see references.28–40

Multivalent electrolytes are also interesting from a modeling point of view. Strong ionic

correlations appear in these systems, but are poorly accounted for by the mean-field PB

theory and its non-equilibrium counterpart, the Poisson-Nernst-Planck (PNP) theory. This

theory uses the Nernst-Planck (NP) equation to describe ion transport:

ji(r) = − 1

kT
Di(r)ci(r)∇µi(r), (6)

where ji(r) is the particle flux density of ion species i, ci(r) is the concentration profile, µi(r)

is the electrochemical potential profile, and Di(r) is the diffusion coefficient profile. Here,

we use both PB theory and a particle simulation technique, Local Equilibrium Monte Carlo

(LEMC),41 to compute µi(r) and ci(r).

These methodologies are outlined briefly in the next section and described in detail in our

earlier papers.41–43 The important difference is that LEMC can reproduce ionic correlations,

so it is reasonable to apply it for multivalent electrolytes in order to quantify the errors

introduced by the mean-field treatment of PNP. As we will show, using a screening length

that also includes these correlations (e.g., from the Mean Spherical Approximation (MSA))

is a better choice in the case of LEMC, while λD, which is a product of the PB theory, is a

natural choice in PNP.

While a PNP vs. LEMC comparative analysis with special attention to charge inversion

will be published in our subsequent work, the deviations between PNP and LEMC will be

apparent in this study as well, where we apply both methods to study scaling.
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Figure 1: (A) The schematics of the nanopore. The pore’s radius is RP (varying parameter),
while its length is 6 nm (fixed parameter). There is σ = 1 e/nm2 surface charge on the
pore wall on the left hand side (z < 0), while there is −σ surface charge on the pore wall
on the right hand side (z > 0). Anions and cations are indicated by red and blue circles,
respectively. (B) The concentration profiles of a 1:1 electrolyte for the ON (200 mV) and
OFF (−200 mV) states as obtained from LEMC simulations. Thick blue and thin red lines
refer to cations and anions, respectively. The curves with the symbols refer to the OFF state
(RP = 1 nm, c = 0.1 M). (C) The ratio of the ON- and OFF-state concentration profiles.

2 Models and methods

We consider a cylindrical bipolar nanopore with negative and positive surface charges (±σ =

±1 e nm−2 = ±0.16 Cm−2) on the pore wall in the two half regions along the pore axis (z

coordinate) as shown in Fig. 1A. The length of the pore is fixed at 6 nm, while the radius,

RP, changes. The walls of the pore and the membrane are hard walls forbidding the overlap

of hard-sphere ions with them.

Water is treated implicitly in our model which means that its two major effects on ions
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are modeled by two response functions. One effect is an “energetic” one: the screening of the

Coulomb potential acting between ions. It is taken into account by the dielectric constant,

ε, of the continuum dielectric in the denominator of the ion-ion potential:

uij(r) =


∞ for r < Ri +Rj

zizje
2

4πε0εr
for r ≥ Ri +Rj,

(7)

where r is the distance between the ions. The hard sphere component is absent in the PNP

calculations, as are electrostatic correlations beyond the mean-field.

The other effect is a “dynamic” one: the diffusion of ions is hindered by water via friction.

Diffusion is also limited by interactions with other ions and the confining pore. This is taken

into account by the diffusion coefficient profile, Di(r), of ions in the NP equation (Eq. 6).

The diffusion coefficient is a user-specified parameter. While its value could be extracted

from all-atom molecular dynamics (MD) simulations, it is more common to consider it as

an adjustable parameter and to fit its value either to MD results17,18 or to experimental

data.44–49 In this pure theory study, the particular choice does not qualitatively affect our

conclusions so long as the pore is the highest resistance element. We used an infinite dilution

value of 1.334 · 10−9 m2/s for both ions in the bulk, while the value inside the pore is ten

times smaller as in our earlier works.19,43,50 The value inside the pore just scales the current

and do not influence rectification, because it scales the current in the ON and OFF states

the same way.

For the ionic radii we used R+ = R− = 0.15 nm. This means that cations and anions

behave the same way in 1:1 and 2:2 electrolytes in our nanopore model where the left and

right halves are identical except the sign of the surface charge (Fig. 1A).

The statistical mechanical methods with which we compute the relation between ci(r)

and µi(r) in the NP equation (Eq. 6) are the LEMC simulation method and PB theory.

