REAL

Initial regeneration success of tree species after different forestry treatments in a sessile oak-hornbeam forest

Tinya, Flóra and Kovács, Bence and Aszalós, Réka and Tóth, Bence and Csépányi, Péter and Németh, Csaba and Ódor, Péter (2020) Initial regeneration success of tree species after different forestry treatments in a sessile oak-hornbeam forest. FOREST ECOLOGY AND MANAGEMENT, 459. pp. 1-12. ISSN 0378-1127

[img]
Preview
Text
TinyaF_etal_FEM_OA.pdf
Available under License Creative Commons Attribution Non-commercial No Derivatives.

Download (1MB) | Preview

Abstract

Ecological, economic, and social demands triggered a shift in the management of temperate deciduous forests from rotation forestry system towards more nature-based forest management techniques such as continuous cover forestry. However, there is insufficient knowledge on the regeneration success of different tree species—especially oaks—within this management system. Through a systematic experiment, we compared the regeneration processes of a sessile oak-hornbeam forest after gap-cutting (as an element of continuous cover forestry system) to regeneration after clear-cutting, preparation cutting, and in retention tree groups (treatments of rotation forestry system). A managed, closed, mature forest was used as control. Several different aspects of the regeneration were studied: (1) seed supply of sessile oak—Quercus petraea (Matt.) Liebl., (2) species number and abundance of the natural regeneration, (3) survival and growth of individual saplings of five tree species (sessile and Turkey oak—Quercus cerris L., hornbeam—Carpinus betulus L., beech—Fagus sylvatica L., and common ash—Fraxinus excelsior L.). The number of acorns was high in closed forest, intermediate in preparation cutting and retention tree group, low in gaps, and zero in clear-cutting. Four years after the interventions, there was no detectable treatment effect on the species number of regeneration. Survival increased in every treatment compared to control, but there was no significant difference in this measure between the differently treated sites. Height growth was highest in the gaps and clear-cuts, intermediate in preparation cuts, and lowest in retention tree groups and controls. Species with different seed dispersal mechanisms responded differently to treatments: oaks were dispersal-limited in the gaps and clear-cuts, while anemochorous species (e.g., hornbeam and manna ash) were present in every treatment. The survival and growth pattern of the particular species proved to be similar, but the intensity of the response differed: shade-tolerants (hornbeam, beech, and ash) showed better survival than oaks in most treatments, and their height growth was larger. According to our results, oak regeneration establishes successfully in oak-hornbeam forests not only in the case of rotation forestry, but also during continuous cover forestry (gap-cutting). The survival and growth of the saplings are similar in cutting areas and gaps, but keeping in mind other considerations (such as preserving forest continuity, balanced site conditions, and forest biodiversity), continuous cover forestry should be preferred.

Item Type: Article
Subjects: S Agriculture / mezőgazdaság > SD Forestry / erdőgazdaság
SWORD Depositor: MTMT SWORD
Depositing User: MTMT SWORD
Date Deposited: 13 Jan 2020 12:13
Last Modified: 13 Jan 2020 12:13
URI: http://real.mtak.hu/id/eprint/105394

Actions (login required)

Edit Item Edit Item