Coupled to the NP equation, they form the NP+LEMC and PNP methods, respectively.
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The LEMC technique is a grand canonical simulation devised for a non-equilibrium sit-

uation. This means that the chemical potential is not constant system-wide (as it would

be in equilibrium), but is a function of position. We divide the system into small volume

elements, assume local equilibrium in them, and apply particle insertion and deletion steps

with the same formula for acceptance probabilities as in equilibrium simulations, but using

the local chemical potential of the volume element. An LEMC run provides the ci(r) profile

as an output for the µi(r) profile, which was the input. In the coupled NP+LEMC method,

the µi(r) profile is changed in an iterative way, until the ji(r) flux density resulting from the

ci(r) and µi(r) profiles satisfies conservation of mass (∇ · ji(r) = 0). The LEMC method

correctly computes volume exclusion and electrostatic correlations between ions, so it goes

beyond the mean-field description of the PNP theory.

In the PNP theory, the mean electrical potential profile, Φ(r), is computed from the

charge profile,
∑

i zieci(r), by solving Poisson and NP equations (Eq. 6) with the electro-

chemical potential µPNP
i (r) = µ0

i +kT ln ci(r)+zieΦ(r). The latter means that the electrolyte

solution is ideal: the excess part of µi(r) contains only the mean-field term, zieΦ(r), while

extra ionic correlation terms beyond this, including volume exclusion effects, are ignored.

These extra ionic correlation effects beyond mean field are naturally included in LEMC,

while ions are point charges in PNP “feeling” only the effect of the mean electrical poten-

tial. PNP is a continuum theory, where the distribution of ions is described by continuous

functions (density profiles). LEMC, on the other hand, moves ions explicitly as particles

and samples the configurational space, {rN}, by considering actual configurations of ions in

the three-dimensional simulation cell. Spatial averages of the outcome produce continuous

concentration profiles.

The simulation cell is a cylinder with the membrane at z = 0 which is much wider and

longer than the nanopore. The system is rotationally symmetric. Boundary conditions are

applied at the two half cylinders on the two sides of the membrane for concentrations and
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the electrical potential as described in earlier works.41–43 The Dirichlet boundary conditions

for the electrical potential model the electrodes. In our study, the concentration is the same

in the left and right baths, while a voltage is applied across the membrane that is the driving

force of the steady-state ionic flux.

The surface charges, ±σ, on the wall of the nanopore are modeled as fractional point

charges on a grid in LEMC, while they are taken into account by Neumann boundary con-

ditions in PNP.

3 Results

3.1 Mechanism of rectification

Rectification is governed by the voltage-dependent appearance of depletion zones of the

coions in the two regions (cations in the positive region and anions in the negative region)

as shown in Fig. 1B for a 1:1 electrolyte. The purpose of this figure is to illustrate the

mechanism of rectification in a bipolar nanopore. Depletion zones are regions along the

z-axis where the individual ionic concentrations are low in the OFF state compared to the

ON state. If we imagine the nanopore along the z-axis as resistors connected in series, a

high-resistance element for a given ionic species makes the resistance of the whole nanopore

high. Depletion zones, therefore, determine the conductivity behavior of the pore: deeper

depletion zones mean larger resistance and smaller current.

Figure 1B shows that depletion zones are deeper in the OFF state (−200 mV) than in

the ON state (200 mV). To emphasize that the depletion zone is a relative concept (OFF

vs. ON), we plot a relative profile obtained by dividing the ON-state concentration profile,

cON
i (z), with the OFF-state concentration profile, cOFF

i (z), in Fig. 1C. This relative profile

characterizes the presence of such depletion zones in the OFF state relative to the ON state

and the degree of rectification exhibited by the pore. This profile has a large peak at the
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depletion zones of both ions, which means that current is much larger in the ON state for

both ions. Therefore, rectification is present for the total current.

More detailed analyses about the mechanism of rectification and how it is primarily con-

trolled by axial (z-dependent) concentration profiles are given in our previous studies.17,18,43

In particular, molecular dynamics (MD) simulations of all-atom models including explicit

water were also performed for bipolar nanopores17 and nanopores with varying charge pat-

terns.18 In those works, we showed that the implicit-water model used here reproduces the

device behavior given by the explicit-water model because it can reproduce the qualitative

behavior of the axial concentration profiles, even if it misses details in the radial direction.

Although, in general, MD simulations would be preferable, they have limitations at small

concentrations and are slower. Reduced models with their ability to capture overall device

physics (i.e., the physics that governs how inputs like voltage and concentrations become

measurable outputs like current) are a good, computationally tractable alternative.

3.2 The relation of depletion zones and double layer overlap

Depletion zones, therefore, are the key characteristics of nanopores whose behavior is con-

trolled by surface charge patterns and external field. These nanopores are the fluidic cousins

of solid state semiconductor devices, where depletion zones of electrons and holes are tuned

by doping and external electric field. Here, the role of doping is played by the surface

charges on the pore wall. The surface charge can be fixed, produced by pH-dependent proto-

nated/deprotonated groups, or can be polarization charge, produced by an external electric

field on the surface of a metal.

The key feature behind the scaling behavior is that the depth of these depletion zones is

strongly associated with the overlap of the double layers that are formed at the wall of the

nanopore in the radial (r) dimension. This is illustrated in Fig. 2 for a 1:1 electrolyte.

The left column shows the radial profiles for both zones averaged over the given zone
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Figure 2: Illustration of the behavior of the electric double layers in nanopores for different
values of the parameter Rpore/λ via radial concentration profiles. These profiles are computed
by the NP+LEMC method, so λ = λMSA. The profiles are obtained by averaging over the
negative (indicated by vertical red lines) and positive (indicated by vertical blue lines) regions
in the z-direction. Profiles are shown for a 1:1 electrolyte. The left column shows the curves
for RP/λMSA = 2 for both regions in the ON (top) and the OFF (bottom) states (RP = 1
nm). Because the electrolyte is symmetric, the cation and anion profiles are interchangable
in the two regions. Since the OFF state is the important state from the point of view of
rectification, we plot the case circled by a green ellipse in the middle and right panels (in
the large green rectangle) only for the negatively charged region, where the cation is the
counterion and the anion is the coion. Results are shown for pore radii RP = 1 nm (middle
column) and RP = 2 nm (right column) for RP/λMSA = 1.05, 1.5, 2, and 2.5 (from top to
bottom). The concentrations that correspond to these state points can be found in Table
S1 of the SI (they are in the c = 0.02968 − 1.096 M concentration range). Thick blue lines
refer to cations, while thin red lines refer to anions.
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in the z-dimension in the ON (top) and OFF (bottom) states for the value RP/λ = 2 (In

this figure we show NP+LEMC results, so we use the λMSA values for λ introduced later in

section 3.3. That said, we will use λ for a general discussion of Fig. 2 in the main text.). For

negative (positive) surface charge the cations (anions) are the counterions, while the anions

(cations) are the coions. In the ON state, the concentration in the centerline of the pore

(r = 0) is large, forming a bulk-like fluid with cation and anion concentrations being equal

(they are not the same as the bulk concentrations due to confinement). In the OFF state,

however, both cation and anion concentrations are small, with the concentration of the coion

being much lower than the concentration of the counterion. A gap appears between the two

profiles. This is what we mean by overlap of double layers and depletion of coions. The

degree of overlap can be characterized by the gap.

From the point of view of scaling, the relevant question is the degree of this depletion

as a function of the RP/λ parameter. That is shown by the two rightmost columns of Fig.

2 for the OFF state in the negatively charged zone (circled by a green ellipse on the left).

Profiles are shown for different values of RP/λ from top to bottom for two different values

of RP (middle and right columns).

Figure 2 shows that the degree of overlap (indicated by green arrows) depends on the

parameter RP/λ. The degree of overlap is larger (the degree of coion depletion is larger) if

this parameter is smaller. The value of RP/λ can be small either if the pore radius is small,

or the concentration is small (λ is large). If we compare the columns for RP = 1 and 2 nm

(middle and right columns), it is apparent the the degree of overlap is similar in the two

cases for a given RP/λ, but the concentrations are smaller for the larger RP case.

The take-home message of Fig. 2 is that the appearance of depletion zones is related to

the RP/λ ratio, so the rectification should also be a function of that parameter.

That is shown in Fig. 3A. This panel shows rectification as a function of the RP/λD

parameter for 1:1 and 2:1 electrolytes (3:1 and 2:2 electrolytes will be presented later to
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Figure 3: Rectification defined as r = ION/IOFF as a function of various scaling parameters:
(A) RP/λD for both LEMC and PNP, (B) RP/λD for PNP and RP/λMSA for LEMC, and
(C) ξD for PNP and ξMSA for LEMC, where ξD = RP/(λDzif) and ξMSA = RP/(λMSAzif)
with zif =

√
z+|z−|. Black and red symbols/lines refer to 1:1 and 2:1 systems, respectively.

Symbols and lines refer to LEMC and PNP results, respectively. Filled symbols and lines
have been obtained for a fixed concentration (c = 0.1 M) with varying RP, symbols that are
white inside have been obtained for fixed radii, RP = 1 nm, with varying c, while symbols
that are lighter colored inside have been obtained for fixed radii, RP = 2 nm, with varying
c.

avoid clutter in this figure). For the screening length, the Debye length λD is used in this

panel as a first step.

In Fig. 3A scaling works in term of the RP/λD parameter for all the four cases separately

(1:1 and 2:1 electrolytes computed with either NP+LEMC or PNP); the results are located

along a smooth curve (e.g., all the different red symbols fall on a line, as do the black

symbols). The four curves, however, do not coincide.

Thus, there are basically two problems with Fig. 3A. One is that the curves for NP+LEMC

and PNP (symbols vs. lines) do not coincide. Although there is nothing surprising in the fact

that different methods using different degrees of approximations provide different results, we

will show that it is possible to bring those results together from the point of view of scaling

if we use an appropriate λ for each of the different methods.

The other problem is that the curves for 1:1 and 2:1 systems (black vs. red) do not
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coincide. This means that rectification depends explicitly on z+ and z−. Therefore, the

RP/λD scaling works only in the (RP, c) parameter space. We would, however, like to include

the valences in the parameter set over which scaling is valid. This means that we need a

new scaling parameter, specifically the one we defined in Eq. 2.

In the following two sections, we discuss and fix these problems.

3.3 Screening length

Let us deal with the question of how to compute the screening length, λ, first. The Debye

length is the result of a mean-field theory (PB) that fits the PNP theory, because the same

degree of approximations are used in computing the ci(r) vs. µi(r) relation and in computing

the screening length.

NP+LEMC, however, is a method that goes well beyond the mean-field level, so using

λD in that case is questionable. While we could squeeze some kind of screening length out

of the simulation data directly, we have chosen a much simpler route. We decided to use

the screening length provided by the simplest and yet quite powerful statistical mechanical

theory that can take into account ionic correlations (including finite ion sizes) via an integral

equation (Orstein-Zernike) treatment.

The screening parameter from MSA is defined as51–53

λMSA =
1

2Γ
, (8)

where the Γ is given by the implicit relation

4Γ2 =
e2

ε0εkT

∑
i

ci

(
zi − ηd2i
1 + Γdi

)2

, (9)
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where di = 2Ri is the ionic diameter,

η =
1

Ω

π

2∆

∑
i

cid
3
i

1 + Γdi
, (10)

Ω = 1 +
π

2∆

∑
i

cid
3
i

1 + Γdi
, (11)

and

∆ = 1− π

6

∑
i

cid
3
i . (12)

Note that for the case of R+ = R− considered here, these equations reduce to a simple

quadratic equation with exactly one positive root. Also, the MSA screening parameter is

the Debye length in the limit of point ions:

lim
di→0

λMSA = λD. (13)

If we rescale Fig. 3A and use λMSA for the LEMC points instead of λD (see Fig. 3B),

we obtain a much better agreement between the LEMC and PNP data (the lines of PNP

overlap the symbols of LEMC for 1:1 and for 2:1 electrolytes). Since the PNP curves are

unchanged, the LEMC data are shifted leftward by this rescaling, because MSA screening

lengths for a given concentration are larger than the Debye lengths. This is valid for both

1:1 and 2:1 electrolytes.

From now on, when we talk about a general λ value, we will mean the λMSA value in

NP+LEMC and the λD value in PNP.
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3.4 Extension to multivalent ions

Next, we turn to the problem that the curves for 1:1 and 2:1 electrolytes do not coincide in

Fig. 3A and B. As we stated in the introduction, this problem can be fixed by introducing

the ξ = RP/(λzif) parameter, where λ is either λMSA or λD depending whether we use LEMC

or PNP, and zif =
√
z+|z−|.

As seen in Fig. 3C, rescaling with the zif parameter brings the 1:1 and 2:1 curves together.

As we will see later, it works for 3:1 and 2:2 electrolytes as well. Before that, however, we

provide an argument as to why the zif factor works.

In previous work54 we studied the anomalous temperature dependence of the capacitance

of the electrical double layer for valence-asymmetric electrolytes. The temperature was

characterized by the reduced temperature

T ∗ =
4πε0εkTd

e2
, (14)

where d was the diameter of ions (the same for anions and cations). The reduced temperature

is effectively the reciprocal of the strength of the interaction energy between two monovalent

ions at contact (i.e., at a distance d between the center charges) relative to kT . We showed

in that paper54 that capacitances behave the same way for 1:1, 2:1, 3:1, and 2:2 electrolytes

if we plot them as functions of T ∗/|z+z−| instead of just T ∗.

This scaling was confirmed by the theoretical work of di Caprio et al.11 whose field-

theoretical approach was based on expressing the Hamiltonian as a functional of the charge

density field, q(r) = z+c+(r) + z−c−(r), and the total density field, s(r) = c+(r) + c−(r).

The ion-ion (II) interaction in the Hamiltonian in the treatment of di Caprio et al.11 is

given as

H II[q(r)]

kT
=

e2

4πε0εkT

∫
q(r)q(r′)

|r− r′|
drdr′. (15)
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This functional can be written in the form

H II[q(r)]

kT
=

1

8πc̄λ2Dz
2
if

∫
q(r)q(r′)

|r− r′|
drdr′, (16)

if we write the Debye length as

λD =

(
c̄z2ife

2

ε0εkT

)−1/2
, (17)

where c̄ = c+ + c− is the total density in the bulk. To develop Eq. 17, the relation

z2+c+ + z2−c− = z+|z−|c̄ = z2if c̄ (18)

was used. This relates the ionic strength to c̄. It is through this relation that the parameter

zif appears. The charge neutrality condition z+c+− |z−|c− = 0 was used in the derivation of

Eq. 18.

Starting from Eq. 16, di Caprio et al.11 introduced a formal scaling by defining a scaled

density field as q(r)→ Q(r) = q(r)/zif and a scaled unit charge as e→ ẽ = ezif . Doing that,

Eq. 16 can be written in the form

H II[q(r)]

kT
=

1

8πc̄λ2D

∫
Q(r)Q(r′)

|r− r′|
drdr′, (19)

where the Debye length is expressed as

λD =

(
c̄ẽ2

ε0εkT

)−1/2
(20)

that is the same as for a 1:1 electrolyte but using the rescaled unit charge ẽ instead of

e. It was shown that with this rescaling the equations for charge-symmetric systems are

partly recovered and the field theory using the rescaled densities provides good results for
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the electrical double in the case of charge-asymmetric electrolytes as well.11

To justify our use of zif in the ξ parameter, we take another look at Eq. 16, which is

equivalent to Eq. 19. This can be rewritten with the zif-modified Debye length

λ̃D = λDzif (21)

as

H II[q(r)]

kT
=

1

8πc̄λ̃2D

∫
q(r)q(r′)

|r− r′|
drdr′ (22)

which has a form invariant for electrolyte charge asymmetry; it is hidden in λ̃D and q(r).

This equation shows that the electrolyte’s behavior is rather governed by the modified Debye

length, λ̃D, instead of λD. This is in agreement with the definition of the parameter ξ = RP/λ̃.

In our application of this modified screening length, we have gone one step further, namely

to use the screening length most appropriate for the system in question.

4 Discussion

4.1 Scaling and ion correlations

So far we have established that the ξ-scaling for rectification works for 1:1 and 2:1 electrolytes

(Fig. 3C). Next, we compile this data and that for 3:1 and 2:2, where ion correlations are

very strong, and show it in Fig. 4. The top and bottom panels show the same results but on

linear and logarithmic scales, respectively. The linear scale enhances the deviations at small

ξ values, while the logarithmic scale rather enhances the deviations at large ξ values.

The scaling is not perfect, but, taken collectively, all these disparate curves essentially

fall on top of each other. This is remarkable for three reasons.

First, considering how easily they could be far apart with an inappropriate scaling pa-

19



1 2 3

ξ
D
 for PNP or ξ

MSA
 for LEMC

10

100

r 
=

 I
O

N
/I

O
F

F

1:1
2:1
3:1
2:2

0

200

400

600

r 
=

 I
O

N
/I

O
F

F

c=0.1M, varying R
P
 (LEMC)

R
P
=1nm, varying c (LEMC)

R
P
=2nm, varying c (LEMC)

c=0.1M, varying R
P
 (PNP)

Curves: PNP

Symbols: LEMC

Figure 4: Rectification defined as r = ION/IOFF as a function of the ξ = RP/(λzif) parameter
for various systems as indicated in the legend. Black, red, blue, and green symbols/lines refer
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results, respectively. Filled symbols and lines have been obtained for a fixed concentration
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scale in the top panel, while on a logarithmic scale in the bottom panel. The linear scale
accentuates deviations at small ξ values, while the logarithmic scale accentuates deviations
at large ξ values.

rameter (as shown in Figs. 3A and B), Fig. 4 shows that the right screening parameter plays

a large role in this r(ξ) curve. We suspect that part of the scatter in Fig. 4 can be attributed

to the fact that the MSA theory becomes less accurate as valence increases, especially as

high as +3.

20



Second, it is remarkable that two simple tweaks to the usual RP/λD scaling can describe

systems with vastly different complex ionic correlations. While Monte Carlo simulations

naturally compute these correlations, great effort has been made by many theorists to develop

sophisticated statistical mechanical theories that account for these correlations (e.g., density

functional theories, integral equation theories with various closures). Our results show that

for pore rectification, these correlations can be taken into account (at least to first-order) with

a better screening length λMSA and with zif . The importance of zif cannot be overstated in

making the scaling work. Figs. 3B and C show its effect and that just using a better screening

length (λMSA instead of λD) is insufficient. In fact, as di Caprio et al. wrote:11 “This shows

that this scaling related to the ionic strength parameter zif can be considered as a primary

effect.”

Third, the details of the nanoscale physics inside the pore are very different with the

different ionic correlations for 1:1, 2:1, 3:1, and 2:2 electrolytes. Although it is obvious that

different device-level behaviors emerge from these different molecular-level correlations, it is

not at all obvious that this emergent behavior should be described by a simplistic scaling as

a function of the ξ variable.

If we want to shed a light on the mechanisms behind this, we can analyze the concen-

tration profiles, ci(z, r), because they bridge the hard-to-quantify microscopic correlations

and macroscopic observable quantities such as currents. Currents are the integrals of the

flux densities on the left hand side of the NP equation (Eq. 6), while the profiles on the

right hand side of the NP equation determine how currents behave in various conditions.

Although ci(z, r) profiles are available from the simulations, it is more practical to analyze

the axial (radial) profiles that are averaged over the radial (axial) dimension, as we did in

Fig. 1 (Fig. 2).

Figures 1 and 2 show that there is an interesting coupling between the radial and axial

dimensions. Fig. 2 illustrates for a 1:1 electrolyte that the radial dimension determines how

21



the double layers behave and how the depletion zones are formed. The device behavior,

however, is determined by how those depletion zones appear along the ionic pathway (i.e.,

in the axial dimension).17 Rectification is determined by the voltage-sensitive formation of

the depletion zones as shown by the axial concentration profiles in Fig. 1. This coupling is

also present for multivalent ions and is analyzed in Figs. 5 and 6.

Figure 5 is the counterpart of Fig. 2 for 2:1 electrolytes. We plot radial concentration

profiles in the OFF state to analyze how double layers overlap and coion depletion zones are

formed. If the divalent cations (blue lines) are the counterions, they are attracted to the

oppositely charged wall (vertical red lines) strongly. The divalent cations, however, attract

more anions (red lines) into the pore due to stronger correlations between them, even if

the anions are repulsed by the pore charge, a phenomenon that eventually leads to charge

inversion.20–27 The depletion zones of anions, therefore, are not so deep.

If the monovalent anions are the counterions, on the other hand, the situation is reversed.

The divalent cations (the coions) are repulsed by the positive pore charge (vertical blue lines)

strongly. This is the dominant effect, so the divalent cations form very deep depletion zones

when they are the coions.

What is remarkable is how this asymmetric behavior scales with ξ. The gaps between the

cation and anion profiles (that roughly characterize double layer overlap) change with ξ (from

top to bottom) showing a clear tendency: the gap decreases (degree of overlap decreases) as

ξ increases. This tendency is the same for the two pore radii shown (compare left and right

columns).

Figure 6 shows how these effects in the radial dimension manifest themselves in the axial

dimension. It shows all the axial concentration profiles for three selected sets of ξ and RP

(panels A-C) both in the ON and OFF states as obtained by both methods.

The fact (observed and discussed above for Fig. 5) that the depletion zones of multivalent
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cations are deeper in the OFF state is even more apparent in Fig. 6: the depletion zones

get deeper as cation valences increase from +1 to +3; see blue symbols in the second row

from left to right in the first three columns (1:1, 2:1, and 3:1; note the logarithmic scale of

concentration). For the anions, the opposite trend is observed. Both trends are even more

clearly visible in Fig. S1 of the Supporting Information (SI), where we plot the 1:1, 2:1, and

3:1 cases in one panel. To make sure that these trends are visible in Fig. 6, we indicated these

cases with ∗, ∗∗, and ∗∗∗ symbols, respectively, in blue for cations and in red for anions.

In the ON state, concentrations are larger in the pore, so the effect of strong ionic

correlations in the multivalent cases (2:1, 3:1, and 2:2) is more apparent. In PNP, the anion

profiles do not change much as z+ increases (from 1:1 to 3:1), while the cation profiles

decrease, because the multivalent cations provide more charge to balance the pore charge.

This is the natural outcome of the mean-field PNP theory. In contrast, the LEMC cation

profiles do not change much and the anion profiles increase as z+ increases. This is the result

of the ionic correlations between cations and anions that are properly computed by LEMC.

The multivalent cations drag the anions along with them into the pore. Also, this trend is

more visible in Fig. S1.

The effect of strong ionic correlations can also be seen by comparing the 2:2 case to the

1:1 case. Both cation and anion profiles are elevated and a much larger density electrolyte

is formed inside the pore than that implied by the mean-field PNP theory. The divalent

cations and divalent anions associate so strongly that they drag each other along into the

pore. This phenomenon is absent in PNP. This effect is even more visible in Fig. S2 of the

SI, where we plot the 1:1 and 2:2 cases in one panel.

If we compare panels A and B (they refer to the same ξ, but different RP values), we

observe quantitatively similar behavior of the OFF-state profiles; note that the ordinates of

panels A and B show similar concentration ranges. If we compare panels B and C (they

refer to the same RP, but different ξ values), we observe quantitatively different behavior
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of the OFF-state profiles; note that the ordinates of panels B and C show very different

concentration ranges.

It is important to emphasize that Fig. 6 is not a direct comparison between LEMC and

PNP, because the two methods refer to different concentrations (see Table S1). The purpose

of Fig. 6 is to show trends as functions of z+ at fixed ξ values. If we plot the concentration

profiles normalized by the bulk concentrations, ci(z)/ci, the agreement between the LEMC

and PNP data is much better (see Fig. S3 in the SI).

4.2 Scaling and selectivity

So far, we showed results for rectification expressed in terms of the total current (Eq. 3, Figs.

3 and 4), because that is the primary measurable device function. At the same time, we

showed concentrations of individual ionic species (Figs. 1, 2, 5, and 6). In the following, we

show how the behavior for individual ionic species add up to the measurable overall behavior

(total currents and their rectification).

We define the rectification of ionic species i as

ri =
ION
i

IOFF
i

, (23)

where ION
i and IOFF

i are the absolute values of currents carried by ionic species i in the ON

and OFF states, respectively. If we express r in terms of ri as

r =
ION

IOFF
=
ION
+ + ION

−

IOFF
=

ION
+

IOFF
+

ION
−

IOFF

=
IOFF
+

IOFF
·
ION
+

IOFF
+

+
IOFF
−

IOFF
·
ION
−

IOFF
−

= SOFF
+ r+ + SOFF

− r−, (24)

we can see that rectification for the total current is a weighted sum of the rectifications for
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the individual ions weighted by the selectivities in the OFF state defined as

SOFF
i =

IOFF
i

IOFF
(25)

expressing the share of ionic species i from the total current. If SOFF
i = 1, the pore is

selective for ionic species i, if SOFF
i = 0, the pore is selective for the other species, while if

SOFF
i = 0.5, the pore is non-selective.

Figure 7 analyses all the quantities that appear in Eq. 24. From top to bottom, we plot

the ionic currents in the ON state (ION
i ), in the OFF state (IOFF

i ), their ratio (ri), OFF-state

selectivities (SOFF
i ), and the products of the previous two (SOFF

i ri).

The two top rows show that individual currents (ION
i and IOFF

i ) have very different

magnitudes for different electrolytes (beware the logarithmic scale). Currents are different

for the cations and the anions (for the 2:1 and 3:1 systems) both in the ON and OFF states.

This shows that the pore is selective in the case of valence-asymmetric electrolytes.

The rows for the individual rectification and OFF-state selectivity show that scaling does

not work for these quantities. The ri values for the 2:1 and 3:1 systems deviate from the 1:1

data; they are larger for cations and smaller for anions. The OFF-state selectivity, however,

shows the opposite trend. If we take their product, however, the agreement is much better

(bottom row).

This can be understood if we look at the 3:1 case (blue symbols and curves). Rectification

is large for the cation because the depletion zones of the trivalent cations is very deep, so the

OFF-state current of the cations is very low. At the same time, rectification is very small

for the anion due to anion leakage (see the large IOFF
− values in the second row). Anion

leakage is due to the fact that the depletion zones of anions are not very deep because of the

strong correlations between the trivalent cations and the anions. The trivalent cations, so to

speak, bring the strongly correlated anions with them into the negative zones that otherwise
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repulse the anions.27

These large differences in individual rectifications, however, are balanced by selectivities.

The bipolar nanopore is selective for the anions for a charge-asymmetric electrolyte in the

OFF state (see the SOFF
i values in Fig. 7). That is because the cations have much deeper

depletion zones, so their OFF-state currents are much smaller. The large rectification of the

cation, r+, therefore, contributes to the total rectification with a smaller weight as shown by

Eq. 24.

Scaling for the SOFF
i ri product works quite well for the 1:1 and 2:1 cases, while deviations

appear for the 2:2 and 3:1 cases, where ionic correlations are stronger.

A different way to see this is to divide the NP equation for the ON state with the NP

equation for the OFF state. To first-order, the left-hand side result is ri since the area

inside the pore is constant and so is the total flux. On the right-hand side, the quantities

that are largely different in the ON and OFF states are the concentration profiles since the

Di(z) profiles are identical in this study. Also, the µi(z) profiles are very similar because

in absolute values they are the same in the left and right baths, and thus their variance is

limited by this constraint. The concentrations, however, exhibit hugely different behavior in

the ON and OFF states, see Figs. 1 and 6.

In accordance with Eq. 24, we can expect that scaling works for the cON
i (z)/cOFF

i (z) ratio

if we multiply it by SOFF
i . This is shown by Fig. 8. The top row of this figure shows the

cON
i (z)/cOFF

i (z) profiles for a given ξ and RP for various electrolytes. The curves depart

especially for the cation. If we multiply by SOFF
i , however, the curves line up especially in

the depletion zone which is our main interest (bottom row). In this figure (as in Fig. 1C),

large peaks represent regions that contribute to rectification in the resistors connected in

series model.
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5 Conclusions

Scaling is an important property in nature because it helps relate certain phenomena to

many parameters in a simple way, often related to varying length and time scales.55 In the

world of nanodevices, scaling behavior for a device function (rectification, in this study)

makes design of nanodevices easier. It may also help us understand the physics of the device

function.

Here, we showed that rectification scales with ξ, where ξ is a function of parameters RP,

c, R+, z+, R−, and z−. The system’s behavior can be described by a single parameter, ξ,

thus the problem is seemingly reduced to a one dimensional one, provided that all the other

parameters (e.g., pore length, pore charge) are kept fixed. This is possible because there
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is a coupling between the radial dimension (i.e., in the cross-section) and the longitudinal

dimension (i.e., down the axis of the pore) via the double layer overlap and the deepness

of the depletion zones. Thus, scaling stems from a behavior in the radial dimension that

determines the behavior in the longitudinal dimension, and, thus, device properties.

The concept of scaling can be paralleled with the idea of reduced quantities such as the

reduced temperature defined in Eq. 14. These are dimensionless parameters that characterize

many of the statistical mechanical properties of a system. A reduced density, ρ∗ = ρ/d3, for

example, can also be considered a scaling parameter in the sense that the system’s properties,

expressed in reduced (e.g., normalized or relative) quantities, depend on ρ∗ whatever is the

number density ρ or the particle diameter d. What matters is their ratio.

We showed results using two different methods that include two highly different degrees

of approximations. LEMC is a particle simulation method that includes ionic correlations

(including finite sizes of ions). PNP, on the other hand, is a continuum theory that works

on a mean-field level because it employs the PB theory.

We showed that the two methods can produce qualitatively the same scaling if we use the

appropriate screening lengths that mirrors the physics in each model (λD for PNP because

both are based on PB theory and λMSA for LEMC because both have correlated hard-sphere

ions). We were able to define a parameter based on a modified screening length (λ → λzif)

that produced very similar scaling behavior for very different electrolytes from 1:1 to 3:1

to 2:2. Exactly why the rectification scales like this will require more work to understand,

despite the theoretical results of di Caprio et al.11 which shed some light on the mechanisms

behind it.
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Table S1 contains the parameters of all the simulated state points. Figures S1 and S2

focus on details of Fig. 6 to assist discussion. Figure S3 is an alternative of Fig. 6 showing

normalized concentration profiles.
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(48) Boda, D.; Valiskó, M.; Henderson, D.; Eisenberg, B.; Gillespie, D.; Nonner, W. Ionic

Selectivity in L-Type Calcium Channels by Electrostatics and Hard-core Repulsion. J.

Gen. Physiol. 2009, 133, 497–509.

(49) Boda, D. In Ann. Rep. Comp. Chem.; Wheeler, R. A., Ed.; Elsevier, 2014; Vol. 10;

Chapter 5 Monte Carlo Simulation of Electrolyte Solutions in Biology: In and Out of

Equilibrium, pp 127–163.
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